基于电生理的脑网络研究报告
2016-05-30尧德中夏阳
尧德中 夏阳
摘 要:电生理信息(EEG、局部场电位、神经元单位放电)和血液与代谢信号(fMRI)提供了神经活动的明显不同、但又相互紧密耦合的不同方面的信息。脑电/电生理对发生在毫秒量级的瞬态神经活动敏感,可以动态地揭示脑功能活动的动态连接性。由于EEG和fMRI信号的产生机理不同,决定了EEG/fMRI两种技术在时-空两方面具有互补性。通过信息融合将两种技术的优点进行集成是一个受到高度关注的研究策略。该研究重点关注电生理的脑网络分析方法,同时考虑电生理与fMRI信息的融合问题,并将发展的新技术方法用于临床神经精神疾病的脑机制研究。成功建立了精神分裂症猕猴模型,为该研究应用发展的数据处理方法在疾病模型上的验证研究奠定了基础;在多模态信息融合方面,提出了借助经验Bayes理论,实现EEG-fMRI信息并集的网络融合方法;基于颅内电生理技术,发现了产生SSVEP信号的网络机制。
关键词:脑网络 脑电 磁共振 信息融合
Abstract:To research of brain function, electrophysiological (including EEG, local field potentials, spikes) and BOLD (fMRI) information may provide the different aspects of closely coupled neural activity. EEG (or electrophysiological) activity occurs in milliseconds and can reveal brain dynamic activities. Due to the different generation mechanism of EEG and fMRI signal, the analysis technologies of EEG and fMRI are complementary in the space-time Scale. Our main works are to develop the analysis methods of brain network based on electrophysiological signal and to develop the analysis methods of electrophysiology and fMRI information fusion. Meanwhile, we pay close attention to mechanism study of clinical neuropsychiatric diseases using above developed methods. So far, we have successfully established schizophrenia rhesus monkey model. We have developed the multimodal information fusion techniques based on Bayes theory. Based on intracranial EEG recording, we found the brain network mechanism of SSVEP generating.
Key Words:Brain network;EEG;MRI;Information fusion
阅读全文链接(需实名注册):http://www.nstrs.cn/xiangxiBG.aspx?id=49192&flag=1