石墨烯复合纤维的开发与应用
2016-05-14杜德壮曾琦凌良仲张克勤
杜德壮 曾琦 凌良仲 张克勤
摘要:石墨烯及其复合材料近年来成为研究热点,目前对石墨烯复合纤维材料的潜在应用已有大量研究,如储能材料、转换设备、传感器、导线等。与石墨烯基气溶胶和石墨烯复合膜等多维材料相比,石墨烯复合纤维的机械性能和导电性能突出。此外,石墨烯复合纤维可以弯曲、打结,甚至织成柔性导电织物。本文综述了石墨烯复合纤维的主要制备方法、性能及应用,并对这一领域的发展进行了展望。
关键词:石墨烯;石墨烯复合纤维;导电率;机械性能
中图分类号: TQ127.1+1 文献标志码:A
The Development and Application of Graphene Composite Fiber
Abstract: Graphene and related composite materials have become a popular research topic. Up to now, a lot of efforts have been made to investigating the potential applications of graphene composite materials in such fields as energy-storing materials, conversion equipment, sensor and conducting wire. Graphene composite fiber outperforms multi-dimensional materials such as graphene-based aerosol and graphene composite membrane in terms of mechanical properties and conductivity. Moreover, graphene fiber can be curved, knotted, or even woven into flexible conductive fabric. The paper introduces main production methods, properties and applications of graphene fiber and anticipates its future development.
Key words: graphene; graphene composite fiber; electrical conductivity; mechanical property
1 前言
石墨烯是从石墨中剥离出来的只有 1 层原子厚度的二维晶体,厚度约为0.34 nm。继1985年C60(富勒烯)和1991年碳纳米管的首次报道后,2004年石墨烯的发现再次推动了人们对碳元素纳米材料的研究。研究表明,石墨烯具有非凡的机械性能、导电性能、热学性能以及光学性能。为了将石墨烯的这些优异性能进行实际应用,人们研发了三维石墨烯泡沫、二维石墨烯薄膜和一维的石墨烯复合纤维。然而,石墨烯复合纤维的特性以及制备方法还未被全面的介绍,不同制备方法与纤维性能之间的关系仍需讨论。
本文主要对石墨烯复合纤维的特点、制备方法及应用进行了系统论述,并探讨了不同制备方法对石墨烯复合纤维性能的影响。本文同时介绍了近年来石墨烯复合纤维的一些代表性应用,也对其潜在的研究与发展前景进行了展望。
2 石墨烯复合纤维
石墨烯复合纤维材料大致分为 3 类:石墨烯-聚合物复合纤维材料、石墨烯-无机金属复合纤维材料和石墨烯-无机非金属复合纤维材料。表 1 为石墨烯复合纤维的几种制备方法及其对应纤维的力学性能和导电性能。
2.1 石墨烯-聚合物复合纤维
鲍桥梁等人利用静电纺丝技术将共轭有机分子修饰的石墨烯与聚乙烯醇(PVA)混纺得到石墨烯复合纤维(图1)。随着石墨烯的加入,纤维的拉伸强度从3.45 MPa提高到了12.39 MPa,且纤维的吸光度提高了约10倍。
高超等人提出了“液晶自构模板”的方法,将石墨烯与超支化聚缩水甘油醚(HPG)结合得到了超高拉伸强度的仿贝壳纤维。该仿贝壳纤维展现出了可观的拉伸强度(652 MPa),约为贝壳的 5 ~ 8 倍。同时还提出了新的“倒置”策略,利用湿法纺丝自组装将石墨烯与聚甲基丙烯酸缩水甘油酯(GMA)结合再次制备了仿贝壳纤维(图 2)。该仿贝壳纤维的拉伸强度(500 MPa)是贝壳的 3 ~ 4 倍。
Akihiko Tanioka等人将氧化石墨烯加入到聚丙烯腈(PAN)纺丝液中,利用静电纺丝的方法制得石墨烯/PAN复合纤维。纺丝过程中,氧化石墨烯沿着纤维轴向排列分布。当氧化石墨烯的含量为0.5%时,所得复合纤维的导电率最高,为165 S/cm。
2.2 石墨烯-无机金属复合纤维
Sang Su Yoon等人利用湿法纺丝将大片的石墨烯(56±20)μm与纳米银颗粒结合起来制备了石墨烯/纳米银复合纤维(图 3)。这种复合纤维的导电率高达15 800 S/cm。而且这种复合纤维很容易被剪断粘附在柔性基底上,将被广泛应用于纤维型电极材料、纤维型晶体管、纤维型电容器等领域。
高超等人利用类似的方法制备了石墨烯/纳米银复合纤维。他们同样采用湿法纺丝的方法将氧化石墨烯与纳米银颗粒混纺,然后用氢碘酸还原,得到的复合纤维的导电率为930 S/cm。
曲良体等人利用电化学沉积的方法在石墨烯纤维的外层电沉积MnO2颗粒,得到复合纤维(图 4)。这种多层结构复合纤维制备的纤维型电容器展现出了较强的电化学电容器特性。
2.3 石墨烯-无机非金属复合纤维
刘杰等人直接将未功能化的多壁碳纳米管分散到氧化石墨烯溶液中进行湿法纺丝,然后还原得到石墨烯/碳纳米管(CNTs)复合纤维。CNTs的加入使得石墨烯纤维的拉伸强度从193.3 MPa增加到385.7 MPa,导电率从53.3 S/cm增加到210.7 S/cm。同时,石墨烯/CNTs复合纤维用于线形超级电容时大大提高了其比电容和能量密度,在石墨烯基电极材料领域有较好的发展前景。
邹祖炜等人也利用湿法纺丝将碳纳米管薄膜包覆在还原氧化石墨烯的外层,得到石墨烯/CNTs复合纤维。CNTs的加入使石墨烯纤维的强度和导电率分别增加了22%和49%。
曲良体等人以Fe3O4为催化剂用化学气相沉淀(CVD)的方法将CNTs直接生长在石墨烯纤维的表面,得到石墨烯/CNTs复合纤维。除了可以用作织物超级电容器外,石墨烯/CNTs复合纤维还可以被应用到更多的领域,如催化、分离和吸附材料。
3 石墨烯复合纤维的应用
由于石墨烯复合纤维具有柔性较好,质轻,导电性能、热学性能优异等优点,因此被广泛应用于各个领域。根据近年文献,其应用主要集中在如下几个方面。
3.1 生物医用材料
2013年,Nadnudda Rodthongkum和Nipapan Ruecha等人利用静电纺丝构建了一种新颖的高灵敏度的用来检测多巴胺的电化学系统。他们在丝网印刷碳电极的表面修饰了一层石墨烯/聚苯胺/聚苯乙烯复合纤维。在最优条件下,多巴胺的检测量可以达到0.05 nM。另外,这种电极系统具有非常宽的动力学范围:0.1 nM ~ 100 μM。
3.2 储能材料(超级电容器)
Robert A. W. Dryfe等人用电泳沉积的方法在碳纤维的表面沉积石墨烯碳纳米管复合层,得到石墨烯-碳纳米管/碳纤维(G-CNT/CC)复合纤维(图 5)。所得电极的比电容(151 F/g)是纯石墨烯纤维电极(58.8 F/g)的2.5倍,而且其能量密度(14.5 W·h/kg)也远高于纯石墨烯纤维电极(5.6 W·h/kg)。曲良体等人在石墨烯纤维表面沉积MnO2,将石墨烯纤维的比电容提高到了36 F/g。
3.3 导线
董泽琳等人以石墨烯复合纤维为导线织成导电织物;高超等人将石墨烯复合纤维作为LED晶体管的导线,同时还将纳米银与石墨烯混纺制得高导电率的石墨烯/纳米银复合纤维(导电率为930 S/cm);彭慧胜等人从碳纳米管片中抽出碳纳米管阵列,沿着轴向堆叠,加入氧化石墨烯溶液,最后将混合物扭曲得到石墨烯/CNT复合纤维。
3.4 光催化
高孟春等人在氧化石墨烯的乙醇溶液中加入硝酸铟、聚乙二醇和氧化二乙酰丙酮合钒制得纺丝液,静电纺后煅烧得到石墨烯/氧化钒铟(RGO/InVO4)复合纤维(图 6)。这种复合纤维表现出了很好的光催化性能。Bo-Hye Kim等人利用静电纺丝的方法得到含氧化石墨烯的聚合物纤维,经煅烧得到石墨烯/碳复合纤维,再将得到的纤维浸泡在含钛的氧化物溶液中,高温煅烧得到石墨烯复合纤维。
4 结语
各种石墨烯复合纤维层出不穷,制备方法也不尽相同。通过对这些复合材料的研究发现,复合纤维的制备方法对其拉伸强度和导电率有重要影响。其中,干法纺丝和湿法纺丝制得的复合纤维的拉伸强度明显比静电纺丝强。同时,通过对比同种样品的氧化石墨烯还原方式,发现相比于高温煅烧,HI酸还原更能保存石墨烯的优异性能。
尽管石墨烯复合纤维已经表现出很好的应用前景,但其制备工艺仍有待改进,以得到力学性能和导电性能优于单层石墨烯的材料。此外,目前对其光学和热学方面的研究还较少,相信在不久的将来性能更优异的石墨烯复合纤维将会问世,且其应用领域将得到进一步扩展。
参考文献
[1] Kroto H W, Heath J R, Brien S C O, et al. C60:Buckminsterfullerene [J]. Nature, 1985, 318:162-163.
[2] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354:56-58.
[3] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306:666-669.
[4] Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials, 2007, 6(3):183-191.
[5] Novoselov K S, Fal′Ko V I, Colombo L, et al. A roadmap for graphene [J]. Nature, 2012, 490(7419):192-200.
[6] Geim A K. Graphene:status and prospects [J]. Science, 2009, 324(5934):1530-1534.
[7] Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets [J]. Nature, 2007, 446(7131):60-63.
[8] Nieto A, Boesl B, Agarwal A. Multi-scale intrinsic deformation mechanisms of 3D graphene foam [J]. Carbon, 2015, 85:299-308.
[9] Shin M K, Lee B, Kim S H, et al. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes [J]. Nature Communications, 2012, 3(48):19596-19600.
[10] Liu F, Song S, Xue D, et al. Folded structured graphene paper for high performance electrode materials [J]. Advanced Materials, 2012, 24(8):1089-1094.
[11] Wang D W, Li F, Zhao J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for highperformance flexible electrode [J]. ACS Nano, 2009, 3(7):1745-1752.
[12] Bao Q, Zhang H, Yang J, et al. Graphene–polymer nanofiber membrane for ultrafast photonics [J]. Advanced Functional Materials, 2010, 20(5):782-791.
[13] Yuan-Li H, Avinash B, Hsi-Wen T, et al. Self-assembly of graphene onto electrospun polyamide 66 nanofibers as transparent conductive thin films [J]. Nanotechnology, 2011, 22(47):475603-475609.
[14] Wei W, Yang S, Zhou H, et al. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage [J]. Advanced Materials, 2013, 25(21):2909-2914.
[15] Sohn K, Joo N Y, Chang H, et al. Oil absorbing graphene capsules by capillary molding.[J]. Chemical Communications, 2012, 48(48):5968-5970.
[16] Eda G, Chhowalla M. Graphene-based composite thin films for electronics [J]. Nano Letters, 2009, 9(2):814-818.
[17] Zhu J M, Li G, Jiang L Y. Fabrication and structural tuning of novel composite hollow fiber membranes for pervaporation [J]. Journal of Applied Polymer Science, 2016, 133(16):43324.
[18] Shao W, Wang S X, Liu H, et al. Preparation bacterial cellulose/ graphene nanosheets composite films with enhanced mechanical performances [J]. Carbohydrate Polymers, 2016, 138:166-171.
[19] Lu Y B, Yang Q S, He X Q, et al. Modeling the interfacial behavior of carbon nanotube fiber/polyethylene composites by molecular dynamics approach [J]. Computational Materials Science, 2016, 114:189-198.
[20] Kumar D, Singh K K. An approach towards damage free machining of CFRP and GFRP composite material:a review [J]. Advanced composite materials, 2015, 24:49-63.
[21] Hu X Z, Xu Z, Liu Z, et al. Liquid crystal self-templating approach to ultrastrong and tough biomimic composites [J]. Scientific Reports, 2013, 3:2374-2382.
[22] Zhao X, Xu Z, Zheng B, et al. Macroscopic assembled, ultrastrong and H2SO4-resistant fibers of polymer-grafted graphene oxide [J]. Scientific Reports, 2013, 3:3164-3171.
[23] Rodthongkum N, Ruecha N, Rangkupan R, et al. Graphene-loaded nanofiber-modified electrodes for the ultrasensitive determination of dopamine [J]. Analytica Chimica Acta, 2013, 804:84-91.
[24] Bao Q, Zhang H, Yang J, et al. Graphene–polymer nanofiber membrane for ultrafast photonics [J]. Advanced Functional Materials, 2010, 20(5):782-791.
[25] Ma B, Li Y, Zhao J, et al. Preparation and characterization of graphene oxide/poly(vinyl alcohol)composite nanofibers via electrospinning [J]. Journal of Applied Polymer Science, 2013, 127(4):3026-3032.
[26] Sang S Y, Kang E L, Cha H J, et al. Highly conductive graphene/Ag hybrid fibers for flexible fiber-type transistors [J]. Scientific Reports, 2015, 5:16366-16378.
[27] Xu Z, Liu Z, Sun H, et al. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors [J]. Advanced Materials, 2013, 25(23):3249-3253.
[28] Chen Q, Meng Y, Hu C, et al. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor [J]. Journal of Power Sources, 2014, 247(3):32-39.
[29] Ma Y, Li P, Sedloff J W, et al. Conductive graphene fibers for wireshaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes [J]. ACS Nano, 2015, 9(2):1352-1359.
[30] Meng F, Li R, Li Q, et al. Synthesis and failure behavior of superaligned carbon nanotube film wrapped graphene fibers [J]. Carbon, 2014, 72(3):250-256.
[31] Huhu C, Zelin D, Chuangang H, et al. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors [J]. Nanoscale, 2013, 5(8):3428-3434.
[32] Xiaohua Z, Rui W, Wen Y, et al. Carbon nanotube and graphene multiple-thread yarns [J]. Nanoscale, 2013, 5(3):1183-1187.
[33] Matsumoto H, Imaizumi S, Konosu Y, et al. Electrospun composite nanofiber yarns containing oriented graphene nanoribbons [J]. ACS Applied Materials and Interfaces, 2013, 5(13):6225-6231.
[34] Wang S, Dryfe R A W. Graphene oxide-assisted deposition of carbon nanotubes on carbon cloth as advanced binder-free electrodes for flexible supercapacitors [J]. Journal of Materials Chemistry A, 2013, 1(17):5279-5283.
[35] Zelin Dong, Changcheng Jiang, Cheng H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers [J]. Advanced Materials, 2012, 24(14):1856-1861.
[36] Liang K, Chao G. Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers[J]. Nanoscale, 2013, 5(10):4370-4378.
[37] Zhen X, Yuan Z, Peigang L, et al. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores [J]. ACS Nano, 2012, 6(8):7103-7113.
[38] Sun H, You X, Deng J, et al. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices[J]. Advanced Materials, 2014, 26(18):2868-2873.
[39] Ma D, Zhang Y, Gao M, et al. RGO/InVO4 hollowed-out nanofibers:Electros-pinning synthesis and its application in photocatalysis [J]. Applied Surface Science, 2015, 353:118-126.
[40] Chang H K, Kim B H, Yang K S. TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis [J]. Carbon, 2012, 50(7):2472-2481.