证明
接下来给出该文要用到的三个假设条件,如下:
假设条件1 存在非负的随机变量X和某个正数M0,X的分布函数F(x),{Xi,i≥1}和X满足:对于∀n∈Z+,有
假设条件2 存在非负随机变量Y和某个正数M1,Y的分布函数G(x),Y的数学期望存在,{Xi,i≥1}和Y满足:对于∀x>0和∀n∈Z+,有(见文献3)
假设条件3X和Y是尾等价的,即
2 非确定和的精确大偏差
证明 对任意的0<η<1,有
由于
任意的0<δ<1由假设条件可得
所以有
L2≥(1-δ)P(S(1-η)λ(t)-(1-η)μθλ(t)>x+μθλ(t)-(1-η)λ(t)μθ)
又由定理1可得:
从上式可导出
从而有
故结论成立.
上述定理对不同分布的尾概率做了加权推广,得到了加权随机和的大偏差的结论.
[1] Tang Qihe, Tsitsiashvili G. Randomly weighted sums of subexponential random variables with application to ruin theory[J]. Extremes, 2003, 6: 171-188.
[2] Wang Dingcheng, Tang Qihe. Tail probabilities of randomly weighted sums of random variables with dominated variation[J]. Stochastic Models,2006,22:253-272.
[3] Zhang Yi, Shen Xinmei, Weng Chengguo. Approximation of the tail probability of randomly weighted sums and applications [J]. Stochastic Processes and their applications, 2009, 119: 655-675.
[4] 华志强,杨少华,陈丽莹.上尾渐近独立随机变量和的大偏差的渐近下界[J]. 数学杂志, 2014, 34(1): 58-64.
[5] 华志强,宋立新,冯敬海,齐晓梦. 索赔盈余风险模型中精确大偏差[J]. 大连理工大学学报, 2016, 56(1): 64-69.
[6] 华志强,玄海燕,董莹,等. 一个宽上限相依不同分布的随机变量和不等式[J]. 兰州理工大学学报, 2016, 33(2): 151-153.
[7] 华志强,张春生. 推广的延拓负相依风险模型中的精确大偏差[J]. 重庆师范大学学报:自然科学版, 2016,42(1):62-66。
[8] Hua Zhiqiang, Song Lixin, Lu Dawei, et al. Precise large deviations for the difference of two sums of END random variables with heavy tails[J]. Communications in Statistics-Theory and Methods,2017,46(2):736-746.
(责任编辑:季春阳)
Large Deviation with Random Weight Random Variables in Bivariate Upper Tail Independent Risk model
Chen Liying
(Inner Mongolia University for the Nationalities)
Let {Xi,i≥1} be a sequence of bivariate upper tail independent and non-identically distributed random variables, and {θi,i≥1} be a sequence of independent identically distributed random variables random variables. In this paper, the large deviation in a risk model is investigated, which is constructed by {Xi,i≥1} and {θi,i≥1}, and the asymptotic formula of the large deviation is obtained by using the method of large deviation in a risk model, which is constructed by dependent and random weighted random variables.
Random weight; Large deviation; Bivariate upper tail independence
2016-12-15
*内蒙古民族大学科学研究基金资助项目(NMDYB1437)
O2111
A
1000-5617(2016)05-0005-02