川中地区中下侏罗统致密油储层裂缝发育特征
2016-04-20吕文雅曾联波张俊辉陈双全黄平吕
吕文雅+曾联波+张俊辉+陈双全+黄平+吕鹏+米华存
摘要:裂缝是川中地区中下侏罗统致密油储层重要的储集空间和主要的渗流通道,影响油气富集和单井产能。利用野外露头、岩芯和成像测井资料,对川中地区致密储层裂缝成因类型和发育特征进行了系统分析。在地质成因上,该区中下侏罗统沙溪庙组一段致密砂岩和大安寨组致密灰岩储层的裂缝可以分为构造裂缝与成岩裂缝两种类型,其中以构造裂缝为主。按照裂缝倾角,构造裂缝可以进一步分为低角度裂缝(0°~30°)、斜交裂缝(30°~60°)和高角度裂缝(大于60°)。由于低角度裂缝的直井钻遇率高,而斜交裂缝与高角度裂缝的直井钻遇率依次降低,所以对其裂缝密度统计时需要进行校正。根据裂缝与岩芯的空间几何关系,采用裂缝面法线方向上单位长度的裂缝条数进行校正。结果表明,该区沙溪庙组一段和大安寨组高角度裂缝线密度远大于低角度裂缝,反映该区致密油储层具有以高角度裂缝为主的特点,修正了过去长期以低角度裂缝为主的认识,对深入认识该区裂缝发育规律和指导致密油勘探开发具有重要意义。
关键词:裂缝;致密油储层;发育特征;密度;样品偏差;高角度;中下侏罗统;四川盆地
中图分类号:P618.13;TE122文献标志码:A
Development Characteristics of Fractures in the MiddleLower
Jurassic Tight Oil Reservoirs in Central Sichuan Basin
LU Wenya1, ZENG Lianbo1, ZHANG Junhui1,2, CHEN Shuangquan3, HUANG Ping4, LU Peng1, MI Huacun5
(1. College of Geosciences, China University of Petroleum, Beijing 102249, China; 2. Exploration and Development
Research Institute of Southwest Company, SINOPEC, Chengdu 610041, Sichuan, China; 3. College of Geophysics
and Information Engineering, China University of Petroleum, Beijing 102249, China; 4. Exploration and
Development Research Institute of Southwest Company, PetroChina, Chengdu 610051, Sichuan, China;
5. Yumen Oilfield Company, PetroChina, Jiuquan 735200, Gansu, China)
Abstract: Fractures are important storage space and fluid channels, influencing oilgas accumulation and well production in the MiddleLower Jurassic tight oil reservoirs in central Sichuan Basin. Based on the data of analogous outcrops, cores and image logs, the fracture origin types and development characteristics were systematically analyzed. According to the geological origins, the tectonic and diagenetic fractures are developed in the MiddleLower Jurassic tight oil reservoirs of the first member of Shaximiao Formation and Daanzhai Formation in central Sichuan Basin, and the tectonic fracture is the main one. According to the dip angles of fractures, the fractures can be divided into three types, i. e. low dipangle fractures (0°30°), oblique dipangle fractures (30°60°) and high dipangle fractures (more than 60°). Because low dipangle fractures present high encountered rates in vertical wells, and oblique and high dipangle fractures present gradual decrement of encountered rates, it is necessary to make a correction related to fracture intensity statistics. According to the spatial geometric relationship of fracture and core, the fracture number per meter of length in the normal direction of fracture surface was used to correct the calculation. The results show that the linear intensities of high dipangle fractures are much greater than those of low dipangle fractures in the first member of Shaximiao Formation and Daanzhai Formation; high dipangle fractures are the most abundant in these tight oil reservoirs; thus, it corrects the past understanding that low dipangle fractures are the major, which is of great significance for further understanding fracture development rules and guiding tight oil exploration and development in this area.
Key words: fracture; tight oil reservoir; development characteristic; intensity; sample bias; highdip angle; MiddleLower Jurassic; Sichuan Basin
0引言
致密油是致密储层油的简称,通常是指赋存于孔隙度小于10%、覆压基质渗透率小于0.1×10-3μm2的致密砂岩和灰岩等储集层中的石油[16]。致密油是全球非常规油气勘探开发的重要领域,具有较好的发展前景和较高的商业价值[712]。中国致密油资源丰富,储量大且分布广,目前鄂尔多斯盆地、四川盆地、松辽盆地、准噶尔盆地、渤海湾盆地等地区致密油勘探开发正在进行中[1]。
四川盆地大规模油气勘探始于1953年,是中国最早发现油气资源的盆地之一。川中地区中下侏罗统作为四川盆地唯一以含油为主的层系,其石油资源十分丰富,但其储层的物性极差,储集空间多样且非均质性强,属于典型的致密储层。在强烈的构造变形及后期成岩作用下,该区致密储层天然裂缝发育[1315]。天然裂缝是该区致密储层重要的储集空间和主要的渗流通道,影响着致密油分布及致密储层的勘探与开发[1619]。因此,研究致密储层裂缝分布特征及其发育规律对致密油的合理开发具有重要的理论与实际意义。
许多学者对川中地区中下侏罗统致密油的成藏机理、资源评价、富集规律、产能控制因素以及致密储层微观特征和发育机理等方面进行了大量研究[2033]。前人对川中地区裂缝也开展了一些工作。秦启荣等探讨了川中地区大安寨组裂缝的成因模式,认为川中东缘地区大安寨组裂缝在近EW向和NW—SE向水平挤压应力作用下形成NE向、NW向、近EW向和近SN向4组裂缝[34];刘莉萍等研究认为川中公山庙地区沙溪庙组一段亦发育NE向、EW向、NW向、SN向裂缝,其中NE向和EW向裂缝对油气运聚起重要作用[3536];胡宗全等探讨了大安寨灰岩裂缝及岩石孔隙结构的分形特征,提出了阶梯状孔隙结构模型[37];赵辉等研究认为川中地区大安寨段主要以低斜水平缝为主,而高角度裂缝不发育,并通过常规测井曲线对裂缝进行了评价,探讨了裂缝发育程度对产能的影响[38]。
本文在研究中下侏罗统沙溪庙组一段致密砂岩和大安寨组致密灰岩储层裂缝分布特征的基础上,考虑钻井取芯造成的样品偏差(Sampling Bias),采用裂缝面法线方向上单位长度的裂缝条数表征方法,对不同角度的裂缝密度进行了重新统计分析,提出了川中地区沙溪庙组一段和大安寨组致密储层都是以高角度构造裂缝为主的新认识。
1地质概况
川中地区位于四川盆地中部,北起大巴山、米仓山山前带,南抵乐山—宜宾断褶带,西起龙泉山构造带,东至华蓥山深大断裂带的平缓褶皱带,面积约8×104 km2(图1)。川中地区中下侏罗统是四川盆地的主要含油层系,目前在珍珠冲组、东岳庙组、马鞍山组、大安寨组、凉高山组和沙溪庙组一段都见到了良好的油气显示,其中主力层系为沙溪庙组一段、凉高山组和大安寨组,并发现了桂花、龙岗、莲池、蓬莱镇、公山庙等多个含油构造。
Ⅰ为川东高陡断褶带;Ⅱ为川南低缓断褶带;Ⅲ为川西南低缓断褶带;Ⅳ为川西低缓断褶带;Ⅴ为川中平缓断褶带
图1四川盆地构造位置及主要致密油分布
Fig.1Structure Location of Sichuan Basin and Distribution of Main Tight Oil Reservoirs
本次研究主要为沙溪庙组一段砂岩储层和大安寨组灰岩储层,其中沙溪庙组一段砂岩主要发育三角洲分流河道和河口坝砂体,大安寨组灰岩为淡水湖相混合沉积,发育灰褐色介壳灰岩、泥质介壳灰岩与黑色页岩、灰黑色泥岩的不等厚互层[20,2425](图2)。
根据样品物性分析结果,沙溪庙组一段砂岩的孔隙度主要分布在10%~60%之间,平均值为34%,渗透率大部分小于10×10-3 μm2[22,26],大安寨组灰岩绝大多数样品孔隙度小于20%,介于081%~3.22%之间,大部分样品渗透率小于0.1×10-3 μm2 [22,24,2627],均表现为典型的低孔致密储层。镜下微观特征分析表明,川中地区沙溪庙组一段致密砂岩和大安寨组致密灰岩储集空间类型多样且分布复杂,受后期压实、胶结及溶蚀作用影响,储层非均质性极强,同时在后期构造应力作用下,天然裂缝普遍发育,构成裂缝孔隙型双重介质储层特征。
图2川中地区侏罗系地层综合柱状图
Fig.2Synthetic Stratigraphic Column of Jurassic in Central Sichuan Basin
2裂缝成因类型
依据控制天然裂缝形成的地质因素,沉积储层天然裂缝的成因类型通常分为构造裂缝、成岩裂缝、异常高压裂缝、收缩裂缝以及溶蚀裂缝等类型[13,3946]。根据野外相似露头、岩芯及成像测井资料,川中地区沙溪庙组一段致密砂岩和大安寨组致密灰岩储层中普遍发育有构造裂缝和成岩裂缝,其中以构造裂缝为主。
在力学性质上,构造裂缝主要为剪切裂缝,裂缝产状稳定,裂缝面平直光滑,常见滑动擦痕甚至阶步,裂缝多成雁列式排列,有时可见羽饰构造[图3(a)~(c)]。成岩裂缝一般顺着微层理面分布,是储层岩石在成岩过程中由于压实或压溶等地质作用而产生的天然裂缝[4748]。研究区成岩裂缝多为低角度裂缝,尤其在岩性分界面处较为发育,沿层理面可出现断续、弯曲、分枝等特征[图3(d)]。
3裂缝发育特征
3.1裂缝倾角分类
按照裂缝倾角大小,研究区沙溪庙组一段致密砂岩和大安寨组致密灰岩储层的构造裂缝又可以进一步分为高角度裂缝(大于60°)、倾斜裂缝(30°~60°)和低角度裂缝(0°~30°)。高角度裂缝为典型的构造裂缝,其方向性明显,裂缝面上见擦痕等典型特征,表明其主要为剪切裂缝[图3(a)]。倾斜裂缝与高角度裂缝常成组发育,且常伴随矿物充填,分布较规则,规律性明显并具有相应的裂缝面特征,反映倾斜裂缝同样以构造成因的剪切裂缝为主[图3(b)]。低角度裂缝常常与微层理面呈小角度相交或顺微层理面分布。低角度裂缝有两种成因类型:一类为构造成因,裂缝面上常常具有矿物充填甚至擦痕分布,表现为顺层滑脱裂缝或剪切裂缝[图3(c)];另一类为成岩裂缝,顺着微层理面分布,为岩层在成岩过程中由于压实和压溶作用形成的裂缝[图3(d)]。
研究区岩芯都是直井取芯。在直井岩芯上,低角度裂缝的岩芯钻遇率最高,其次是斜交裂缝,而高角度裂缝的岩芯钻遇率最低。因此,如果在直井岩芯上进行裂缝统计,自然是低角度裂缝的数量最多,尤其在大安寨组致密灰岩中更是如此(图4)。
图件由36口井长度为2 136.0 m的岩芯统计得到
依据岩芯上不同倾角裂缝的分布频率,按照常规的视密度(即单位岩芯上钻遇的裂缝条数)统计[4950],分布频率高的裂缝视密度自然最大,因而前人得出该区低角度裂缝最发育而高角度裂缝不太发育的认识[38]。由于直井岩芯钻遇高角度裂缝有一个概率问题,岩芯直径有限(通常小于裂缝间距),钻井岩芯是否钻遇到高角度裂缝具有很大的随机性,所以常规的单位岩芯上钻遇裂缝条数的视密度不能反映裂缝在地下的真实发育情况,必须要对不同倾角裂缝密度校正成真密度以后才可以进行对比[48]。
3.2裂缝密度统计方法
裂缝密度是衡量裂缝发育程度的主要参数,包括线密度、面密度和体积密度。由于构造裂缝的方向性明显,所以通常用线密度来反映构造裂缝的发育程度[48]。在直井岩芯上,单位岩芯钻遇的低角度裂缝条数基本可以代表其真实线密度,而单位岩芯钻遇的斜交裂缝和高角度裂缝条数不能够代表其真实的线密度。
直井岩芯仅为一口之见,井径的大小通常要小于甚至远小于裂缝的间距[4953],且钻井过程中井轨迹偏离铅直方向(即发生井斜),因而在对直井岩芯高角度裂缝密度进行描述和统计时,由于钻遇率的问题,或即使岩芯钻遇裂缝,岩芯上观察到的裂缝高度、延伸长度也存在限制,会导致以岩芯描述地下裂缝的真实分布总存在固有样品偏差(Sampling Bias)。为了消除裂缝视密度的偏差,本文采用裂缝面法线方向上单位长度的裂缝条数来表征裂缝的线密度(图5)。其计算公式为
ρ=ncos αLcos θ(1)
式中:ρ为裂缝的线密度;n为岩芯上观察到的裂缝条数;L为累计的岩芯长度;α为井轨迹与铅直方向的夹角;θ为裂缝的倾角。
3.3结果分析
图件由36口井长度为2 136.0 m的岩芯统计得到
如果按照常用的单位岩芯上裂缝条数进行统计,统计的水平裂缝密度为真线密度,而高角度裂缝和斜交裂缝都为视线密度。虽然研究区岩芯上观察到的低角度裂缝数量较多[图6(a)、图7(a)],但是将高角度裂缝和斜交裂缝根据其与岩芯的几何关系进行校正,结果表明:沙溪庙组一段细砂岩、粉砂岩、泥质粉砂岩及泥岩中高角度裂缝线密度最大,分布在045~123条·m-1之间,其次为斜交裂缝,其线密度小于0.55条·m-1,低角度裂缝发育程度较弱,其线密度小于0.33 条·m-1,而粉砂质泥岩中裂缝整体发育程度较差[图6(b)];大安寨组灰岩、泥质灰岩、灰质泥岩和泥岩中高角度裂缝线密度最大,分布在0.38~0.82条·m-1之间,其次为低角度裂缝,其线密度分布在0.09~0.57条·m-1之间,斜交裂缝发育程度较弱,其线密度分布一般小于025条·m-1,分布在0.05~0.24条·m-1之间[图7(b)]。这表明沙溪庙组一段致密砂岩储层和大安寨组致密灰岩储层均以高角度裂缝为主,而不是过去认识的以低角度裂缝为主,而且在大安寨组致密灰岩中低角度裂缝也较发育,其低角度裂缝线密度为057 条·m-1,相对于其他岩性的低角度裂缝线密度更高。大安寨组致密灰岩的高角度与低角度裂缝同时发育的这种特点,对其致密油气富集和开发具有重要意义。在地层条件下,这些高角度裂缝和低角度裂缝可以构成相互交织的网状,形成良好的裂缝渗流网络系统,可为致密储层的油气流动提供渗流通道,有利于该区致密油的开发。
图件由36口井长度为2 136.0 m的岩芯统计得到
4结语
(1)川中地区中下侏罗统沙溪庙组一段致密砂岩和大安寨组致密灰岩储层普遍发育构造裂缝与成岩裂缝,其中以构造裂缝为主。
(2)直井岩芯的裂缝视线密度反映不了裂缝的真实发育情况,根据裂缝与岩芯的空间几何关系,采用裂缝面法线方向上单位长度的裂缝条数来表征裂缝的线密度可以较好地弥补因取芯造成的样品偏差,更好地表征裂缝的发育程度。
(3)校正以后的裂缝线密度对比表明,川中地区沙溪庙组一段致密砂岩和大安寨组致密灰岩均以高角度构造裂缝为主,修正了过去以低角度裂缝为主的认识。其中大安寨组致密灰岩低角度构造裂缝也较发育,大安寨组致密灰岩的高角度与低角度裂缝可以构成相互交织的网状,形成良好的裂缝渗流网络系统,为致密油储层提供渗流通道,有利于致密油开发。
参考文献:
References:
[1]贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33(3):343350.
JIA Chengzao,ZOU Caineng,LI Jianzhong,et al.Assessment Criteria,Main Types,Basic Features and Resource Prospects of the Tight Oil in China[J].Acta Petrolei Sinica,2012,33(3):343350.
[2]王香增,任来义,贺永红,等.鄂尔多斯盆地致密油的定义[J].油气地质与采收率,2016,23(1):17.
WANG Xiangzeng,REN Laiyi,HE Yonghong,et al.Definition of Tight Oil in Ordos Basin[J].Petroleum Geology and Recovery Efficiency,2016,23(1):17.
[3]王社教,蔚远江,郭秋麟,等.致密油资源评价新进展[J].石油学报,2014,35(6):10951105.
WANG Shejiao,WEI Yuanjiang,GUO Qiulin,et al.New Advance in Resources Evaluation of Tight Oil[J].Acta Petrolei Sinica,2014,35(6):10951105.
[4]曹喆,柳广弟,柳庄小雪,等.致密油地质研究现状及展望[J].天然气地球科学,2014,25(10):14991508.
CAO Zhe,LIU Guangdi,LIU Zhuangxiaoxue,et al.Research Status on Tight Oil and Its Prospects[J].Natural Gas Geoscience,2014,25(10):14991508.
[5]邹才能,朱如凯,白斌,等.致密油与页岩油内涵、特征、潜力及挑战[J].矿物岩石地球化学通报,2015,34(1):317.
ZOU Caineng,ZHU Rukai,BAI Bin,et al.Significance,Geologic Characteristics,Resource Potential and Future Challenges of Tight Oil and Shale Oil[J].Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(1):317.
[6]杨伟伟,石玉江,李剑峰,等.鄂尔多斯盆地华池地区X96井长7烃源岩地球化学特征及其对致密油成藏的意义[J].地球科学与环境学报,2016,38(1):115125.
YANG Weiwei,SHI Yujiang,LI Jianfeng,et al.Geochemical Characteristics of Chang7 Source Rocks from Well X96 in Huachi Area of Ordos Basin and Their Significance on Tight Oil Accumulation[J].Journal of Earth Sciences and Environment,2016,38(1):115125.
[7]贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129136.
JIA Chengzao,ZHENG Min,ZHANG Yongfeng.Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development[J].Petroleum Exploration and Development,2012,39(2):129136.
[8]张新顺,王红军,马锋,等.致密油资源富集区与“甜点区”分布关系研究:以美国威利斯顿盆地为例[J].石油实验地质,2015,37(5):619626.
ZHANG Xinshun,WANG Hongjun,MA Feng,et al.Relationship Between Resourcerich Regions and Sweet Spots for Tight Oils:A Case Study of the Williston Basin in the USA[J].Petroleum Geology and Experiment,2015,37(5):619626.
[9]王民,石蕾,王文广,等.中美页岩油、致密油发育的地球化学特征对比[J].岩性油气藏,2014,26(3):6773.
WANG Min,SHI Lei,WANG Wenguang,et al.Comparative Study on Geochemical Characteristics of Shale Oil Between China and USA[J].Lithologic Reservoirs,2014,26(3):6773.
[10]马洪,李建忠,杨涛,等.中国陆相湖盆致密油成藏主控因素综述[J].石油实验地质,2014,36(6):668677.
MA Hong,LI Jianzhong,YANG Tao,et al.Main Controlling Factors for Tight Oil Accumulation in Continental Lacustrine Basins in China[J].Petroleum Geology and Experiment,2014,36(6):668677.
[11]闫伟鹏,杨涛,马洪,等.中国陆相致密油成藏模式及地质特征[J].新疆石油地质,2014,35(2):131136.
YAN Weipeng,YANG Tao,MA Hong,et al.The Tight Oil Accumulation Model and Geological Characteristics in Continental Sedimentary Basins of China[J].Xinjiang Petroleum Geology,2014,35(2):131136.
[12]杜金虎,何海清,杨涛,等.中国致密油勘探进展及面临的挑战[J].中国石油勘探,2014,19(1):19.
DU Jinhu,HE Haiqing,YANG Tao,et al.Progress in Chinas Tight Oil Exploration and Challenges[J].China Petroleum Exploration,2014,19(1):19.
[13]NELSON R A.Geologic Analysis of Naturally Fractured Reservoirs[M].Houston:Gulf Publishing Company,1985.
[14]LORENZ J C,STERLING J L,SCHECHTER D S,et al.Natural Fractures in the Spraberry Formation,Midland Basin,Texas:The Effects of Mechanical Stratigraphy on Fracture Variability and Reservoir Behavior[J].AAPG Bulletin,2002,86(3):505524.
[15]ZENG L B,LI X Y.Fractures in Sandstone Reservoirs with Ultralow Permeability:A Case Study of the Upper Triassic Yanchang Formation in the Ordos Basin,China[J].AAPG Bulletin,2009,93(4):461477.
[16]PETER C,JOHN C.Prediction of Fractureinduced Permeability and Fluid Flow in the Crust Using Experimental Stress Data[J].AAPG Bulletin,1999,83(5):757777.
[17]NELSON R A,MOLDOVANYI E P,MATCEK C C,et al.Production Characteristics of the Fractured Reservoirs of the La Paz Field,Maracaibo Basin,Venezuela[J].AAPG Bulletin,2000,84(11):17911809.
[18]PITMAN J K,PRICE L C,LEFEVER J A.Diagenesis and Fracture Development in the Bakken Formation,Williston Basin:Implications for Reservoir Quality in the Middle Member[R].Reston:U.S.Geological Survey,2001.
[19]MULLEN M J,PITCHER J L,HINZ D,et al.Does the Presence of Natural Fractures Have an Impact on Production? A Case Study from the Middle Bakken Dolomite,North Dakota[C]∥Society of Petroleum Engineers.SPE Annual Technical Conference and Exhibition.Florence:Society of Petroleum Engineers,2010:115.
[20]倪超,郝毅,厚刚福,等.四川盆地中部侏罗系大安寨段含有机质泥质介壳灰岩储层的认识及其意义[J].海相油气地质,2012,17(2):4556.
NI Chao,HAO Yi,HOU Gangfu,et al.Cognition and Significance of Lower Jurassic Daanzhai Organic Muddy Shell Limestone Reservoir in Central Sichuan Basin[J].Marine Origin Petroleum Geology,2012,17(2):4556.
[21]汪少勇,李建忠,李登华,等.EUR分布类比法在川中地区侏罗系致密油资源评价中的应用[J].天然气地球科学,2014,25(11):17571766.
WANG Shaoyong,LI Jianzhong,LI Denghua,et al.EUR Distribution Analogous Method:Application to Tight Oil Assessment in Jurassic,Sichuan Basin[J].Natural Gas Geoscience,2014,25(11):17571766.
[22]杨光,杨家静,杨金利,等.四川盆地侏罗系非常规致密油成藏地质条件研究[C]∥中国石油学会.中国油气论坛:2011非常规油气勘探开发技术专题研讨会论文集.北京:中国石油学会,2011:99105.
YANG Guang,YANG Jiajing,YANG Jinli,et al.Research on Accumulation Geology Condition for Tight Oil Reservoir of Jurassic Formation in Sichuan Basin[C]∥Chinese Petroleum Society.China Oil and Gas Forum: Symposium Proceedings of 2011 Unconventional Oil and Gas Exploration and Development Technology.Beijing:Chinese Petroleum Society,2011:99105.
[23]赵永刚,陈景山,蒋裕强,等.川中公山庙油田中侏罗统沙溪庙组一段储层特征及控制因素[J].天然气勘探与开发,2006,29(1):1016,23.
ZHAO Yonggang,CHEN Jingshan,JIANG Yuqiang,et al.Reservoir Characteristics and Controlling Factors of Member 1 of Shaximiao Group,Middle Jurassic in Gongshanmiao Oilfield,Central Sichuan[J].Natural Gas Exploration and Development,2006,29(1):1016,23.
[24]丁一,李智武,冯逢,等.川中龙岗地区下侏罗统自流井组大安寨段湖相混合沉积及其致密油勘探意义[J].地质论评,2013,59(2):389400.
DING Yi,LI Zhiwu,FENG Feng,et al.Mixing of Lacustrine Siliciclasticcarbonate Sediments and Its Significance for Tight Oil Exploration in the Daanzhai Member,Ziliujing Formation,Lower Jurassic,in Longgang Area,Central Sichuan Basin[J].Geological Review,2013,59(2):389400.
[25]杜江民,张小莉,张帆,等.川中龙岗地区下侏罗统大安寨段沉积相分析及有利储集层预测[J].古地理学报,2015,17(4):493502.
DU Jiangmin,ZHANG Xiaoli,ZHANG Fan,et al.Sedimentary Facies and Reservoir Prediction of the Lower Jurassic Daanzhai Member,Longgang Area,Central Sichuan Basin[J].Journal of Palaeogeography,2015,17(4):493502.
[26]公言杰,柳少波,方世虎,等.四川盆地侏罗系致密油聚集孔喉半径下限研究[J].深圳大学学报:理工版,2014,31(1):103110.
GONG Yanjie,LIU Shaobo,FANG Shihu,et al.Radius Threshold of Pore Throat for Tight Oil Accumulation of Jurassic Formation in Sichuan Basin[J].Journal of Shenzhen University:Science and Engineering,2014,31(1):103110.
[27]刘占国,斯春松,寿建峰,等.四川盆地川中地区中下侏罗统砂岩储层异常致密成因机理[J].沉积学报,2011,29(4):744751.
LIU Zhanguo,SI Chunsong,SHOU Jianfeng,et al.Origin Mechanism of Anomalous Tightness of Middle and Lower Jurassic Sandstone Reservoirs in Central Sichuan Basin[J].Acta Sedimentologica Sinica,2011,29(4):744751.
[28]陈世加,张焕旭,路俊刚,等.四川盆地中部侏罗系大安寨段致密油富集高产控制因素[J].石油勘探与开发,2015,42(2):186193.
CHEN Shijia,ZHANG Huanxu,LU Jungang,et al.Controlling Factors of Jurassic Daanzhai Member Tight Oil Accumulation and High Production in Central Sichuan Basin,SW China[J].Petroleum Exploration and Development,2015,42(2):186193.
[29]陶士振,杨跃明,庞正炼,等.四川盆地侏罗系流体包裹体与致密油形成演化[J].岩石学报,2015,31(4):10891100.
TAO Shizhen,YANG Yueming,PANG Zhenglian,et al.The Fluid Inclusion Characteristics and Formation,Evolution of Tight Oil of Jurassic,Sichuan Basin[J].Acta Petrologica Sinica,2015,31(4):10891100.
[30]黄东,杨光,韦腾强,等.川中桂花油田大安寨段致密油高产稳产再认识[J].西南石油大学学报:自然科学版,2015,37(5):2332.
HUANG Dong,YANG Guang,WEI Tengqiang,et al.Recognition of High Yield and Stable Yield Factors of Daanzhai Tight Oil in Guihua Oilfield of the Central Sichuan Basin[J].Journal of Southwest Petroleum University:Science and Technology Edition,2015,37(5):2332.
[31]公言杰,柳少波,刘可禹,等.致密油充注过程中储层润湿性变化对含油性影响:以川中侏罗系致密油为例[J].石油实验地质,2015,37(4):423429.
GONG Yanjie,LIU Shaobo,LIU Keyu,et al.Influence of Reservoir Wettability Changes on Oilbearing Features During Tight Oil Accumulation:A Case Study of Jurassic Tight Oils in Sichuan Basin[J].Petroleum Geology and Experiment,2015,37(4):423429.
[32]陈世加,王力,姚宜同,等.川中西部侏罗系大安寨段天然气成因及其对油井产能的影响[J].天然气地球科学,2015,26(1):102109.
CHEN Shijia,WANG Li,YAO Yitong,et al.Natural Gas Origin and Influence on Oil Well Productivity in Jurassic Daanzhai Formation,Western Part of Central Sichuan Basin[J].Natural Gas Geoscience,2015,26(1):102109.
[33]冯荣昌,吴因业,杨光,等.川中大安寨段风暴沉积特征及分布模式[J].沉积学报,2015,33(5):909918.
FENG Rongchang,WU Yinye,YANG Guang,et al.Storm Deposition of the Daanzhai Member(Jurassic) in Central Sichuan Basin[J].Acta Sedimentologica Sinica,2015,33(5):909918.
[34]秦启荣,颜其彬,胡明.川中油气区东缘大安寨组储层裂缝成因模式初探[J].天然气工业,1998,18(3):9091.
QIN Qirong,YAN Qibin,HU Ming.Initial Research About Fracture Formation Mode of Daanzhai Formation in the East of Central Sichuan Basin[J].Natural Gas Industry,1998,18(3):9091.
[35]刘莉萍.川中公山庙构造沙一段储层裂缝预测及裂缝孔隙度数值评价[D].成都:西南石油学院,2004.
LIU Liping.Fracture Prediction and Fracture Porosity Evaluation of the First Member of Shaximiao Formation in Gongshanmiao Structure,Central Sichuan Basin[D].Chengdu:Southwest Petroleum Institute,2004.
[36]刘莉萍,秦启荣,李乐.川中公山庙构造沙一储层裂缝预测[J].西南石油学院学报,2004,26(4):1013.
LIU Liping,QIN Qirong,LI Le.Prediction of Fracture in the Bottom Layer of Shaximiao Reservoir in Gongshanmiao Structure in the Middle of Sichuan Basin[J].Journal of Southwest Petroleum Institute,2004,26(4):1013.
[37]胡宗全,童孝华,王允诚.川中大安寨段灰岩裂缝分形特征及孔隙结构模型[J].成都理工学院学报,1999,26(1):3133.
HU Zongquan,TONG Xiaohua,WANG Yuncheng.Fractal Characteristic of Fractures and Model of Pore Structure,Daanzhai Shelly Limestone,Lower Jurassic,Central Sichuan Field[J].Journal of Chengdu University of Technology,1999,26(1):3133.
[38]赵辉,司马立强,颜其彬,等.川中大安寨段裂缝评价及储层产能预测方法[J].测井技术,2008,32(3):277280.
ZHAO Hui,SIMA Liqiang,YAN Qibin,et al.Assessment of Fracture and Method of Production Forecast of Daanzhai Reservoir[J].Well Logging Technology,2008,32(3):277280.
[39]LORENZ J C,TEUFEL L W,WARPINSKI N R.Regional FracturesⅠ:A Mechanism for the Formation of Regional Fractures at Depth in Flatlying Reservoirs[J].AAPG Bulletin,1991,75(11):17141737.
[40]LORENZ J C,FINLEY S J.Regional FracturesⅡ:Fracturing of Mesaverde Reservoirs in the Piceance Basin,Colorado[J].AAPG Bulletin,1991,75(11):17381757.
[41]LAUBACH S E.Practical Approaches to Identifying Sealed and Open Fractures[J].AAPG Bulletin,2003,87(4):561579.
[42]ZENG L B,SU H,TANG X M,et al.Fractured Tight Sandstone Oil and Gas Reservoirs:A New Play Type in the Dongpu Depression,Bohai Bay Basin,China[J].AAPG Bulletin,2013,97(3):363377.
[43]FALL A,EICHHUBL P,BODNAR R J,et al.Natural Hydraulic Fracturing of Tightgas Sandstone Reservoirs,Piceance Basin,Colorado[J].Geological Society of America Bulletin,2015,127(1/2):6167.
[44]王珂,张荣虎,戴俊生,等.低渗透储层裂缝研究进展[J].地球科学与环境学报,2015,37(2):4458.
WANG Ke,ZHANG Ronghu,DAI Junsheng,et al.Review on Lowpermeability Reservoir Fracture[J].Journal of Earth Sciences and Environment,2015,37(2):4458.
[45]高帅,曾联波,马世忠,等.致密砂岩储层不同方向构造裂缝定量预测[J].天然气地球科学,2015,26(3):427434.
GAO Shuai,ZENG Lianbo,MA Shizhong,et al.Quantitative Prediction of Fractures with Different Directions in Tight Sandstone Reservoirs[J].Natural Gas Geoscience,2015,26(3):427434.
[46]赵向原,曾联波,刘忠群,等.致密砂岩储层中钙质夹层特征及与天然裂缝分布的关系[J].地质论评,2015,61(1):163171.
ZHAO Xiangyuan,ZENG Lianbo,LIU Zhongqun,et al.Characteristics of Calcareous Interbeds and Their Impact on Distribution of Natural Fractures in Tight Sandstone Reservoirs[J].Geological Review,2015,61(1):163171.
[47]曾联波.低渗透砂岩储层裂缝的形成与分布[M].北京:科学出版社,2008.
ZENG Lianbo.Fracture Formation and Distribution of Low Permeability Sandstone Reservoir[M].Beijing:Science Press,2008.
[48]曾联波,柯式镇,刘洋.低渗透油气储层裂缝研究方法[M].北京:石油工业出版社,2010.
ZENG Lianbo,KE Shizhen,LIU Yang.Fracture Study Methods for Low Permeability Oil and Gas Reservoir[M].Beijing:Petroleum Industry Press,2010.
[49]ORTEGA O J,MARRETT R A,LAUBACH S E.A Scaleindependent Approach to Fracture Intensity and Average Spacing Measurement[J].AAPG Bulletin,2006,90(2):193208.
[50]LAUBACH S E,OLSON J E,GROSS M R.Mechanical and Fracture Stratigraphy[J].AAPG Bulletin,2009,93(11):14131426.
[51]NARR W.Fracture Density in the Deep Subsurface:Techniques with Application to Point Arguello Oil Field[J].AAPG Bulletin,1991,75(8):13001323.
[52]NARR W.Estimating Average Fracture Spacing in Subsurface Rock[J].AAPG Bulletin,1996,80(10):15651585.
[53]OLSON J E,LAUBACH S E,LANDER R H.Natural Fracture Characterization in Tight Gas Sandstones:Integrating Mechanics and Diagenesis[J].AAPG Bulletin,2009,93(11):15351549.