鄂尔多斯盆地东缘临兴区块深部关键煤储层参数识别
2016-04-18徐文军徐延勇顾娇扬赵锦程
张 兵,徐文军,徐延勇,顾娇扬,杨 光,赵锦程
(1.中联煤层气有限责任公司,北京 100011; 2.中国矿业大学 煤层气资源与成藏过程教育部重点实验室,江苏 徐州 221116)
鄂尔多斯盆地东缘临兴区块深部关键煤储层参数识别
张兵1,徐文军1,徐延勇1,顾娇扬1,杨光2,赵锦程2
(1.中联煤层气有限责任公司,北京100011; 2.中国矿业大学 煤层气资源与成藏过程教育部重点实验室,江苏 徐州221116)
摘要:深部条件下煤储层关键参数的识别是煤层气开发评价的基础。基于鄂尔多斯东缘临兴区块深部煤层气勘探和测试研究结果显示:朗格缪尔体积随镜质组反射率的增大先增加后减小,朗格缪尔压力与镜质组反射率呈“U”型变化,两者均在2.5% Ro,max左右出现转折。采用非线性分析方法,基于实测含气饱和度与煤层埋深的关系,建立了含校正系数的深部煤层含气量计算模型。山西组4+5号煤层预测含气量6.7~22.1 m3/t;本溪组8+9号煤层含气量在12~20 m3/t,在平面上总体均呈东低西高展布。4+5号煤预测临界解吸压力介于1.03~9.40 MPa,临储比介于0.11~0.63,平均为0.33;8+9号煤预测临界解吸压力介于1.27~10.47 MPa,临储比介于0.12~0.64,平均0.334。在平面上,4+5号煤临界解吸压力与临储比均呈西高东低、西北部最高展布,而8+9号煤总体呈北高南低展布。
关键词:临兴区块;深部煤层气;含气饱和度;含气量;临界解吸压力
深部煤层气是中国非常规天然气勘探的一个新领域,在沁水盆地郑庄区块、鄂尔多斯延川南区块以及新疆五彩湾地区试采取得了工业气流,对于其研究尚处于探索阶段[1-3]。相对浅部煤层,深部地层的温度和压力环境显著改变。以地表恒温带平均温度15 ℃和地温梯度2.5 ℃/100 m计算,埋深介于1 200~3 000 m的煤层温度在45~90 ℃,静水压力为12~30 MPa,远高于甲烷临界温度和压力,这必将影响煤层气的赋存和储层特性。
针对深部煤层气赋存规律和储层特点,认识了较高温度和压力作用下煤吸附特征及其影响因素[4-8],预测了深部煤层含气量[9-11],揭示了深部煤层气储层特殊性[3,12-14],建立了深部煤层气有利区优选方法[1,3,15]。然而,此类研究多基于理论探索,较少针对具体的地区开展工作。为了进一步理解深部煤储层参数特征,本文依托鄂尔多斯东缘临兴区块深部煤层气勘探实践,采集了不同煤级的煤样,开展了不同温度和压力条件下的等温吸附模拟实验,识别了深部煤层气储层关键参数。
1研究区背景
研究区位于山西省兴县南部和临县北部。总体为东高西低的西倾单斜构造,地层倾角小,以幅度低、影响范围小、构造发育为特点。煤层气开发目标层位山西组4+5号煤层埋深一般在1 010~2 007 m,平均1 792 m;而本溪组8+9号煤层埋深一般为1 086~2 105 m,平均1 870 m。
实验用煤样采自研究区石炭二叠系煤层。煤样油浸镜质组最大反射率0.57%~4.04%,涵盖了长焰煤到无烟煤的所有煤级(表1)。
表1 实验用样品的基本性质和等温吸附常数
2深部煤储层参数特征
2.1深部含气量预测模型
统计研究区及临近区27组煤矿和钻孔煤样较高温压等温吸附实验结果显示(表1,图1),镜质组反射率(Ro,max)增高,朗格缪尔体积VL先增加后减小,朗格缪尔压力PL呈“U”型演化,两个参数转折点均出现反射率2.5%左右(图2)。
图1 Langmuir体积与Ro,max关系Fig.1 Relation between Langmuir volume and Ro,max
图2 Langmuir压力与Ro,max关系Fig.2 Relation between Langmuir pressure and Ro,max
进一步分析,朗格缪尔体积VL与温度呈线性负相关,温度每升高1 ℃,研究区煤的甲烷吸附量平均降低约0.12 cm3/(g·℃)(图3)。与我国低阶煤实验结果(0.002~0.068 cm3/(g·℃))[16]相比,本区煤样吸附量温敏衰减率偏高,显示本区煤层吸附性对温度更为敏感。朗格缪尔压力与温度呈线性正相关关系,如图4所示。
图3 Langmuir体积与温度关系Fig.3 Relation between Langmuir volume and temperature
图4 Langmuir压力与温度关系Fig.4 Relation between Langmuir pressure and temperature
基于上述相关关系分析,采用非线性回归分析方法,建立适合于研究区上古生界煤的朗格缪尔吸附常数(干燥无灰基)预测模型,即
(1)
(2)
式中,VL为朗格缪尔体积,m3;PL为朗格缪尔压力,MPa;T为地层温度,℃;Ro,max为镜质组油浸最大反射率,%。
将上述参数代入经典Langmuir模型,即可获得本区深部理论含煤层气量预测模型。该模型计算结果实为理论上最大含气量,而实际上含气量受沉积、构造及水文等地质因素影响,往往呈不饱和状态。为了准确的预测深部煤层含气量,需要进一步对理论含气量进行校正,从而建立原位煤层含气量预测模型。分析发现,研究区煤层埋深与实测含气饱和度呈明显的负相关关系(图5)。由此,基于实测含气饱和度与煤层埋深的计算,最终建立了适合于研究区的深部煤层原位含气量预测模型,即
Vs=rP(-0.110 7T+40.259 7)×
(3)
(4)
式中,Vs为干燥无灰基煤层含气量,m3/t;h为煤层埋深,m;r为校正系数;P为煤储层压力,MPa。
图5 含气饱和度随埋深的变化Fig.5 Variance of gas saturation with burial depth
图6 不同变质程度下煤层含气量与埋深关系Fig.6 Relationship between gas content and burial depth under different metamorphic conditions
模型计算结果显示:随埋深加大,研究区不同煤阶煤层含气量均呈先增加后降低的变化趋势,存在一个“临界深度”;临界深度随着煤级增加而变浅,随地温梯度的增高而加深(图6,7)。研究区煤的镜质组最大反射率主要集中在0.8%~1.5%,地温梯度在2.5 ℃/100 m左右。对照图6所示的含气量模型,临兴区块由于岩浆热变质作用导致煤级增高,临界深度浅至1 500 m左右。
图7 不同地温梯度下煤层含气量与埋深关系Fig.7 Relationship between gas content and burial depth under different geothermal gradients
2.2深部含气量及其区域分布
根据上述模型,预测了研究区上古生界主煤层含气量(图8)。结果显示:
山西组4+5号煤层含气量在6.7~22.1 m3/t,一般为12~22 m3/t,平均14.66 m3/t;等含气量带总体上呈东西向展布,由北向南依次出现“高值区―低值区―高值区―低值区”,高含气量中心分别发育在中部L-101~L-6地区以及西南部TB区块,含气量高于18 m3/t(图8)。
本溪组8+9号煤层含气量多在12~20 m3/t,平均14.92 m3/t(图8)。平面上煤层含气量由北向南逐渐增高,高于18 m3/t的地带连片出现在西南部地区,包括临兴区块大部和TB区块全部,其中TB区块中—北部和临兴区块西北部煤层含气量高于21 m3/t,最高(L-5井)达27 m3/t。
图8 研究区主煤层含气量等值线Fig.8 Gas content contour of the main coalbeds
2.3煤层含气饱和度及其分布
采用式(4)计算主煤层含气饱和度。
(5)
式中,Sg为煤层含气饱和度,%。
研究区煤层含气饱和度变化较大,临兴区块山西组4+5号煤层含气饱和度大于50%的区域覆盖了整个TB区块和临兴区块,在TB区块西部和临兴区块北部大于75%。其中,在临兴区块北部以L-17,L-6,L-101井包围的区域出现异常高煤层含气饱和度区,整体大于88%(图9)。本溪组8+9号煤层含气饱和度整体较4+5号煤低,高饱和度区域依然分布在研究区西南部,但含气饱和度大于50%的分布面积显著减小。在TB区块中部,煤层含气饱和度大于75%。临兴区块以L-17井为中心出现小范围高值区,含气饱和度最高可达70.36%。
2.4临界解吸压力和临储比
临界解吸压力可由Langmuir方程计算:
图9 研究区主煤层含气饱和度等值线Fig.9 Gas saturation contour of the main coalbeds
(6)
式中,Pcd为临界解吸压力,MPa;Vr为实际含气量,m3/t。
研究区主煤层临界解吸压力介于1.27~10.47 MPa,平均值为4.629 MPa;临储比介于0.111~0.639,平均为0.332。在平面上,临兴区块两套主煤层临界解吸压力和临储比显示出差异的分布格局(图10,11)。本溪组8+9号煤以L-4井区为高值中心形成向四周降低的同心环带,临界解吸压力高达10.47 MPa,临储比达0.638;低值区出现在区块西南角L-1井区附近。山西组4+5号煤高值中心出现在区块西北部L-10井区附近,临界解吸压力最高为9.4 MPa,临储比0.639。
图10 研究区主煤层临界解吸压力等值线Fig.10 Critical desorption pressure contour of the main coalbeds
图11 研究区主煤层临储比等值线Fig.11 Contour of ratio of critical desorption pressure and reservoir pressure of the main coalbeds
3结论
(1)朗格缪尔体积VL随镜质组反射率的增大先增加后减小,在随镜质组反射率值为2.5%左右出现转折,朗格缪尔压力PL与镜质组反射率呈“U”型变化,转折点同样出现在镜质组反射率值为2.5%左右。
(2)采用非线性分析方法,基于理论含气饱和度与煤层埋深的计算,建立了含校正系数的研究区深部煤层含气量计算模型。山西组4+5号煤层预测含气量6.7~22.1 m3/t,总体呈西高东低,在L-6~L-101与L-2-TB29存在2个富气中心;本溪组8+9号煤层含气量多在12~20 m3/t,平均14.92 m3/t,总体呈东低西高展布,在L-5~L-9存在富气中心。
(3)4+5号煤预测临界解吸压力介于1.03~9.40 MPa,临储比介于0.11~0.63,平均0.33;8+9号煤预测临界解吸压力介于1.27~10.47 MPa,平均4.74 MPa,临储比介于0.12~0.64,平均0.334;下主煤层略优于上主煤。在平面上,4+5号煤临界解吸压力与临储比均呈西高东低、西北部最高展布,而8+9号煤总体呈北高南低展布。
参考文献:
[1]秦勇,申建,王宝文,等.深部煤层气成藏效应及其耦合关系[J].石油学报,2012,33(1):48-54.
Qin Yong,Shen Jian,Wang Baowen,et al..Accumulation effects and coupling relationship of deep coalbed methane[J].Acta Petrolei Sinica,2012,33(1):48-54.
[2]陈刚,秦勇,李五忠,等.鄂尔多斯盆地东部深层煤层气成藏地质条件分析[J].高校地质学报,2012,18(3):465-473.
Chen Gang,Qin Yong,Li Wuzhong,et al.Analysis of geological conditions of deep coalbed methane reservoiring in the eastern ordos basin[J].Geological Journal of China Universities,2012,18(3):465-473.
[3]申建.论深部煤层气成藏效应[D].徐州:中国矿业大学,2011.
Shen Jian.On CBM-reservoiring effect in deep strata[D].Xuzhou:China University of Mining & Technology,2011.
[4]Yang R T,Saunders J T.Adsorption of gases on coals and heattreated coals at elevated temperature and pressure:1.Adsorption from hydrogen and methane as single gases[J].Fuel,1985,64(5):616-620.
[5]Gregg S J.The surface chemistry of solids[M].New York:Chapman & Hall Ltd.,1961.
[6]Scott A R.Factors affecting gas content distribution in coal beds[A].Geology and Hydrology of Coalbed Methane Producibility in the United States:Analogs for the World[C].The University of Alabama,Tuscaloosa,1995:205-250.
[7]赵志根,唐修义,张光明.较高温度下煤吸附甲烷实验及其意义[J].煤田地质与勘探,2001,29(4):29-30.
Zhao Zhigen,Tang Xiuyi,Zhang Guangming.Experiment and significance of isothermal adsorption of coal on methane under higher temperature[J].Coal Geology & Exploration,2011,29(4):29-30.
[8]Ettinger I,Eremin I,Zimakov B,et al.Natural factors influencing coal sorption properties.I.Petrography and sorption properties of coals[J].Fuel,1966,45:267-275.
[9]Levy J H ,Day S J,Killingley J S.Methane capacities of Bowen Basin coals related to coal properties[J].Fuel,1997,76(9):813-819.
[10]钟玲文,郑玉柱,员争荣,等.煤在温度和压力综合影响下的吸附性能及气含量预测[J].煤炭学报,2002,27(6):581-585.
Zhong Lingwen,Zheng Yuzhu,Yuan Zhengrong,et al.The adsorption capability of coal under integrated influence of temperature and pressure and predicted of content quantity of coal bed gas[J].Journal of China Coal Society,2002,27(6):581-585.
[11]申建,杜磊,秦勇,等.深部低阶煤三相态含气量建模及勘探启示——以准噶尔盆地侏罗纪煤层为例[J].天然气工业,2015,35(3):30-35.
Shen Jian,Du Lei,Qin Yong,et al.Three-phase gas content model of deep low rank coals and its implication for CBM exploration:A case study from the Jurassic coal in the Junggar Basin[J].Natural Gas Indurstry,2015,35(3):30-35.
[12]申建,秦勇,傅雪海,等.深部煤层气成藏条件特殊性及其临界深度探讨[J].天然气地球科学,2014,25(9):1470-1476.
Shen Jian,Qin Yong,Fu Xuehai,et al.Properties of deep coalbed methane reservoir-forming conditions and critical depth discussion[J].Natural Gas Geoscience,2014,25(9):1470-1476.
[13]Arumugam A,Fitzgerald J,Sudibandriyo M,et al.High-pressure adsorption of pure coalbed gases on dry coal matrices[D].India:Sri Venkateswara College of Engineering Chennai,1999.
[14]Charrière D,Pokryszka Z,Behra P.Effect of pressure and temperature on diffusion of CO2and CH4into coal from the Lorraine basin (France)[J].International Journal of Coal Geology,2010,81(4):373-380.
[15]宋全友.深部煤层气成藏条件及开发潜势研究[D].徐州:中国矿业大学,2003.
Song Quanyou.Form mode of coal bed methane and its recovery potential of deep coal reservoirs[D].Xuzhou:China University of Mining and Technology,2003.
[16]傅小康.中国西部低阶煤储层特征及其勘探潜力分析[D].北京:中国地质大学,2006.
Fu Xiaokang.Study on the reservoir characteristics and the exploration potential of low rank coal in the western China[D].Beijing:China University of Geosciences,2006.
Key parameters identification for deep coalbed methane reservoir in Linxing block of eastern Ordos Basin
ZHANG Bing1,XU Wen-jun1,XU Yan-yong1,GU Jiao-yang1,YANG Guang2,ZHAO Jin-cheng2
(1.ChinaUnitedCoalbedMethaneCorporationLtd.,Beijing100011,China;2.KeyLaboratoryofCBMResourcesandReservoirProcess,MinistryofEducation,ChinaUniversityofMining&Technology,Xuzhou221116,China)
Abstract:Key parameters identification for deep coalbed methane reservoir is a basis for its development.Based on the deep coalbed methane exploration and experiments in Linxing block of eastern Ordos basin,Langmuir volume increases and then decreases with vitrinite reflectance,Langmuir pressure varies like U-type with vitrinite reflectance,and the transform point of both is around 2.5% Ro,max.Using nonlinear fitting method,a prediction model for deep coalbed methane content was established,and the correction coefficients deduced from relationship between measured gas saturation and burial depth were added into the model to assure the accuracy of the model.Gas contents of No.4+5 coal in Shanxi formation vary between 6.7 and 22.1 m3/t,while those of No.8+9 coal in Benxi formation change from 12 to 20 m3/t.The gas contents distribute as high in west and low in east.Critical desorption pressure of No.4+5 coal vary between 1.03 and 9.4 MPa,and the ratios of critical desorption pressure and reservoir pressure change from 0.11 to 0.63,and averaged value is 0.33.Critical desorption pressure of No.8+9 coal vary between 1.27 and 10.47 MPa,and the ratios of critical desorption pressure and reservoir pressure change from 0.12 to 0.64,and averaged value is 0.334.Critical desorption pressure and ratios of critical desorption pressure and reservoir pressure of No.4+5 coal distribute like high in west,low in east and highest in north-west,while those of No.8+9 coal distribute as high in north and low in south.
Key words:Linxing block;deep coalbed methane;gas saturation;gas content;critical desorption pressure
中图分类号:P618.11
文献标志码:A
文章编号:0253-9993(2016)01-0087-07
作者简介:张兵(1982—),男,山东济宁人,工程师。E-mail:zhangbing16@cnooc.com.cn
基金项目:国家科技重大专项资助项目(2011ZX05042);国家自然科学基金青年基金资助项目(41302131)
收稿日期:2015-09-20修回日期:2015-10-11责任编辑:张晓宁
张兵,徐文军,徐延勇,等.鄂尔多斯盆地东缘临兴区块深部关键煤储层参数识别[J].煤炭学报,2016,41(1):87-93.doi:10.13225/j.cnki.jccs.2015.9031
Zhang Bing,Xu Wenjun,Xu Yanyong,et al.Key parameters identification for deep coalbed methane reservoir in Linxing block of eastern Ordos Basin[J].Journal of China Coal Society,2016,41(1):87-93.doi:10.13225/j.cnki.jccs.2015.9031