陆源人类活动对近海生态系统的影响
2016-04-13吕永龙苑晶晶李奇锋张悦清吕笑天
吕永龙,苑晶晶,李奇锋,张悦清,吕笑天,苏 超
1 中国科学院生态环境研究中心城市与区域生态国家重点实验室,北京 100085
2 中国科学院大学,北京 100049
陆源人类活动对近海生态系统的影响
吕永龙1,*,苑晶晶1,2,李奇锋1,2,张悦清1,2,吕笑天1,2,苏超1,2
1 中国科学院生态环境研究中心城市与区域生态国家重点实验室,北京100085
2 中国科学院大学,北京100049
摘要:随着海岸带快速城市化和经济发展,人类活动对近海生态系统的影响日益增加。通过对国内外大量相关文献的分析和与国际专家的研讨,分别从海洋资源开发、海岸带城市化和环境变化等几个方面概述了陆源人类活动对近海生态系统的影响。目前陆源人类活动导致近海生态系统出现的主要问题有:海洋生物资源过度捕捞、海岸带富营养化、海洋酸化、珊瑚礁退化、海洋垃圾、以及海岸带矿产开采等高强度开发活动引发的重金属和持久性有机污染物污染等。这些问题会直接导致海洋生物群落结构变化、影响水质、降低海洋生物多样性,最终影响海洋生态系统服务功能,威胁海洋生态系统健康。这些问题的根源多来自陆地,必须将海洋和陆地作为一个有机整体,整合海陆系统相互作用的科学计划,推进海洋资源和近海生态系统的可持续管理。
关键词:陆海相互作用;近海生态系统;重金属污染;持久性有机污染物污染;富营养化
河口和海岸带是海陆交互作用的关键地区,各种物理、化学、生物和地质过程在这里相互关联,生态环境非常敏感和脆弱。这里也是人类聚居和海洋资源利用的重点地区,聚集了大约60%的人口和三分之二的大中型城市。海岸带地区的快速城市化和工业化,对近海生态系统产生了日益严重的影响。陆源工业、农业、采矿业、滩涂池塘养殖等人类活动导致了近海重金属和持久性有机污染物污染、富营养化、海水酸化和珊瑚礁退化等问题,从而改变了海水质量、海洋生物群落结构、海洋生物地球化学循环,并最终影响了海洋生态系统服务功能与健康[1]。
1海洋资源开发对近海生态系统的影响
海洋资源通常包括生物资源和非生物资源,生物资源包括植物(藻类、种子植物、苔藓)、动物(鱼类、软体动物、贝壳类、哺乳类)、微生物、淡水及其溶解物;非生物资源包括煤、石油、天然气、砂矿、甲烷水合物、锰结核、镁和磷。按海洋资源可提供的产品和服务来划分,海洋资源还包括海洋潮汐能、海洋波浪能、沿海风能、海流能、海水温差能、海水盐度差能,还有诸如运输、休闲(海滩、港口)和旅游等不可提取类资源。海洋资源开发对海洋生态系统产生的主要影响包括过度捕捞引起的生物多样性减少、海洋油气开采引起的石油泄漏污染、采矿引起的重金属污染、以及由海洋航运带来的危险物质污染等[2]。
1.1海洋生物资源开发对近海生态系统的影响
海洋生物资源种类繁多,全球海洋物种总数约220万种,其中约91%的海洋物种还有待识别和明晰[3]。根据估算,全球海洋每年的净初级生产力(NPP)为44—67GtC,大约占全球NPP的一半,受全球气候变暖的影响,预测在最极端情况下,21世纪海洋NPP会比之前下降15%左右[4]。受海洋NPP下降的影响,未来全球海洋渔业产量会受到限制[5]。据统计,1950—1970年,全球渔业捕捞产量较为稳定,1970年之后,全球渔业捕捞产量迅猛增长。世界人均水产品消费量从20世纪60年代的9.9kg增长到2012年的19.2kg。海洋渔业在全球渔业总产量中占据主导地位,2006—2012年,海洋捕捞占世界总水产的82%以上[6]。
过度捕捞已导致关键种减少,触发营养级联效应,使被捕食者体型变小,从而带来捕获量和经济效益的损失[7]。据世界银行2009年估算,全球渔业资源因每年过度捕捞造成的损失达500亿美元[8]。在多产的河口和沼泽地区,人类每日消耗贝壳类海产品,产生了大量的贝壳和其他垃圾,形成“贝壳岛”,从而改变了近海生态系统[9]。
为了满足全球日益增长的人口需求,水产养殖量从20世纪50年代的65万吨增长到了6700万吨(FAO, 2014),同时期海洋总的捕获量从1000t增长到了8000t。随着海洋生物技术的发展,水产养殖行业从1970年起以平均每年8.8%的速率扩张,增长速度已经超过其他肉类生产行业。人类消费的一半鱼类来自水产养殖,未来这个比例还会增加。水产养殖向环境中释放营养物、未消化的饲料、兽药和杀菌剂,还会增加疾病和寄生虫的风险。养殖的鱼类和贝壳类进入周围的水体会引发遗传退化和引入入侵种,对生态系统产生负面影响。水产养殖中鱼类作为饲料使用,管理不善还会给野生鱼类和海洋环境带来额外压力,其他影响还包括化学物和药物带来的海水污染、饲料和废弃物中营养物释放导致的富营养化、耕地和淡水供给的盐碱化[10]。
1.2海洋非生物资源开发对近海生态系统的影响
在过去的几千年里,大陆是矿物材料的唯一来源,但由于人口增长和财富增加,人类对于矿物及其衍生金属的需求越来越大,深海采矿将成为一个重要的原材料来源。深海拥有几千米厚的铜、镍、钴锰核;含钴、镍、铂族金属和稀土元素的锰结壳;富含铜、锌、铅、银和金的海底热液硫化物和沉积硫化物;以及近期发现的在深海泥里的稀土元素和钇[11]。热液底部通风口存在的多金属锰结核、钴结壳和硫化铜沉积物已经被很好地探明,但深海采矿业还处于初始阶段,到目前为止只有油气被大量开采。海底石油钻井技术已在20世纪初期得到应用,但工业矿物的海底开采还处于早期阶段[12],未来对深海矿物资源的开采会持续增加。
海洋近岸和深海蕴藏着数以亿计的矿产资源。从全球来看,天然气水合沉积物约有97%分布于近海,目前已发现了230种天然气水合沉积物,潜在天然气储量超过了1.50 × 1016m3[13];铁锰结核的分布密度从1.00 kg/m2到50.00kg/m2不等,主要分布于太平洋,即著名的克利珀顿区;深海含金属沉积物主要分布于南纬5°—45°太平洋和大西洋地区,印度洋只有少量分布;磷块岩在大陆边缘、海底山脉尤其是太平洋中部分布较集中[14]。我国近海海洋能理论蕴藏量大致为6.30亿kW,其中可开发的再生海洋能源约为4.40亿kW。同时,可开发的全部海域风能大约为7.50亿kW,绝大部分分布在东南沿海。中国海洋能源的利用形式主要有风能发电、潮汐发电等,当前已运行沿海风能的总发电能力为41.59万kW,大型潮汐发电站的装机容量达到6070kW[15]。
沿海采矿业迅猛发展给海洋生态系统带来越来越大的压力。海岸带砂金矿开采会导致沿岸生境退化和河流分布的变化[16],还会导致生物生产力降低、影响商业捕鱼和贝类采集、影响水质,也给海岸带的旅游和休闲活动带来负面作用[17]。近海海域环境质量不断恶化,排海污水、废弃物数量持续上升,环境污染事件频繁发生,其后果便是海洋生物的数量与质量显著下降,海洋生物多样性面临严重威胁。
2人类活动和气候变化双重作用对近海生态系统的影响
海岸带的快速城市化和工业化,与化石燃料燃烧、农业、采矿业等产生的污染物排放和气候变化一起,对近海生态系统和海洋的生物地球化学循环产生了日益严重的影响。研究发现,几乎所有的海洋生态系统都受到了人类活动的影响,其中41%的海洋生态系统受到多种因素的共同作用[18]。人类工农业活动和城市发展带来的主要问题有:重金属污染、持久性有机污染物污染、富营养化、塑料垃圾等,在人类活动和气候变化的共同作用下,也出现了海洋酸化、珊瑚礁退化等一系列问题,这些问题都在不同程度上影响了近海生态系统的健康发展。
2.1重金属污染
随着快速工业化和经济发展,重金属通过河流和地下水排放、海洋倾废,持续进入河口和海岸带生态系统[19, 20],经过悬浮物的吸附和沉降作用,海洋沉积物成为接收重金属的汇[21-23]。根据美国环境保护局(USEPA)沉积物环境质量基准(SQG)的临界效应水平(TEL),Cu和Pb是污染最重的两种金属,监测值范围分别为5.60—167.50mg/kg和10.49—122.00mg/kg,污染最严吨重的地点分别位于非洲摩洛哥Moulay Bousselham湖和德国不莱梅湾。其他几种重金属Ni、Cd、As、Hg的监测值范围分别为17—85.1mg/kg、0.11—10.04mg/kg、0.3—22.2mg/kg、0.02—22.07mg/kg,污染最严重的地点分别位于爱琴海东部沿海、西班牙美诺沿海、土耳其伊兹米特湾和挪威孔斯峡湾,污染程度与地区的工业化程度密切相关[24-37]。
我国山东半岛和辽东湾重金属含量较高,山东半岛Ni、Cr、Zn浓度较高,辽东湾Hg、As、Pb、Zn浓度较高;海南岛周围和长江三角洲整体上污染较轻[22, 33, 36, 38-41]。从2011—2012年Hg在我国沿海沉积物中的分布趋势看,污染最严重的区域在珠海周围,且从近海向外大陆架呈现递减趋势。以陆地为基础的排放以及来自河流的输入是我国海岸带沉积物Hg污染的主要源[42]。
一般来说,海岸带矿石开采、油漆制造业、钢铁制造业以及金属产业是重金属几大污染源。例如,矿石尤其是酸性矿、焦炭可造成Cu、Zn、Hg、Cd的污染;油漆产业可造成多种重金属如Cu、Zn、Cr、Hg、As的污染;金属产业主要引起Pb、As的污染;石油燃烧主要造成Ni、Cr的污染;钢铁工业和家庭废水的排放可造成Cu、Zn的污染;水泥生产以及海岸带造船业可造成Pb的污染;Hg污染的其他来源还包括废料煅烧、造纸业、杀虫剂污染及火山喷发等[29, 37, 43-44]。
重金属通过生物化学过程在沉积物相和水层之间循环,通过对沉积物的污染影响水质和水生物体对金属元素的吸收、累积,进而对生态系统产生潜在影响[45]。Cu、Pb、As能对马尾藻亚显微结构发生致畸作用,进而对生态系统产生风险[46]。Cd、Cr、Pb以及它们的混合物会影响幼年扇贝的成长,Cd的影响效果最强,其次是Pb,这种效应进而会影响到食物链甚至生态系统[47]。重金属Co、Cu、Ni、V会降低海洋底栖生态系统的多样性[48]。
2.2持久性有机污染物污染
随着人类发明和使用的有机物种类越来越多,海洋中持久性有机污染物的种类也日益增加,这其中既包括传统持久性有机污染物,如有机氯农药(OCPs)、多氯联苯(PCBs)、多环芳烃(PAHs)等,也包括新型持久性有机污染物,如全氟化合物(PFASs)、多溴联苯醚(PBDEs)、六溴环十二烷(HBCD)、得克隆(DP)等,还包括其他类型的化学物质,如药物、激素等[49-51]。
由于具有长距离迁移的能力,持久性有机污染物能够随大气和洋流传输到全球。通过对海水和沉积物等环境介质和生物体的全球监测,发现北美和欧洲海岸带的污染水平明显高于其他地区,亚洲东部海岸处于比较低的污染水平,而南美洲、非洲和大洋洲海岸则鲜有报道[52-54]。造成这种全球分布格局的原因主要是,北美和欧洲生产和使用这些物质的历史比其他地区早数十年,并且也是生产和消费这些物质的主要国家,排放到环境中的污染物积累时间更长,因此浓度要高于其他地区。
通过对海岸带海水和沉积物中多种污染物的空间格局进行比较分析发现,沿海工业排放和生活排放被认为是污染物最主要的来源,PFASs、PBDEs、PCBs等污染物的高浓度都出现在人口密集且城市化、工业化发达的区域。污染物浓度水平在有局地点源排放的位置浓度最高,随着距离增加被进一步扩散和稀释,并且受到洋流的显著影响[49, 55, 56]。没有点源排放的偏远海岸带地区,污染物的浓度水平明显低于有点源排放的区域。
海洋中持久性有机污染物浓度升高,一方面会威胁海洋生态系统健康,另一方面会通过食物链进入海产品而影响人类健康。持久性有机污染物对生态系统的影响主要依赖于对生物类群中污染物水平和生理指标的监测和统计分析。一些持久性有机污染物具有内分泌干扰的特性,能够干扰动物的甲状腺激素、性激素、糖皮质激素等,继而影响动物的行为和生存。在生态系统极为脆弱的北极圈,持久性卤代污染物被认为与海鸥、北极熊、鱼类的激素、繁殖、免疫、酶活性、维生素等生理指标有一定联系,这些干扰可能影响动物对极地环境的适应性[57]。
2.3富营养化
海岸带地区的营养物污染主要来自农业和畜牧业生产、污水和工业废弃物以及气候变化导致的温度和水体的复杂交互作用。从20世纪70到90年代,全球尺度上陆地输入海洋的氮、磷已经翻了三倍,对海岸带的生物地球化学循环和生态系统健康都产生了影响[58]。进入海洋的营养盐有点源污染和非点源污染两种形式,点源污染主要来自污水排水口和工厂排放物,非点源污染主要来自农业集水区的地表径流或地下水径流流出、或者被污染的含水层。
人类向海岸带输入营养物会导致藻类大量繁殖,发生藻华,出现生物资源大量死亡、病原体突现和入侵物种的爆炸性增长[59]。养分负荷会带来各种影响,如高含量的叶绿素a、海藻迅速生长、毒性藻华、生物丰富度/多样性降低、水体透明度降低,晚期出现大量细菌、浮渣、真菌、低氧最终导致缺氧。富营养化对人体健康的潜在危害包括过敏等皮肤疾病以及带来更严重的健康威胁[60]。
富营养化驱动下生长的藻类大量死亡后,为底栖微生物的呼吸作用提供了丰富的有机物质,提升了微生物活性和对溶解氧的消耗,从而造成底层海水溶解氧浓度大幅下降。初级生产力增加和富营养化加剧了全球范围海洋死区的形成,对生态系统功能造成严重破坏[61]。目前世界上有500多个海岸带缺氧区,覆盖面积超过245000 km2[49, 62],已报道的出现缺氧的海岸带地区的数量正在呈每年5.54%的指数速率增长[63]。近年来,缺氧区主要出现在发达国家的海岸带和河口地区,未来最大的缺氧区预计在南亚和东亚地区[64, 65]。目前海岸带生态系统缺氧区的扩张主要是由全球变暖以及从陆地和大气输入的营养物增多造成的[66],如果缺乏细致的海陆管理,人口增长和进一步的海岸带城镇化也会加剧海岸带的缺氧[49]。通过改变食物网结构和生物多样性,缺氧可以直接影响海洋生态系统的服务和功能。
营养物负荷的增加还导致了生物多样性的降低、盐碱地流失、对干扰的敏感性增加、以及生态系统服务功能的丧失[67]。目前全球大部分河口和海岸带生态系统已处于过度开发与受威胁状态,人类活动对它们的破坏与日俱增,约50%的盐碱地、35%的红树林、30%的珊瑚礁和29%的海草生态系统已经消失或严重退化[68],大量输入的营养盐是一个主要原因[69-72]。
2.4塑料垃圾
海洋垃圾日益成为一个环境问题,在表层海水、海底和海岸带广泛分布[62, 73-75]。大部分垃圾是塑料制品(约75%),其他垃圾如玻璃和金属类只占海洋垃圾的一小部分。大块的垃圾碎片逐渐破碎成更小的碎片(称为微型塑料),广泛分布于海洋表层水体、沉积物和生物群落中[76-78]。即使明天停止向海洋增加新的塑料碎片,因为大块塑料的破碎,微型塑料的数量还是会持续增加[76]。已经有很多摄食塑料碎片带来人身伤害的报道,已知有将近700个物种会遭遇海洋垃圾的伤害[79]。摄食微型塑料会带来潜在的身体和毒性效应[80, 81],塑料碎片会给生物群落及其提供的生态系统服务功能带来潜在影响[82]。所有海洋垃圾的碎片都源于陆地,解决海洋垃圾的问题,就应该保证塑料制品在使用完毕后能够在陆地上被妥善处置[62, 83, 84]。人们也需要改变生产、使用和处置塑料碎片的方式,尽可能地预防和规避塑料垃圾队海洋生态系统产生不利影响[83, 84]。
2.5海洋酸化和珊瑚礁退化
大气二氧化碳含量增加,会导致溶解在浅层海水中的二氧化碳含量增加,反过来会导致海洋pH值降低,这就是所谓的海洋酸化过程[85]。富营养化与海洋表层缺氧和海水酸化有关,会增加海岸带海水对海洋酸化的敏感性[86]。现代表层海水的pH值与工业化前相比已经平均降低了0.1个pH单位,除非人类排放二氧化碳能够大幅度消减,否则21世纪将会继续降低0.2—0.3个pH单位[49]。海洋酸化会降低海洋钙化动物(包括珊瑚和软体动物)贝壳和骨骼的生长,还会降低一些物种对热应力的耐受性[49]。海洋酸化和变暖的相互作用会导致珊瑚礁白化和造礁能力降低[87]。
在所有的海洋栖息地中,海岸带和珊瑚礁生态系统提供了最为集中的海洋生物多样性,但是全世界的珊瑚在急剧减少,主要是由最近数十年来更为频繁、规模更大和持续时间更长的珊瑚礁白化事件导致的[88]。世界上珊瑚礁在退化,过去的30—50年消失了将近一半[89]。珊瑚礁白化是一种应力反应,通常是由各种局地或区域性的人类干扰活动造成的,包括气候变化、沉降、污染、破坏性捕鱼技术和过度捕鱼、过度开采礁石栖息地,而礁石栖息地可以保持最佳的造礁条件和控制大型藻生长[87, 90, 91]。
3未来研究展望
人类活动对海洋生物地球化学循环的干预作用越来越强烈,在大时空尺度下对未来海洋化学性质变化的预测以及各种变化对于海洋资源影响的精确评估,已经成为海陆系统相互作用研究的重要科学挑战[49]。与此同时,全球环境变化引起海岸带生态系统服务功能损失的定量化研究亦成为重大科学问题[92]。在未来研究中,需要深入探讨碳、氮、磷等元素地球化学循环的新模式,揭示城市化进程对海岸带富营养化及全球生物地球化学循环的影响机制。发展并应用新的分析工具来综合评估海洋政策的选择,把海洋和海岸带作为关键的自然资本进行深入的分析,明晰海洋资源管理中存在的价值冲突和价值估算问题。发展应对海洋系统内在复杂性和不确定性的新方法,并应用综合方法分析时空尺度效应以及蓝色经济大背景下贫穷、环境和经济之间的相互关系。为了更好地调控营养物质的污染态势,氮、磷与其他有毒化学品(重金属、持久性有机污染物等)之间的耦合作用也需要得到更多的关注[93]。作为未来世界经济增长的主要引擎,发展中国家沿海区域人类活动与经济发展的关系也有待进一步研究[94]。
联合国环境规划署(UNEP)、联合国教科文组织(UNESCO)、国际科学理事会(ICSU)等十余个联合国机构和国际科学组织陆续推出了多个海陆系统相互作用的科学计划,如UNEP的海洋生态系统单元、保护海洋环境免受陆地活动影响全球行动计划和区域海洋计划,UNESCO政府间海洋科学委员会的海洋观测系统和数据系统,以及IGBP和IHDP共同发起的海岸带海陆交互作用计划(LOICZ)等。“未来地球(Future Earth)”将进一步整合这些科学计划,以推进海岸带生物地球化学循环、海岸带系统脆弱性和社会风险、海岸带生态系统对全球变化的响应、人类活动对入海流域及海岸带的环境影响、海岸带管理和可持续发展等科学问题的深入研究。
海洋生态系统正经历着比历史上任何时候都更大规模和更快速度的变化,而引起这些变化的大部分扰动都与人类化石燃料燃烧、农业和工业活动紧密相关,未来几十年还会增加,给海洋生物量和海洋资源带来持续的负面影响。考虑到以上面临的挑战,联合国可持续发展目标(SDGs)[95]把保护海洋及海洋资源的可持续利用列入第14项可持续发展目标,包括陆地活动对海洋的污染、海岸带生态系统管理、海水酸化、海岸带地区保护、渔业、水产养殖业和旅游业的可持续管理等几个分目标,关于海岸带地区的复杂问题涵盖了17项目标的大部分内容,共计60个分目标。海岸带生态系统的可持续发展还需要加强社会公众的参与,社会和海洋的关系是海洋生态系统可持续发展一个非常重要的因素[96],需要建立有效的海岸带与海洋联动的生态安全管理体制,确保海洋环境和海洋资源的可持续管理。
致谢:本文曾作为2015年4月在巴黎召开的联合国环境规划署(UNEP)海洋资源生态系统管理研讨会的大会报告内容,与会专家提出了很好的意见与建议,特此致谢。
参考文献(References):
[1]Lu Y L, Wang R S, Zhang Y Q, Su H Q, Wang P, Jenkins A, Ferrier R C, Bailey M, Squire G. Ecosystem health towards sustainability. Ecosystem Health and Sustainability, 2015, 1(1): 1-15.
[2]Stan M I. The legal regulation on Marine Strategy. case study: the Black Sea region. Curentul Juridic, 2013, 16(3): 100-109.
[3]Mora C, Tittensor D P, Adl S, Simpson A G B, Worm B. How many species are there on earth and in the ocean?. PLoS Biology, 2011, 9(8): e1001127.
[4]Bopp L, Aumont O, Cadule P, Alvain S, Gehlen M. Response of diatoms distribution to global warming and potential implications: a global model study. Geophysical Research Letters, 2005, 32(19): L19606.
[5]Chassot E, Bonhommeau S, Dulvy N K, Mélin F, Watson R, Gascuel D, Le Pape O. Global marine primary production constrains fisheries catches. Ecology Letters, 2010, 13(4): 495-505.
[6]Anticamara J A, Watson R, Gelchu A, Pauly D. Global fishing effort (1950-2010): trends, gaps, and implications. Fisheries Research, 2011, 107(1-3): 131-136.
[7]Sumaila U R, Cheung W, Dyck A, Gueye K, Huang L, Lam V, Pauly D, Srinivasan T, Swartz W, Watson R, Zeller D. Benefits of rebuilding global marine fisheries outweigh costs. PLoS One, 2012, 7(7): e40542.
[8]Willman R, Kelleher K, Arnason R, Franz N. The Sunken Billions: The Economic Justification for Fisheries Reform. Washington D.C.: IBRD/FAO, 2009.
[9]Rick T C, Erlandson J M. Coastal exploitation. Science, 2009, 325(5943): 952-953.
[10]Naylor R L, Goldburg R J, Primavera J H, Kautsky N, Beveridge M C, Clay J, Folke C, Lubchenco J, Mooney H, Troell M. Effect of aquaculture on world fish supplies. Nature, 2000, 405(6790): 1017-1024.
[11]Scott S D. Marine minerals: their occurrences, exploration and exploitation// Proceedings of the Oceans 2011. Waikoloa, HI: IEEE, 2011.
[12]Schaffer M B. Mining the oceans: development of global resources. International Affairs Forum, 2013, 4(2): 117-126.
[13]Makogon Y F. Natural gas hydrates-a promising source of energy. Journal of Natural Gas Science and Engineering, 2010, 2(1): 49-59.
[14]Baturin G N. Mineral resources of the ocean. Lithology and Mineral Resources, 2000, 35(5): 399-424.
[15]刘佳. 山东半岛蓝色经济区海洋资源可持续供给保障研究. 青岛: 中国海洋大学, 2014.
[16]Mas-Pla J, Montaner J, Solà J. Groundwater resources and quality variations caused by gravel mining in coastal streams. Journal of Hydrology, 1999, 216(3-4): 197-213.
[17]Mateos J C R. The case of the Aznalcóllar mine and its impacts on coastal activities in Southern Spain. Ocean & Coastal Management, 2001, 44(1-2): 105-118.
[18]Halpern B S, Walbridge S, Selkoe K A, Kappel C V, Micheli F, D′Agrosa C, Bruno J F, Casey K S, Ebert C, Fox H E, Fujita R, Heinemann D, Lenihan H S, Madin E M P, Perry M T, Selig E R, Spalding M, Steneck R, Watson R. A global map of human impact on marine ecosystems. Science, 2008, 319(5865): 948-952.
[19]Kaimoussi A, Chafik A, Mouzdahir A, Bakkas S. Diagnosis on the state of healthiness, quality of the coast and biological resources ‘case of the Moroccan Atlantic coast’ (City of El Jadida). Comptes Rendus Biologies, 2002, 325(3): 253-260.
[20]Wang T Y, Khim J S, Chen C L, Naile J E, Lu Y L, Kannan K, Park J, Luo W, Jiao W T, Hu W Y, Giesy J P. Perfluorinated compounds in surface waters from Northern China: comparison to level of industrialization. Environment International, 2012, 42: 37-46.
[21]Fang T H, Hong E. Mechanisms influencing the spatial distribution of trace metals in surficial sediments off the south-western Taiwan. Marine Pollution Bulletin, 1999, 38(11): 1026-1037.
[22]Wang P, Lu Y L, Wang T Y, Fu Y N, Zhu Z Y, Liu S J, Xie S W, Xiao Y, Giesy J P. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities. Environmental Pollution, 2014, 190: 115-122.
[23]Zwolsman J J G, van Eck G T M, Burger G. Spatial and temporal distribution of trace metals in sediments from the Scheldt estuary, south-west Netherlands. Estuarine, Coastal and Shelf Science, 1996, 43(1): 55-79.
[24]Alyazichi Y M, Jones B G, McLean E. Spatial and temporal distribution and pollution assessment of trace metals in marine sediments in oyster bay, nsw, Australia. Bulletin of Environmental Contamination and Toxicology, 2015, 94(1): 52-57.
[25]Apeti D A, Hartwell I S. Baseline assessment of heavy metal concentrations in surficial sediment from Kachemak Bay, Alaska. Environmental Monitoring and Assessment, 2015, 187(1): 4106-4106.
[26]Bastami K D, Bagheri H, Haghparast S, Soltani F, Hamzehpoor A, Bastami M D. Geochemical and geo-statistical assessment of selected heavy metals in the surface sediments of the Gorgan Bay, Iran. Marine Pollution Bulletin, 2012, 64(12): 2877-2884.
[27]Birch G F, Chang C H, Lee J H, Churchill L J. The use of vintage surficial sediment data and sedimentary cores to determine past and future trends in estuarine metal contamination (Sydney estuary, Australia). Science of the Total Environment, 2013, 454-455: 542-561.
[28]Borges R C, Caldas V G, Filho F F L S, Ferreira M M, Lapa C M F. Use of GIS for the evaluation of heavy metal contamination in the Cunha Canal watershed and west of the Guanabara Bay, Rio de Janeiro, RJ. Marine Pollution Bulletin, 2014, 89(1-2): 75-84.
[29]Chae J S, Choi M S, Song Y H, Um I K, Kim J G. Source identification of heavy metal contamination using metal association and Pb isotopes in Ulsan Bay sediments, East Sea, Korea. Marine Pollution Bulletin, 2014, 88(1-2): 373-382.
[31]Fang T H, Li J Y, Feng H M, Chen H Y. Distribution and contamination of trace metals in surface sediments of the East China Sea. Marine Environmental Research, 2009, 68(4): 178-187.
[32]García-Hernández J, García-Rico L, Jara-Marini M E, Barraza-Guardado R, Weaver A H. Concentrations of heavy metals in sediment and organisms during a harmful algal bloom (HAB) at Kun Kaak Bay, Sonora, Mexico. Marine Pollution Bulletin, 2005, 50(7): 733-739.
[33]Hu B Q, Li G G, Li J, Bi J Q, Zhao J T, Bu R Y. Spatial distribution and ecotoxicological risk assessment of heavy metals in surface sediments of the southern Bohai Bay, China. Environmental Science and Pollution Research, 2013, 20(6): 4099-4110.
[34]Kucuksezgin F, Kontas A, Uluturhan E. Evaluations of heavy metal pollution in sediment andMullusbarbatusfrom the Izmir Bay (Eastern Aegean) during 1997-2009. Marine Pollution Bulletin, 2011, 62(7): 1562-1571.
[35]Leorri E, Cearreta A, Irabien M J, Yusta I. Geochemical and microfaunal proxies to assess environmental quality conditions during the recovery process of a heavily polluted estuary: the Bilbao estuary case (N. Spain). Science of the Total Environment, 2008, 396(1): 12-27.
[36]Li G G, Hu B Q, Bi J Q, Leng Q N, Xiao C Q, Yang Z C. Heavy metals distribution and contamination in surface sediments of the coastal Shandong Peninsula (Yellow Sea). Marine Pollution Bulletin, 2013, 76(1/2): 420-426.
[38]Dou Y G, Li J, Zhao J T, Hu B Q, Yang S Y. Distribution, enrichment and source of heavy metals in surface sediments of the eastern Beibu Bay, South China Sea. Marine Pollution Bulletin, 2013, 67(1/2): 137-145.
[39]Hu B Q, Cui R Y, Li J, Wei H L, Zhao J T, Bai F L, Song W Y, Ding X. Occurrence and distribution of heavy metals in surface sediments of the Changhua River Estuary and adjacent shelf (Hainan Island). Marine Pollution Bulletin, 2013, 76(1-2): 400-405.
[40]Hu B Q, Li J, Zhao J T, Yang J, Bai F L, Dou Y G. Heavy metal in surface sediments of the Liaodong Bay, Bohai Sea: distribution, contamination, and sources. Environmental Monitoring and Assessment, 2013, 185(6): 5071-5083.
[41]Yuan H M, Song J M, Li X G, Li N, Duan L Q. Distribution and contamination of heavy metals in surface sediments of the South Yellow Sea. Marine Pollution Bulletin, 2012, 64(10): 2151-2159.
[42]Meng M, Shi J B, Yun Z J, Zhao Z S, Li H J, Gu Y X, Shao J J, Chen B W, Li X D, Jiang G B. Distribution of mercury in coastal marine sediments of China: sources and transport. Marine Pollution Bulletin, 2014, 88(1-2): 347-353.
[43]Brady J P, Ayoko G A, Martens W N, Goonetilleke A. Temporal trends and bioavailability assessment of heavy metals in the sediments of Deception Bay, Queensland, Australia. Marine Pollution Bulletin, 2014, 89(1-2): 464-472.
[44]Nieto J M, Sarmiento A M, Olías M, Canovas C R, Riba I, Kalman J, Delvalls T A. Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environment International, 2007, 33(4): 445-455.
[45]Ip C C M, Li X D, Zhang G, Wai O W H, Li Y S. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environmental Pollution, 2007, 147(2): 311-323.
[46]Miao L, Yan W, Zhong L F, Xu W H. Effect of heavy metals (Cu, Pb, and As) on the ultrastructure ofSargassumpallidumin Daya Bay, China. Environmental Monitoring and Assessment, 2014, 186(1): 87-95.
[47]Sobrino-Figueroa A S, Cáceres-Martnez C, Botello A V, Nunez-Nogueira G. Effect of cadmium, chromium, lead and metal mixtures on survival and growth of juveniles of the scallopArgopectenventricosus(Sowerby II, 1842). Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2007, 42(10): 1443-1447.
[48]Alexeev D K, Galtsova V V. Effect of radioactive pollution on the biodiversity of marine benthic ecosystems of the Russian Arctic shelf. Polar Science, 2012, 6(2): 183-195.
[49]Doney S C. The growing human footprint on coastal and open-ocean biogeochemistry. Science, 2010, 328(5985): 1512-1516.
[50]Howard P H, Muir D C G. Identifying new persistent and bioaccumulative organics among chemicals in commerce. Environmental Science & Technology, 2010, 44(7): 2277-2285.
[51]Hutchinson T H, Lyons B P, Thain J E, Law R J. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis. Marine Pollution Bulletin, 2013, 74(2): 517-525.
[52]Chen D, Hale R C. A global review of polybrominated diphenyl ether flame retardant contamination in birds. Environment International, 2010, 36(7): 800-811.
[53]Houde M, De Silva A O, Muir D C G, Letcher R J. Monitoring of perfluorinated compounds in aquatic biota: an updated review: PFCs in aquatic biota. Environmental Science & Technology, 2011, 45(19): 7962-7973.
[54]Möller A, Xie Z Y, Sturm R, Ebinghaus R. Large-scale distribution of dechlorane plus in air and seawater from the Arctic to Antarctica. Environmental Science & Technology, 2010, 44(23): 8977-8982.
[55]Ahrens L. Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate. Journal of Environmental Monitoring, 2011, 13(1): 20-31.
[56]Ahrens L, Barber J L, Xie Z Y, Ebinghaus R. Longitudinal and latitudinal distribution of perfluoroalkyl compounds in the surface water of the Atlantic Ocean. Environmental Science & Technology, 2009, 43(9): 3122-3127.
[57]Letcher R J, Bustnes J O, Dietz R, Jenssen B M, Jørgensen E H, Sonne C, Verreault J, Vijayan M M, Gabrielsen G W. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Science of the Total Environment, 2010, 408(15): 2995-3043.
[58]Jennerjahn T C. Biogeochemical response of tropical coastal systems to present and past environmental change. Earth-Science Reviews, 2012, 114(1-2): 19-41.
[59]Sherman K. Adaptive management institutions at the regional level: the case of Large Marine Ecosystems. Ocean & Coastal Management, 2014, 90: 38-49.
[60]Kitsiou D, Karydis M. Coastal marine eutrophication assessment: a review on data analysis. Environment International, 2011, 37(4): 778-801.
[61]Diaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science, 2008, 321(5891): 926-929.
[62]Meryl Williams M, Harper N, Chaitovitz C, Dansie A, Diaz R, Harper N, Heidemeier J, Jiang Y, Kemp M, Naqvi S W A, Neretin L, Ross A, Susan C, Schuster-Wallace C, Zavadksy I. Hypoxia and Nutrient Reduction in the Coastal Zone: Advice for Prevention, Remediation and Research. Washington DC, USA: Global Environment Facility, 2011.
[63]Vaquer-Sunyer R, Duarte C M. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(40): 15452-15457.
[64]Dove S G, Kline D I, Pantos O, Angly F E, Tyson G W, Hoegh-Guldberg O. Future reef decalcification under a business-as-usual CO2emission scenario. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(38): 15342-15347.
[65]Seitzinger S P, Kroeze C, Bouwman A F, Caraco N, Dentener F, Styles R V. Global patterns of dissolved inorganic and particulate nitrogen inputs to coastal systems: recent conditions and future projections. Estuaries, 2002, 25(4): 640-655.
[66]Carstensen J, Andersen J H, Gustafsson B G, Conley D J. Deoxygenation of the Baltic Sea during the last century. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(15): 5628-5633.
[67]Carstensen J, Sánchez-Camacho M, Duarte C M, Krause-Jensen D, Marbà N. Connecting the dots: responses of coastal ecosystems to changing nutrient concentrations. Environmental Science & Technology, 2011, 45(21): 9122-9132.
[68]Barbier E B, Hacker S D, Kennedy C, Koch E W, Stier A C, Silliman B R. The value of estuarine and coastal ecosystem services. Ecological Monographs, 2011, 81(2): 169-193.
[69]Deegan L A, Johnson D S, Warren R S, Peterson B J, Fleeger J W, Fagherazzi S, Wollheim W M. Coastal eutrophication as a driver of salt marsh loss. Nature, 2012, 490(7420): 388-392.
[70]Lovelock C E, Ball M C, Martin K C, Feller I C. Nutrient enrichment increases mortality of mangroves. PLoS One, 2009, 4(5): e5600.
[71]Szmant A M. Nutrient enrichment on coral reefs: is it a major cause of coral reef decline?. Estuaries, 2002, 25(4): 743-766.
[72]Waycott M, Duarte C M, Carruthers T J B, Orth R J, Dennison W C, Olyarnik S, Calladine A, Fourqurean J W, Heck Jr K L, Hughes A R, Kendrick G A, Kenworthy W J, Short F T, Williams S L. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(30): 12377-12381.
[73]Barnes D K A, Galgani F, Thompson R C, Barlaz M. Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1526): 1985-1998.
[74]Galgani F, Leaute J P, Moguedet P, Souplet A, Verin Y, Carpentier A, Goraguer H, Latrouite D, Andral B, Cadiou Y, Mahe J C, Poulard J C, Nerisson P. Litter on the sea floor along European coasts. Marine Pollution Bulletin, 2000, 40(6): 516-527.
[75]Pham C K, Ramirez-Llodra E, Alt C H S, Amaro T, Bergmann M, Canals M, Company J B, Davies J, Duineveld G, Galgani F, Howell K L, Huvenne V A I, Isidro E, Jounes D O B, Lastras G, Morato T, Gomes-Pereira J N, Purser A, Stewart H, Tojeira I, Tubau X, Van Rooij D, Tyler P A. Marine litter distribution and density in European seas, from the shelves to deep basins. PLoS One, 2014, 9(4): e95839.
[76]Law K L, Thompson R C. Microplastics in the seas. Science, 2014, 345(6193): 144-145.
[77]Obbard R W, Sadri S, Wong Y Q, Khitun A A, Baker I, Thompson R C. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth′s Future, 2014, 2(6): 315-320.
[78]Woodall L C, Sanchez-Vidal A, Canals M, Paterson G L J, Coppock R, Sleight V, Calafat A, Rogers A D, Narayanaswamy B E, Thompson R C. The deep sea is a major sink for microplastic debris. Royal Society Open Science, 2014, 1(4): 140317-140317.
[79]Gall S C, Thompson R C. The impact of debris on marine life. Marine Pollution Bulletin, 2015, 92(1-2): 170-179.
[80]Rochman C M, Hoh E, Kurobe T, Teh S J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific Reports, 2013, 3: 3263-3263.
[81]Wright S L, Rowe D, Thompson R C, Galloway T S. Microplastic ingestion decreases energy reserves in marine worms. Current Biology, 2013, 23(23): R1031-R1033.
[82]Green D S, Boots B, Blockley D J, Rocha C, Thompson R. Impacts of discarded plastic bags on marine assemblages and ecosystem functioning. Environmental Science & Technology, 2015, 49(9): 5380-5389.
[83]Koelmans A A, Gouin T, Thompson R, Wallace N, Arthur C. Plastics in the marine environment. Environmental Toxicology and Chemistry, 2014, 33(1): 5-10.
[84]Thompson R C, Swan S H, Moore C J, vom Saal F S. Our plastic age. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1526): 1973-1976.
[85]Munday P L, Dixson D L, McCormick M I, Meekan M, Ferrari M C O, Chivers D P. Replenishment of fish populations is threatened by ocean acidification. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29): 12930-12934.
[86]Cai M F, Li K M. Economic losses from marine pollution adjacent to Pearl River Estuary, China. Procedia Engineering, 2011, 18: 43-52.
[87]Anthony K R N, Kline D I, Diaz-Pulido G, Dove S, Hoegh-Guldberg O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(45): 17442-17446.
[88]Polidoro B, Carpenter K. Dynamics of coral reef recovery. Science, 2013, 340(6128): 34-35.
[89]Hoegh-Guldberg O. Complexities of coral reef recovery. Science, 2006, 311(5757): 42-43.
[90]Doropoulos C, Ward S, Diaz-Pulido G, Hoegh-Guldberg O, Mumby P J. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecology Letters, 2012, 15(4): 338-346.
[91]Pandolfi J M, Connolly S R, Marshall D J, Cohen A L. Projecting coral reef futures under global warming and ocean acidification. Science, 2011, 333(6041): 418-422.
[92]O′Higgins T G, Gilbert A J. Embedding ecosystem services into the marine strategy framework directive: illustrated by eutrophication in the North Sea. Estuarine, Coastal and Shelf Science, 2014, 140: 146-152.
[93]Kroeze C, Hofstra N, Ivens W, Löhr A, Strokal M, van Wijnen J. The links between global carbon, water and nutrient cycles in an urbanizing world—the case of coastal eutrophication. Current Opinion in Environmental Sustainability, 2013, 5(6): 566-572.
[94]He Q, Bertness M D, Bruno J F, Li B, Chen G Q, Coverdale T C, Altieri A H, Bai J H, Sun T, Pennings S C, Liu J G, Ehrlich P R, Cui B S. Economic development and coastal ecosystem change in China. Scientific Reports, 2014, 4: 5995-5995.
[95]Lu Y L, Nakicenovic N, Visbeck M, Stevance A S. Policy: five priorities for the UN sustainable development goals. Nature, 2015, 520(7548): 432-433.
[96]Huang H W, You M H. Public perception of ocean governance and marine resources management in Taiwan. Coastal Management, 2013, 41(5): 420-438.
Impacts of land-based human activities on coastal and offshore marine ecosystems
LÜ Yonglong1,*, YUAN Jingjing1, 2, LI Qifeng1, 2, ZHANG Yueqing1, 2, LÜ Xiaotian1, 2, SU Chao1, 2
1StateKeyLaboratoryofUrbanandRegionalEcology,ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences,Beijing100085,China2UniversityofChineseAcademyofSciences,Beijing100049,China
Abstract:With rapid urbanization and economic development along the coast, the impacts of land-based human activities on coastal and offshore marine ecosystems have been significantly increased. This paper presented the impacts through literature synthesis and discussions with international experts, which are mainly caused by the exploitation of marine resources, coastal urbanization, and environmental change. Over exploitation of marine biotic resources, coastal eutrophication, ocean acidification, coral reef degradation, marine litter, and increasing pollution of heavy metals and persistent organic pollutants due to intensive coastal industrialization have become the major challenges and problems for coastal and offshore ecosystems. With changes in marine biological community structure, deteriorating water quality, and declining marine biodiversity, those chanllenges and problems will change the functioning of marine ecosystem services and thus threaten the health of the marine ecosystem. Since the major issues of coastal and offshore ecosystems stem from land-based activities, land and ocean should be considered as a single system when addressing them. Therefore, scientific plans on land-ocean interactions should be integrated to conserve and to ensure the sustainable use of marine resources and the sustainable management of coastal ecosystems.
Key Words:land-ocean interaction; coastal ecosystem; heavy metal pollution; POPs; marine eutrophication
基金项目:国家自然科学基金重点国际合作项目(41420104004);科技基础性工作专项(2013FY111100);中国科学院重点部署项目(KZZD-EW-TZ-12)
收稿日期:2015- 11- 18;
修订日期:2016- 02- 26
DOI:10.5846/stxb201511182334
*通讯作者Corresponding author.E-mail:yllu@rcees.ac.cn
吕永龙,苑晶晶,李奇锋,张悦清,吕笑天,苏超.陆源人类活动对近海生态系统的影响.生态学报,2016,36(5):1183- 1191.
Lü Y L, Yuan J J, Li Q F, Zhang Y Q, Lü X T, Su C.Impacts of land-based human activities on coastal and offshore marine ecosystems.Acta Ecologica Sinica,2016,36(5):1183- 1191.