食品功能性成分降血脂作用机理研究进展
2016-04-09邹莉芳沈以红黄先智丁晓雯西南大学食品科学学院重庆市农产品加工重点实验室重庆40075家蚕基因组生物学国家重点实验室重庆40075
邹莉芳,沈以红,黄先智,丁晓雯,*(.西南大学食品科学学院,重庆市农产品加工重点实验室,重庆 40075;.家蚕基因组生物学国家重点实验室,重庆 40075)
食品功能性成分降血脂作用机理研究进展
邹莉芳1,沈以红2,黄先智2,丁晓雯1,*
(1.西南大学食品科学学院,重庆市农产品加工重点实验室,重庆 40071
5;2.家蚕基因组生物学国家重点实验室,重庆 400715)
摘 要:高脂饮食的摄入打破了体内脂质代谢平衡,是目前高脂血症患者数量急剧增加的原因之一。具有降血脂功效的食品很多,其功能成分主要为膳食纤维、多糖类、多酚类、生物碱类、皂苷等。本文综述了食物中常见的具有降血脂作用成分的功效及其作用机制的最新研究进展,为降血脂研究及功能食品的开发提供参考。
关键词:降血脂;胆固醇;脂肪酸;甘油三酯
引文格式:
邹莉芳,沈以红,黄先智,等.食品功能性成分降血脂作用机理研究进展[J].食品科学,2016,37(5):239-244.
ZOU Lifang,SHEN Yihong,HUANG Xianzhi,et al.Progress in research on hypolipidemic mechanisms of functional food components[J].Food Science,2016,37(5):239-244.(in Chinese with English abstract)DOI:10.7506/spkx1002-6630-201605042.http://www.spkx.net.cn
心血管疾病(cardiovascular disease,CVD)是全世界死亡的首要原因,而高脂血症是导致心血管疾病最重要的危险因素之一。高脂血症是指血浆总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)和低密度脂蛋白胆固醇(low-density lipoprotein cholesterol,LDL-C)过高,高密度脂蛋白胆固醇(high-density lipoprotein cholesterol,HDL-C)偏低[1-2]。血脂的高低与膳食习惯和身体代谢能力关系密切,减少饱和、反式脂肪酸和膳食胆固醇的摄入,增加降血脂保健食品摄入都有助于降低血脂[3]。研究发现,有许多食品的功能性成分具有降血脂功效[4]。本文总结降血脂功能食品的最新研究成果,就食品中存在具有降血脂功能的成分及其降血脂机制进行综述,为降血脂功能食品的开发提供参考。
1 脂质代谢调控机制
1.1胆固醇代谢平衡机制
人体胆固醇的来源主要是从食物中获取和体内合成,体内胆固醇的平衡主要受小肠吸收、内源性合成和在肝脏的转化、排泄的调控[1]。胆固醇吸收至少由C型尼曼-匹克蛋白(Niemann-pick protein C1,NPC1L1)和两种ATP结合盒式蛋白G5/G8(ATP-binding cassette proteinG5/G8,ABCG5/G8)调控,前者为流入转运蛋白,后者为流出转运蛋白,在小肠和肝脏细胞中胆固醇平衡是通过NPC1L1流入和ABCG5/G8流出控制的[5]。过氧化物酶体增殖物激活受体-δ(peroxisome proliferator activated receptor-δ,PPAR-δ)与配体结合激活后,可以通过上调ATP结合盒式蛋白A1的表达提高HDL水平[6],通过降低小肠NPC1L1的表达减少胆固醇的吸收[7],PPAR-δ激活后还可以增加脂肪酸的β-氧化[8]。
在人血浆中,胆固醇酯转运蛋白(cholesteryl ester transfer protein,CETP)是从HDL向LDL和极低密度脂蛋白(very low density lipoprotein,VLDL)传送胆固醇酯[9]。HDL-C B族Ⅰ型清道夫受体将HDL-C运送至肝脏或类固醇生成器官;LDL-C受体将LDL-C从循环中除去[10-11]。3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methyl glutaryl coenzyme A reductase,HMGR)是体内合成胆固醇的限速酶,固醇调节元件结合蛋白2(sterol-regulatory element binding protein 2,SREBP-2)控制LDL-C受体和HMGR的转录,当肝细胞胆固醇水平低,通过转录因子SREBP-2上调HMGR的表达;SREBP-2可激活LDL受体的表达,LDL受体升高将有利于血浆胆固醇含量的下降[12-13]。
胆固醇-7α-羟化酶(cholesterol-7α-hydroxylase,CYP7A1)是启动肝脏胆固醇合成胆汁酸途径的关键调节点[14]。肝脏中胆汁酸含量较高时,通过激活法尼醇X受体(farnesoid X receptor,FXR)反馈抑制CYP7A1的转录[15];肝X受体(liver X receptor,LXR)可促进CYP7A1的转录,加速胆汁酸的生成[16]。
MicroRNA-122(miR-122)可影响与机体胆固醇和脂肪酸代谢相关的脂肪酸合成酶(fatty acid synthetase,FAS)、乙酰辅酶A羧化酶1(acetyl-CoA carboxylase 1,ACC1)、HMGR和SREBP-1c的活性与含量,从而影响脂肪酸和胆固醇合成[17-18]。miR-33位于SREBP基因的内含子中,同时还调控另一胆固醇转运体ATP结合盒式蛋白G1,在调节脂质代谢平衡中起重要作用[19]。
综上所述,在胆固醇的代谢平衡中,通过转运蛋白调节肝脏和小肠胆固醇平衡;通过调节SREBP-2 mRNA的表达抑制HMGR的活性来控制体内胆固醇的合成;通过调节FXR和LXR的活性,抑制CYP7A1的活性和mRNA的表达,降低胆汁酸的合成,阻断胆汁酸肝肠循环,减少肝细胞胆固醇的来源,进而降低体内胆固醇水平。
1.2甘油三酯和脂肪酸代谢平衡机制
在肝脏中SREBP-1c基因调控脂肪的重新合成,由胰岛素以及内质网应激反应激活[20-21]。SREBP-1c调节参与脂肪酸和甘油三酯基因的转录合成,如ACC、FAS和硬脂酰CoA去饱和酶(stearoyl CoA desaturasescd,SCD)的合成[22-23]。AMP蛋白激酶(activated protein kinase,AMPK)通过抑制SREBP-1c,控制整个脂肪生成途径或通过直接抑制FAS活性降低脂肪酸的合成,降低肝脏组织的甘油三酯水平,促进脂肪酸的β-氧化;还可以通过调节SCD-1和酰基辅酶A氧化酶(acyl-CoA oxidase,COX)的表达起到降血脂的作用[24]。线粒体外膜上的肝脏肉毒碱棕榈酰转移酶1A(carnitine palmitoyltransferase 1A,CPT1A)是脂肪酸氧化限速酶,可加速脂肪酸氧化,降低肝脏TG水平[25]。PPAR-α基因在肝、肾和肌肉中高度表达,直接调控与脂肪酸β-氧化、胆固醇分解有关的基因[26]。脂肪的消化和吸收需要胰脂肪酶的参与,抑制胰脂肪酶的活性可以抑制脂肪的分解;脂蛋白脂肪酶(lipoprotein lipase,LPL)可以催化甘油三酯水解成甘油和脂肪酸,继续氧化提供能量[27]。
在甘油三酯和脂肪酸代谢平衡中,通过调节AMPK信号通路中的信号因子(SREBP-1c、ACC、CPT1A)的活性而达到抑制肝脏中脂肪酸合成,促进脂肪酸氧化的作用;通过对与脂肪消化吸收有关的酶活性的调节来抑制脂肪在体内的积累,达到降低血脂的目的。
2 功能性降脂成分的作用机理
天然食物中含有大量具有降血脂功能的活性成分,不同活性成分的降血脂机制有所不同,下文对常见的几种活性成分的降血脂作用机理进行归纳总结。
2.1膳食纤维
膳食纤维是国际上公认的第七营养素[28]。研究表明,可溶性膳食纤维可预防和治疗心脑血管疾病[29]。燕麦[30]、苹果果胶[31]、欧车前水溶性纤维[32]和羟乙基甲基纤维素[33]等膳食纤维都具有降血脂的功效。
膳食纤维的降血脂机制主要有:通过减少肝脏胆固醇的生成,促进肝脏胆固醇转化成胆汁酸而降低肝脏中的胆固醇含量。Tong Litao等[34]通过给仓鼠喂饲麦麸阿拉伯木聚糖,发现其可通过下调HMGR活性和提高CYP7A1的活性,增加丙酸和短链脂肪酸的浓度,从而降低胆固醇的合成和增加胆固醇的排泄。Kim等[35]用添加了质量分数为5%的羟丙基甲基纤维素(hydroxypropyl methylcellulose,HPMC)的大麦和燕麦面包喂饲叙利亚金黄地鼠,与对照组比较,发现富含HPMC的大麦和燕麦面包可通过下调SREBP-2的mRNA表达来抑制HMGR的mRNA表达,从而降低血或肝脏中的胆固醇或甘油三酯。
膳食纤维的降血脂机制还可以是调控与脂肪酸氧化相关酶的活性、诱导脂肪酸氧化、降低肝脏TG水平来实现。Kim等[36]采用添加62.9%的发酵大豆纤维喂食C57BL/6J小鼠12 周,与对照组比较,发现实验组小鼠与脂肪酸氧化相关的B类清道夫受体CD36基因的表达、酰基辅酶A合成酶(acyl-CoA synthetase,ACS)、CPT1A 和COX1的活性显著上调。Zhang Wei等[37]用添加3%的壳聚糖纳米粉末喂饲Sprague-Dawley(SD)大鼠6 周,与对照组相比,显著提高了实验组大鼠肝脏LPL和肝脂酶(hepatic lipase,HL)的活性,促使VLDL中的TG水解为甘油和脂肪酸,具有良好的降血脂活性。
2.2多糖
多糖已被广泛研究作为一个新来源的膳食补充剂和功能性食品原料。研究发现,大枣多糖[38]、海带多糖[39]、南瓜多糖[40]、当归多糖[41]、条斑紫菜多糖[42]等多糖都具有降血脂的功效。
活性多糖降血脂可以通过抑制胆固醇合成、阻断胆固醇的肝肠循环、降低血浆胆固醇含量来实现。Wang Hong等[43]从秋葵中提取多糖喂饲雄性C57BL/6小鼠,结果表明秋葵多糖通过上调CYP7A1的mRNA表达,下调SREBP1c和FAS的mRNA表达,从而降低总胆固醇和甘油三酯,增强粪便胆汁酸排泄,达到了降血脂的功效。Hoang等[44]研究了从礁膜中提取的硫酸多糖的降血脂机理,发现硫酸多糖的降血脂功能是通过抑制HMG-CoA还原酶的表达和CYP7A1的活性,增加LDL受体的表达,从而阻断体内胆固醇的合成,抑制胆汁酸和胆固醇的吸收来实现的。
多糖的降脂机理还可以通过调控脂肪细胞分化、抑制脂肪酸分解相关酶的活性、促进脂肪酸氧化、清除体内多余的自由基抑制脂质过氧化来实现。Yu Chenhuan等[45]认为从金樱子中提取的多糖可能是通过上调PPAR-γ和高脂血症大鼠的LPL的mRNA表达而达到抑制肝脂质积聚,增加脂质的抗氧化活性的作用。Yang Junxuan等[46]喂饲新西兰兔0.8 mL/kg黄精多糖8 周,经过H2O2诱导,与对照组相比,实验组新西兰兔的内皮细胞的丙二醛含量下降,超氧化物歧化酶活性上升。
2.3多酚
多酚又称“植物单宁”,包括苯酚酸和黄酮类化合物,主要存在于植物的根、皮、叶和果实中,有很强的生物活性。研究发现,石榴多酚[47]、葡萄多酚[48]、可可多酚[49]、茶多酚[50]等多酚类物质都具有降血脂的功效。
Park等[51]用富含多酚的红壳皮糯米(含质量分数为2%的高胆固醇)喂饲小鼠12 周,发现该物质可以通过抑制酰基辅酶A胆固醇酰基转移酶-2(acyl-CoA cholesterol acyltransferase-2,ACAT-2)、HMG-CoA还原酶和SREBP-2的mRNA的表达来抑制肝胆固醇合成,并通过增强CYP7A1和甾醇12α-羟化酶(sterol 12α-hydroxylase,CYP8B1)的表达来促进体内肝胆固醇的降解,从而降低体内胆固醇的含量。Baselga等[52]通过喂饲肥胖大鼠花青素,发现花青素可以使miR-33a和miR-122的表达正常化,miR-33和miR-122可以反馈抑制调节miR-33a的靶基因ABCA1的水平和miR-122的靶基因FAS和PPAR/δ的表达,从而减少肥胖大鼠肝脏胆固醇含量和减少脂肪酸合成。佛手瓜芽体的水提取物经高效液相色谱法(high performance liquid chromatography,HPLC)分析证明其主成分为咖啡酸和橙皮素,Yang Monyuan等[53]研究发现佛手瓜芽体的水提取物通过增强AMPK的活性和激活PPAR-α和CPT-I的mRNA表达来减少肥胖大鼠体内脂质的积累。Jia Sheng等[54]给KK-Ay糖尿病小鼠喂饲50 mg/kg胡柚中提取的新橙皮苷6 周后,发现新橙皮苷可抑制肝脏中脂质的积聚,提高小鼠肝脏的AMPK水平,显著抑制SCD-1和FAS的mRNA表达,显著提高COX的mRNA表达。
2.4生物碱
生物碱是存在于自然界中的一类含氮的碱性有机化合物。经大量研究发现生物碱具有降血脂作用。Wu Hao等[55]喂饲金黄地鼠药根碱70.05 mg/kg,4 周后发现其可以显著降低金黄地鼠体质量,并且显著降低TC、TG和LDL-C水平,升高HDL-C水平,此外,药根碱可显著降低血液胆汁酸的含量,增加粪便中总胆汁酸(total bile acid,TBA)排泄。
Bao Lidao等[56]采用10 mg/kg胡椒碱喂饲大鼠2 周,发现胡椒碱可以下调HMGR的mRNA表达、上调卵磷脂胆固醇酰基转移酶(lecithin cholesterol acetyl transferase,LCAT)mRNA的表达,从而提高HDL-C的水平,降低胆固醇的合成。Ning Na等[57]将黄藤素添加到高脂饮食中喂养仓鼠,发现黄藤素可以通过上调LDL-R和CYP7A1 的mRNA表达、下调顶膜钠依赖性胆盐转运体(apical sodium dependent bile acid transporter,ASBT)的mRNA和蛋白质表达,以促使胆固醇和胆汁酸排出体外。
1-脱氧野尻霉素(1-deoxynojirimycin,1-DNJ)是一种重要的生物碱,主要来源于桑叶、微生物以及人工合成。Do等[58]研究发现从枯草芽孢杆菌中分离得到的1-DNJ可以使小鼠肝脏中的乙酰辅酶A羧化酶(acetyl-CoA carboxylase,AAC)和FAS的mRNA表达明显降低,而PPAR-γ的转录辅助活化因子(PPAR-γ coactivator-1,PGC-1)和P-AMPK/AMPK的mRNA表达升高,表明1-DNJ可能是通过调节参与脂肪生成和线粒体功能的肝基因的表达而达到降血脂的功效。曾艺涛等[59]研究发现,1-DNJ可通过降低雌性小鼠的ACC活性和游离脂肪酸含量以及提升脂联素含量来抑制脂肪酸合成;通过提升雄鼠的CPT-1活性和脂联素含量,降低游离脂肪酸含量来促进脂肪酸分解,减少脂肪的积累。
2.5皂苷
皂苷广泛存在于植物体中,也少量存在于海星和海参等海洋生物中,对防治心血管疾病、降血脂有重要的作用。非洲茄子皂苷[60]、太白楤木皂苷[61]等皂苷成分具有显著的降血脂、抗脂质过氧化作用。
皂苷可以通过抑制肝脏胆固醇的合成、增加血浆胆固醇的流出起到降低血浆胆固醇水平的作用。Ma Weilie 等[62]经研究发现,甲基原薯蓣皂苷可以抑制THP-1巨噬细胞SREBP1c和SREBP2的转录,增加LDL受体和ABCA1 的mRNA表达,促进胆固醇的流出。Sho等[63]研究了苦瓜总皂苷的降血脂作用,研究发现苦瓜总皂苷可通过上调CYP7A1的表达和下调FXR的表达进而促胆固醇向胆汁酸转化以及促进胆汁酸从肠道排泄。
皂苷还可以调控脂质代谢相关酶、增强脂质的抗氧化能力来发挥降脂作用。Wang Yuming等[64]通过喂饲肥胖小鼠海参皂苷7 周,对小鼠肝脏脂质代谢相关酶活性进行测定,发现海参皂苷具有抑制FAS、葡萄糖-6-磷酸脱氢酶、苹果酸酶等脂质相关合成酶活性的作用。
2.6其他
He Shan等[65]发现深海水中含有大量的矿物质以及微量元素具有降低血脂的功效,它们主要是通过激活AMPK来降低肝细胞的脂质含量,从而抑制胆固醇和脂肪酸的合成。此外,还上调LDL受体、SREBP-2和CYP7A1的mRNA表达,从而降低LDL水平和增加胆固醇的流出。
Rashid等[66]将从棕榈油中富集得到的生育三烯酚作为膳食补充剂喂饲高脂饮食大鼠,与对照组相比可显著降低TC、TG和LDL-C水平,并且降低了氧化低密度脂蛋白的水平,从而抑制了动脉粥样硬化的发生。
紫苏油中含有丰富的α-亚麻酸,Zhang Tao等[67]发现喂饲紫苏油的大鼠与对照组相比,显著降低TC、TG的水平,增加肝脏中PPAR-α、CPT1A的mRNA表达,促进肝脂肪酸的氧化;上调了血清中SREBP-1、FAS和ACC的mRNA表达,显著降低血清脂质并抑制肝脂肪酸合成。
3 结 语
随着天然食物中的活性成分成为营养研究和药物开发的热点,研究这些活性成分的生物活性及作用机制可以大大促进其开发应用,能显著提高天然食物的附加值。多项研究显示,利用这些活性成分开发的功能性食品可作为膳食干预或膳食补充剂,预防人类疾病,尤其是高血脂、高血压等心血管慢性疾病,促进人体健康。
参考文献:
[1]CHEN Z Y,JIAO R,MA K Y,et al.Cholesterol-lowering nutraceuticals and functional foods[J].Journal of Agricultural and Food Chemistry,2008,56(19):8761-8773.DOI:10.1021/jf801566r.
[2]JAIN K S,KATHIRAVAN M K,SOMANI R S,et al.The biology and chemistry of hyperlipidemia[J].Bioorgannic & Medicnal Chemistry,2007,15(14):4674-4699.DOI:10.1016/j.bmc.2007.04.031.
[3]MELVYN R,ROBERT D B,ROBERT S R.Treating mixed hyperlipidemia and the atherogenic lipid phenotype for prevention of cardiovascular events[J].American Journal of Medicine,2010,123(10):892-898.DOI:10.1016/j.amjmed.2010.03.024.
[4]FIELDING C J,BIST A,FIELDING P E.Intracellular cholesterol transport in synchronized human skin fibroblasts[J].Biochemistry,1999,38(8):2506-2513.DOI:10.1021/bi9810120.
[5]JIA L,BETTERS J L,YU L Q.Niemann-Pick C1-Like 1(NPC1L1)protein in intestinal and hepatic cholesterol transport[J].Annual Review Physiology,2011,73(1):239-259.DOI:10.1146/annurevphysiol-012110-142233.
[6]OLIVER W R,SHENK J L,SNAITH M R,et al.A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(9):5306-5311.DOI:10.1073/pnas.091021198.
[7]van der VEEN J N,KRUIT J K,HAVINGA R,et al.Reduced cholesterol absorption upon PPAR delta activation coincides with decreased intestinal expression of NPC1L1[J].Journal of Lipid Research,2005,46(3):526-534.DOI:10.1194/jlr.M400400-JLR200.
[8]WANG Y X,ZHANG C L,YU R T,et al.Regulation of muscle fiber type and running endurance by PPAR delta[J].PLoS Biology,2004,2(10):1532-1539.DOI:10.1371/journal.pbio.0020294.
[9]SHAH P K.Inhibition of CETP as a novel therapeutic strategy for reducing the risk of atherosclerotic disease[J].Europen Heart Journal,2007,28(1):5-12.DOI:10.1093/eurheartj/ehl392.
[10]EBERLE D,HEGARTY B,BOSSARD P,et al.SREBP transcription factors:master regulators of lipid homeostasis[J].Biochimie,2004,86(11):839-848.DOI:10.1016/j.biochi.2004.09.018.
[11]KASTELEIN J J.Refocusing on use of cholesteryl ester transferprotein inhibitors[J].American Journal of Cardiology,2007,100(11A):47-52.DOI:10.1016/j.amjcard.2007.08.01.
[12]CHARLTON-MENYS V,DURRINGTON P N.Human cholesterol metabolism and the rapeutic molecules[J].Experimental Physiology,2008,93(1):27-42.DOI:10.1113/expphysiol.2007.035147.
[13]BROWN M S,GOLDSTEIN J L.Cholesterol feedback:from Schoenheimer’s bottle to Scap’s MELADL[J].Journal of Lipid Research,2009,50:S15-S27.DOI:10.1194/jlr.R800054-JLR200.
[14]CHIANG J Y L.Bile acids:regulation of synthesis[J].Journal of Lipid Research,2009,50(10):1955-1966.DOI:10.1194/jlr.R900010-JLR200.
[15]GOODWIN B,WATSON M A,KIM H,et al.Differential regulation of rat and human CYP7A1 by the nuclear oxysterol receptor liver X receptor-R[J].Molecular Endocrinology,2003,17(3):386-394.DOI:10.1210/me.2002-0246.
[16]GUPTA S,PANDAK W M,HYLEMON P B.LXR alpha is the dominant regulator of CYP7A1 transcription[J].Biochemical and Biophysical Research Communications,2002,293(1):338-343.DOI:10.1016/S0006-291X(02)00229-2.
[17]ESAU C,DAVIS S,MURRAY S F,et al.miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J].Cell Metabolism,2006,3(2):87-98.DOI:10.1016/j.cmet.2006.01.005.
[18]MARQUART T J,ALLEN R M,ORY D S.miR-33 links SREBP-2 induction to repression of sterol transporters[J].Proceedings of the National Academy of Sciences,2010,107(27):12228-12232.DOI:10.1073/pnas.1005191107.
[19]NAJAFI-SHOUSHTARI S H,KRISTO F,LI Y X,et al.MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis[J].Science,2010,328:1566-1569.DOI:10.1126/science.1189123.
[20]CHAKRABARTI P,ENGLISH T,KARKI S,et al.SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL[J].Journal of Lipid Research,2011(52):1693-1701.DOI:10.1194/jlr.M014647.
[21]FERRE P,FOUFELLEF F.Hepatic steatosis:a role for de novo lipogenesis and the transcription factor SREBP-1c[J].Diabetes Obesity Metabolism,2010(12):83-92.DOI:10.1111/j.1463-1326.2010.01275.x.
[22]YAHAGI N,SHIMANO H,HASTY A H,et al.A crucial role of sterol regulatory element-binding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids[J].The Journal of Biological Chemistry,1999,274(50):35840-358404.DOI:10.1074/jbc.274.50.35840.
[23]YOSHIKAWA T,SHIMANO H,YAHAGIL I N,et al.Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor(LXR)binding to LXR response elements[J].The Journal of Biological Chemistry,2002,277(3):1705-1711.DOI:10.1074/jbc.M105711200.
[24]STEINBERG G R,KEMP B E.AMPK in health and disease[J].Physiological Reviews,2009,89(3):1025-1078.DOI:10.1152/physrev.00011.2008.
[25]KOJIMA Y,KIMURA T,NAKAGAWA K,et al.Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans[J].Journal of Clinical Biochemistry Nutrition,2010,47(2):155-161.DOI:10.3164/jcbn.10-53.
[26]BENSINGER S J,TONTONOZ P.Integration of metabolism and inflammation by lipid-activated nuclear receptors[J].Nature,2008,454:470-477.DOI:10.1038/nature07202.
[27]ONG K T,MASHEK M T,BU S Y,et al.Adipose triglyceride lipase is a major hepaticlipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning[J].Hepatology,2011,53(1):116-126.DOI:10.1002/hep.24006.
[28]麦紫欣,关东华,林敏霞,等.膳食纤维降血脂作用及其机制的研究进展[J].广东微量元素科学,2011(1):11-16.DOI:10.3969/j.issn.1006-446X.2011.01.002.
[29]JAMES W,ANDERSON M D.Dietary fiber prevents carbohydrate induced hypertriglyceridemia[J].Current Atherosclerosis Reports,2000,2(6):536-541.DOI:10.1007/s11883-000-0055-7.
[30]ZHOU X R,LIN W J,TONG L T,et al.Hypolipidaemic effects of oat flakes and-glucans derived from four Chinese naked oat(Avena nuda)cultivars in Wistar-Lewis rats[J].Journal of the Science of Food and Agriculture,2016,96(2):644-649.DOI:10.1002/jsfa.7135.
[31]PAROLINI C,MANZINI S,BUSNELLI M,et al.Effect of the combinations between pea proteins and soluble fibres on cholesterolaemia and cholesterol metabolism in rats[J].British Journal of Nutrition,2013,110(8):1394-1401.DOI:10.1017/S0007114513000639.
[32]MOREYRA A E,WILSON A C,KORAYM A.Effect of combiningpsyllium fiber with simvastatin in lowering cholesterol[J].Archive Internal Medicine,2005,165(10):1161-1166.DOI:10.1001/archinte.165.10.1161.
[33]BAN S J,RICO C W,UM I C,et al.Comparative evaluation of the hypolipidemic effects of hydroxyethyl methylcellulose(HEMC)and hydroxypropyl methylcellulose(HPMC)in high fat-fed mice[J].Food and Chemical Toxicology,2012,50(2):130-134.DOI:10.1016/j.fct.2011.10.051.
[34]TONG L T,ZHONG K,LI Y,et al.Effects of dietary hull-less barley β-glucan on the cholesterol metabolism of hypercholesterolemic hamsters[J].Food Chemistry,2015,169(15):344-349.DOI:10.1016/j.foodchem.2014.07.157.
[35]KIM H,TUROWSKI M,ANDERSON W H,et al.Supplementation of hydroxypropyl methylcellulose into yeast leavened all-whole grain barley bread potentiates cholesterol-lowering effect[J].Journal of Agricultural and Food Chemistry,2011,59(14):7672-7678.DOI:10.1021/jf104821b.
[36]KIM J H,JIA Y Y,LEE J G,et al.Hypolipidemic and antiinflammation activities of fermented soybean fibers from meju in C57BL/6 J mice[J].Phytotherapy Research,2014,28(9):1335-1341.DOI:10.1002/ptr.5134.
[37]ZHANG W,ZHANG J L,JIANG Q X,et al.The hypolipidemic activity of chitosan nanopowder prepared by ultrafine milling[J].Carbohydrate Polymers,2013,95(1):487-491.DOI:10.1016/j.carbpol.2013.02.037.
[38]ZHAO Y,YANG X B,REN D Y,et al.Preventive effects of jujube polysaccharides on fructose-induced insulin resistance and dyslipidemia in mice[J].Food & Function,2014,5(8):1771-1778.DOI:10.1039/c3fo60707k.
[39]ZHAO X H,QIAN L,YIN D L,et al.Hypolipidemic effect of the polysaccharides extracted from pumpkin by cellulase-assisted method on mice[J].International Journal of Biological Macromolecules,2014,64(2):137-138.DOI:10.1016/j.ijbiomac.2013.12.001.
[40]ZHA X Q,XIAO J J,ZHANG H N,et al.Polysaccharides in Laminaria japonica(LP):extraction,physicochemical properties and their hypolipidemic activities in diet-induced mouse model of atherosclerosis[J].Food Chemistry,2012,134(1):244-252.DOI:10.1016/j.foodchem.2012.02.129.
[41]WANG K P,CAO P,SHUI W Z,et al.Angelica sinensis polysaccharide regulates glucose and lipid metabolism disorder in prediabetic and streptozotocin-induced diabetic mice through the elevation ofglycogen levels and reduction of inflammatory factors[J].Food & Function,2015,6(3):902-909.DOI:10.1039/c4fo00859f.
[42]QIAN L,ZHOU Y,MA J X.Hypolipidemic effect of the polysaccharides from Porphyra yezoensis[J].International Journal of Biological Macromolecules,2014,68(7):48-49.DOI:10.1016/j.ijbiomac.2014.04.004.
[43]WANG H,CHEN G,REN D D,et al.Hypolipidemic activity of okra is mediated through inhibition of lipogenesis and upregulation of cholesterol degradation[J].Phytotherapy Research,2014,28(2):268-273.DOI:10.1002/ptr.4998.
[44]HOANG M H,KIM J Y,LEE J H,et al.Antioxidative,hypolipidemic,and anti-inflammatory activities of sulfated polysaccharides from Monostroma nitidum[J].Food Science and Biotechnology,2015,24(1):199-205.DOI:10.1007/s10068-015-0027-x.
[45]YU C H,DAI X Y,CHEN Q,et al.Hypolipidemic and antioxidant activities of polysaccharides from Rosae laevigatae fructus in rats[J].Carbohydrate Polymers,2013,94(1):56-62.DOI:10.1016/j.carbpol.2013.01.006.
[46]YANG J X,WU S H,XI L,et al.Hypolipidemic ativity and antiatherosclerotic effect of polysaccharide of polysaccharide of polygonatum sibiricum in rabbit model and related cellular mechanisms[J].Evidence-Based Complementary and Alternative Medicine,2015,2015:1-6.DOI:10.1155/2015/391065.
[47]WU D,MA X F,TIAN W X.Pomegranate husk extract,punicalagin and ellagic acid inhibit fatty acid synthase andadipogenesis of 3T3-L1 adipocyte[J].Journal of Functional Foods,2013,5(2):633-641.DOI:10.1016/j.jff.2013.01.005.
[48]JIAO R,ZHANG Z S,YU H J,et al.Hypocholesterolemic activity of grape seed proanthocyanidin is mediated by enhancement of bile acid excretion and up-regulation of CYP7A1[J].Journal of Nutritional Biochemistry,2011,21(11):1134-1139.DOI:10.1016/j.jnutbio.2009.10.007.
[49]ALI F,ISMAIL A,ESA N M,et al.Transcriptomics expression analysis to unveil the molecular mechanisms underlying the cocoa polyphenol treatment in diet-induced obesity rats[J].Genomics,2015,105(1):23-30.DOI:10.1016/j.ygeno.2014.11.002.
[50]XU Y,ZHANG M,WU T,et al.The anti-obesity effect of green tea polysaccharides,polyphenols and caffeine in rats fed with a high-fat diet[J].Food & Function,2015,6(1):297-304.DOI:10.1039/c4fo00970c.
[51]PARK Y,PARK E M,KIM E H,et al.Hypocholesterolemic metabolism of dietary red pericarp glutinous rice rich in phenolic compounds in mice fed a high cholesterol diet[J].Nutrition Research and Practice,2014,8(6):632-637.DOI:10.4162/nrp.2014.8.6.632.
[52]BASELGA E L,PASCUAL S A,RIBAS L A,et al.Long-term supplementation with a low dose of proanthocyanidins normalized liver miR-33a and miR-122 levels in high-fat diet-induced obese rats[J].Nutrition Research,2015,35(4):337-345.DOI:10.1016/j.nutres.2015.02.008.
[53]YANG M Y,CHAN K C,LEE Y J,et al.Sechium edule shoot extracts and active components improve obesity and a fatty liver that involved reducing hepatic lipogenesis and adipogenesis in high-fat-diet-fed rats[J].Journal of Agricultural and Food Chemistry,2015,63(18):4587-4596.DOI:10.1021/acs.jafc.5b00346.
[54]JIA S,HU Y,ZHANG W,et al.Hypoglycemic and hypolipidemic effects ofneohesperidin derived from Citrus aurantium L.indiabetic KK-A(y)mice[J].Food Function,2015,6(3):878-886.DOI:10.1039/c4fo00993b.
[55]WU H,HE K,WANG Y Z,et al.The antihypercholesterolemic effect of jatrorrhizine isolated from Rhizoma coptidis[J].Phytomedicine,2014,21(11):1373-1381.DOI:10.1016/j.phymed.2014.05.002.
[56]BAO L,BAI S,BORIJIHAN G.Hypolipidemic effects of a new piperine derivative GB-N from Piper longum in high-fat diet-fed rats[J].Pharmaceutical Biology,2012,50(8):962-967.DOI:10.3109/1 3880209.2012.654395.
[57]NING N,HE K,WANG Y Z,et al.Hypolipidemic Effect and mechanism of palmatine from coptis chinensis in hamsters fed high-fat diet[J].Phytotherapy Research,2015,29(5):668-673.DOI:10.1002/ptr.5295.
[58]DO H J,CHUNG J H,HWANG J W,et al.1-Deoxynojirimycin isolated from Bacillus subtilis improves hepatic lipid metabolism and mitochondrial function in high-fat-fed mice[J].Food and Chemical Toxicology,2015,75:1-7.DOI:10.1002/ptr.5295.
[59]曾艺涛,丁晓雯,黄先智.1-脱氧野尻霉素对不同性别小鼠脂代谢产生影响的途径[J].蚕业科学,2015,41(2):349-353.DOI:10.13441/j.cnki.cykx.2015.02.022.
[60]ELEKOFEHINTI O O,KAMDEM J P,KADE I J,et al.Hypoglycemic,antiperoxidative and antihyperlipidemic effects of saponins from Solanum anguivi Lam.fruits in alloxan-induced diabetic rats[J].South African Journal of Botany,2013,88(9):56-61.DOI:10.1016/S0038-1098(97)10153-3.
[61]WENG Y,YU L,CUI J,et al.Antihyperglycemic,hypolipidemic and antioxidant activities of total saponins extracted from Aralia taibaiensis in experimental type 2 diabetic rats[J].Journal of Ethnopharmacology,2014,152(3):553-560.DOI:10.1016/j.jep.2014.02.001.
[62]MA W L,DING H,GONG X H,et al.Methyl protodioscin increases ABCA1 expression and cholesterol efflux while inhibiting gene expressions for synthesis of cholesterol and triglycerides by suppressing SREBP transcription and microRNA 33a/b levels[J].Atherosclerosis,2015,239(2):566-570.DOI:10.1016/j.atherosclerosis.2015.02.034.
[63]SHO M,TAKUMI Y,TOSHICHIKA T,et al.The hypocholesterolemic activity of Momordica charantia fruit is mediated by the altered cholesterol and bile acid regulating gene expression in rat liver[J].Nutrition Nresearch,2013,33(7):580-585.DOI:10.1016/j.nutres.2013.05.002.
[64]WANG Y M,WANG J H,YANAGITA R C,et al.Effects of two sulfated triterpene saponins echinoside A and holothurin A on the inhibition of dietary fat absorption and obesity reduction[J].Bioscience,Biotechnology,and Biochemistry,2014,78(1):139-146.DOI:10.1080/09168451.2014.877830.
[65]HE S,HAO J J,PENG W B,et al.Modulation of lipid metabolism by deep-sea water in cultured human liver(HepG2)cells[J].Marine Biotechnology,2014,16(2):219-229.DOI:10.1007/s10126-013-9540-1.
[66]RASHID K M,AHSAN H,SIDDIQUI S,et al.Tocotrienols have a nephroprotective action against lipid-induced chronic renal dysfunction in rats[J].Renal Failure,2015,37(1):136-143.DOI:10.3109/088602 2X.2014.959433.
[67]ZHANG T,ZHAO S,LI W,et al.High-fat diet from perilla oil induces insulin resistance despite lower serum lipids and increases hepatic fatty acid oxidation in rats[J].Lipids in Health and Disease,2014,13(1):1-20.DOI:10.1186/1476-511X-13-15.
Progress in Research on Hypolipidemic Mechanisms of Functional Food Components
ZOU Lifang1,SHEN Yihong2,HUANG Xianzhi2,DING Xiaowen1,*
(1.Chongqing Key Laboratory of Agricultural Product Processing,College of Food Science,Southwest University,Chongqing 400715,China; 2.State Key Laboratory of Silkworm Genome Biology,Chongqing 400715,China)
Abstract:Increased intake of high-fat diets,disturbing the metabolic balance of liposomes in the body,is one of the major reasons for the dramatic increase in the prevalence of hyperlipidemia.On the other hand,many foods exert lipid-lowering effects through their functional components such as dietary fiber,polysaccharides,polyphenols and steroidal saponins and alkaloids.Herein,we review the latest progress in the study of the hypolipidemic effect and mechanisms of functional food components,aiming to provide a reference for future development and utilization of hypolipidemic natural products.
Key words:hypolipidemic; cholesterol; fatty acid; triglycerides
中图分类号:TS201.4
文献标志码:A
文章编号:1002-6630(2016)05-0239-06
DOI:10.7506/spkx1002-6630-201605042 10.7506/spkx1002-6630-201605042.http://www.spkx.net.cn
*通信作者:丁晓雯(1963—),女,教授,博士,研究方向为食品安全与功能食品。E-mail:xiaowend@sina.com
作者简介:邹莉芳(1991—),女,硕士研究生,研究方向为食品安全与质量控制。E-mail:zoulifang526@163.com
基金项目:国家现代农业(蚕桑)产业技术体系建设专项(CARS-22)
收稿日期:2015-06-25