凹坑形表面减阻性能数值模拟
2016-05-14严钰婷唐亚鸣刘伟奇田杨
严钰婷 唐亚鸣 刘伟奇 田杨
摘 要:土壤对疏浚机具的粘附会增加切削阻力、降低切削效率。土壤动物的非光滑表面为疏浚机具的仿生设计提供了参考。传统的减阻研究主要通过实验分析,但是实验花费的时间长,实验条件控制难,而且实验不易探究减阻的机理。借助流体分析软件Fluent,用数值模拟的方法分析流体流过凹坑形非光滑表面的流场,剖析凹坑非光滑表明的减阻机理,同时计算凹坑单元在不同流体流速下的降阻效果,从而为设计更加有效的仿生铰刀提供理论指导。
关键词:凹坑形刀齿;CFD数值模拟;减阻
0 引言
疏浚机具切削土壤[1]过程中受力复杂,除了受到剪断土壤中的毛细管产生界面负压粘附力[2]、还有吸泥负压力以及土壤内聚力[3]等。开发具有减小切削阻力的刀齿,能提高疏浚的效率和降低能耗。国内外的研究表明一些土壤动物[4]的非光滑表面具有减小阻力的作用。针对仿生刀具刀齿表面非光滑结构[5]单元进行数值模拟,探索其减粘减阻的机理。这对仿生疏浚机具的非光滑结构单元的设计、研发具有指导意义。
1 数值模拟方法
1.1 CFD简介
当前研究流体力学问题主要有三类方法:实验测量、理论分析和CFD模拟。
CFD有着实验测量和理论分析所达不到的优点,如CFD模拟成本低,耗时短,容易获得流场中的许多数据等等。Fluent正是一款用来模拟从不可压缩到高度可压缩范围内复杂流动的CFD流体分析软件,本实验会用到。
1.2 交错网格与SIMPLE算法
所谓交错网格就是将速度u、v及压力p(以及其他标量和物性参数)分别存储于三套不同网格上,此时相邻两节点的压力构成了动量方程中的压力梯度,从而很好地解决了采用非交错网格时所遇到的问题,提高了计算精度,因而在二维直角坐标系下交错网格布局得到广泛的应用。
求解器的设定中,速度场和压力场的耦合采用SIMPLE算法,这种算法的计算步骤如下:
(1)给出试探的压力场p*;
(2)求解动量方程,得到u*、v*、w* ;
(3)求解压力修正方程,得p';
(4)通过求得的p'和p*计算得到p;
(5)速度校正公式,得到校正后的速度u、v、w;
(6)利用校正后的速度场求解与速度耦合的变量;
(7)判断是否收敛,收敛,则结束求解;不收敛,回到第二步继续求解。
1.3 边界条件和初始条件
对于流动问题的求解,需要指定边界条件和初始条件。采用k-ε双标准型湍流模型;边界条件为:入口采用速度入口条件(方向沿Z轴正向);出口采用压力出口条件,出口表压为0(大气压)。为了更贴近铰刀的疏浚工作,选择流体材料为9%稀水泥浆(淤泥),其密度为1040kg/m3,粘性为0.012kg/(m·s)。入口速度控制在2~12m/s。
2 建立模型与划分网格
2.1 计算模型
先用Gambit建立模型,定义左面为速度入口,右面是压力出口,上壁面是光滑表面(smooth surface),下壁面是凹坑形非光滑表面(non-smooth surface),为了消除两次模型计算带来的误差,本模型采用同一计算域中同时设置光滑表面和非光滑表面的方法,同时防止上表面流场与下表面流场的相互混扰,计算域高度必须取得足够大。
2.2 网格的划分
计算模型建立好之后,对该模型进行网格划分。划分网格即计算区域的离散化,将连续的计算区域划分成许多个子区域,并确定节点。为了尽可能的减小计算误差,划分网格时要尽可能将网格划分得足够细密。
3 结果与分析
3.1 减阻率计算公式
流体流过物体表面时,会产生阻力,总阻力等于粘性摩擦阻力和压差阻力之和。摩擦阻力是由于流体粘性引起的,等于作用在物体表面上的切应力在来流方向上的投影总和;压差阻力由于运动着的物体前后所形成的压强差所形成的,等于作用在物体表面上的压力在来流方向上的投影总和。粘性摩擦阻力 、压差阻力及总阻力的计算公式和关系见(1)、(2)、(3)。
上式中, 为壁面切应力, 为壁面压应力, 为离散单元的面积。
用R表示凹坑形非光滑表面相对于光滑表面的减阻率,R为正值时,表示凹坑形表面减阻,R为负值时,表示不减阻。
式中, 表示凹坑表面总阻力, 表示光滑表面总阻力。
3.2减阻机理分析
模拟结果显示,模型I在入口速度为8m/s时,减阻率最大,达9.01%,本文将采用该模型的计算流场数据,对比光滑与凹坑表面的流动特性,分析减阻机理。
由公式(1)知,摩擦阻力为切应力对投影面积的积分,所以,除了投影面积这个因素,切应力也是影响摩擦阻力大小的另一个重要因素。
绘制曲线时,对于凹坑处的某些点切应力为负值,取绝对值处理。从曲线上明显可以看出:(1)在凹坑单元,切应力明显小于光滑表面;(2)凹坑处的切应力变化是,从左到右,先降低再增大,最小应力大约发生在坑底;(3)由于凹坑的存在,凹坑下游邻近凹坑的平滑面,切应力也会变小,这对减小总阻力起了很大作用。
可以推断,凹坑之所以能够减阻,不仅因为凹坑区的阻力减小,还因为引起凹坑下游光滑表面的流动情况发生变化,从而减小整个表面的阻力。
4 结束语
CFD数值模拟是解决流体流动问题的一种方法,本章运用Fluent,在同一计算域中模拟光滑表面和凹坑形非光滑表面在水泥浆流过时的流动特性,分析了凹坑对摩擦阻力和压差阻力的影响,并就凹坑减阻机理进行了切应力分布、速度梯度和逆向涡流三个方面的剖析。数值模拟结果说明,通过合理的凹坑布局和设计,凹坑非光滑表面完全可以实现很好的减阻效果。
参考文献
[1] 吴迪.土壤与水下采挖机具的相互作用研究[D].青岛:中国海洋大学,2013.
[2] R E Baier,E G Shafrin,W A Zisman.Adhesion:Mechanisms that assist or impede it [J].Science,1968.1(3860):1360-1368.
[3] S Q Deng, L Q Ren, Y Liu, Z W Han.Tangent resistance of soil on moldboard and the mechanism of resistance reduction of bionic moldboard[J].Journal of Binics Engineer 2005,2(1):33-36
[4] 张立.土壤粘附机理及土壤动物体表几何形貌的量化研究[D].长春:吉林大学,2012.
[5] 丛茜.非光滑减粘降阻机理及触土部件仿生改形研究[D].长春:吉林工业学,1992.