黄土旱塬集雨保墒措施对苹果发育和土壤水分变化的影响
2016-04-09樊廷录李尚中张建军甘肃省农业科学院旱地农业研究所兰州730070
赵 刚,樊廷录,李尚中,张建军,党 翼,王 磊(甘肃省农业科学院旱地农业研究所,兰州730070)
黄土旱塬集雨保墒措施对苹果发育和土壤水分变化的影响
赵刚,樊廷录,李尚中,张建军,党翼,王磊
(甘肃省农业科学院旱地农业研究所,兰州730070)
摘要:为了有效缓解黄土旱塬区苹果园深层干燥化,保证苹果产业的可持续发展,该文选取甘肃镇原盛果期苹果园,连续6 a定位测定了黑色地膜覆盖和黑色地膜覆盖+立体化入渗对苹果产量、新梢生长量和土壤含水量等指标。分析了6 a不同处理苹果产量、形态指标和不同生育期果园0~500 cm土壤相对水分亏缺指数的变化,研究结果表明:黑色地膜覆盖+立体化入渗较对照平均增产16.49%,优果率增加8.91%;300~500 cm土壤含水量较对照增加0.50~2.63百分点,降水入渗深度达到了480 cm,在60~500 cm水分相对亏缺指数为-0.05~-0.12,最大补偿区域为200~300 cm,水分补偿为春季花期和收获期。因此,黑色地膜覆盖+立体化入渗技术提高了果树产量与优果率,改善了果园深层水分状况,缓解土壤深层干燥化。
关键词:土壤;水分;生长;黄土旱塬;苹果园;保蓄措施
赵刚,樊廷录,李尚中,张建军,党翼,王磊.黄土旱塬集雨保墒措施对苹果发育和土壤水分变化的影响[J].农业工程学报,2016,32(01):155-160.doi:10.11975/j.issn.1002-6819.2016.01.021 http://www.tcsae.org
Zhao Gang, Fan Tinglu, Li Shangzhong , Zhang Jianjun, Dang Yi, Wang Lei.Effects of rain-harvesting and moisture-conserving measures on apple tree growth and development and soil water moisture in arid areas of loess plateau[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(01): 155-160.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.01.021 http://www.tcsae.org
0 引言
黄土高原区是中国苹果优势产区之一,近年来,苹果栽培面积逐年增加。然而果树栽培的发展也带来了生态问题——土壤深层干燥化[1],土壤深层干燥化已经得到许多学者的认可,植被强烈的蒸腾作用不仅导致了深层土壤水分的变化,而且对植被自身的生长也不利[2]。苹果园地表裸露多,树冠大,根系深,遇到干旱年份根层水分不能满足果树生长需求,根系向更深层吸收水分,深层水分消耗后降水很难补给,深层土壤出现干燥化。所以学者利用地表覆盖和果园生草等措施来改善土壤水分状况[3-9]。地表覆盖有效抑制水分蒸发,降水在黄土旱塬区入渗达到3 m[10],由于果园深层土壤水分测定难度很大,所以有学者以数学模型进行研究[11],取得了一定研究成果。但是果园深层水分研究缺乏连续性,研究确定了土壤深层干燥化严重,但降水如何补给深层水分和深层干燥化如何缓解研究较少,因此,本文在黄土旱塬区提出了深层立体化集雨入渗技术,并连续6 a定位观测,旨在为黄土旱塬区缓解土壤干燥化和苹果产业可持续发展提供理论依据。
1 试验区域及研究方法
1.1研究区域概况
试验于2009 -2014 a连续6 a在农业部西北旱作营养与施肥科学观测实验站,黄土旱塬区镇原上肖试验站(35°30′N, 107°29′E)进行,试验地点海拔1 254 m,30 a年均降水量503 mm,年平均温度8.3℃,无霜期165 d,土壤为黑垆土,耕层土壤有机质含量10.62 g/kg,全氮0.94 g/kg,碱解氮89 mg/kg,速效磷12 mg/kg,速效钾231 mg/kg,有机质11.3 g/kg,肥力中等。据测定,降水量的10~15%形成径流流失,60%~65%的无效蒸发,仅有25%~30%被作物利用,而且60%的降水多集中在7-9月,陇东旱塬地区年平均日照时数为2 300~2 500 h,日照百分率达50%~55%,太阳年辐射量为525~567 kJ/cm2,本区≥0℃积温为3 400~3 800℃,≥10℃积温为2 700~3 200℃。
1.2试验设计
试验于2009 a开始,连续6 a定位进行,试验苹果品种为长富2号,树龄为18 a生,栽植密度为4 m×3 m,树干均匀,树体健康。试验设计3个处理,每处理重复5次,总计15个处理。
试验设以下3个处理:
处理一、对照(CK):当地常规果园管理方式,果园修剪在冬季或者次年春季进行;春季旋耕整地,保持果园地面水平,便于降雨入渗;6月中下旬除草一次;施肥时期为秋季果实采收后,施肥方式采用传统的条施法,既在离树干80 cm处挖深宽长为20 cm×20 cm×200 cm长穴,施肥量为:优质农家肥75~90 kg/株,氮磷钾施入质量比例为:(N∶P2O5∶K2O=1∶1∶1),施肥量为1.5 kg/株,氮肥选用尿素,磷肥选用磷酸二铵,钾肥用氯化钾。
处理二、黑色宽膜覆盖集雨保墒处理(black filmmulching, BF):分别在离主树干5 cm两侧,覆120 cm宽的黑色地膜,覆膜时以树干为中心,将树冠两侧向外围延伸100 cm,做成向主树干外侧倾斜的斜面,覆盖黑色地膜,与地面贴紧压实,便于集水;肥料使用量同对照;施肥采用沟施,顺地膜覆盖边缘挖深20 cm施入肥料后覆土,覆膜时间在春季即4月20日左右;覆膜时向树干。
处理三、黑色宽膜覆盖+集雨立体入渗处理(black film mulching+ rainfall collection tri-infiltration, BF+R):果实采摘后,离主树干80cm树盘处,挖长长宽高为50cm×50cm× 40 cm的3个大穴。每穴中埋设30 cm×30 cm的有盖入渗桶,入渗桶下部四周打上直径为0.5 cm的小孔,孔间距约为5cm,约40个/桶,作为集雨微灌,并在果树树冠下400 cm× 300cm处做成浅盘状,即树干两侧各延伸200cm和150 cm,做成外高向内逐渐倾斜,便于降水流入入渗桶,将其分为3等分,分别埋设3个入渗桶,然后用宽120 cm黑色地膜将树盘全部覆盖,便于降雨集水及保墒防止杂草,施肥量与埋设入渗桶及覆膜时间与处理二相同。
1.3测定项目及方法
1.3.1单株产量和优果率测定在果实成熟后,将各处理5株果实全部分株采收,每株果实全部称质量记产;采用直径分级法,按照苹果直径大小,将直径大于70 cm定为优果,计算每株优果率;并随机选取每株果树苹果20个,逐个测定单果质量。
优果率(%)=苹果直径大于70 cm果实数/全部果实数×100%
1.3.2新梢生长量在春梢(7月中下旬)和秋梢(9月中下旬)生长结束时,选取代表性大枝,逐枝测定新梢生长量。5~30 cm新梢定为短枝,>30 cm为长枝,计算短枝比例。
短枝比例(%)=短枝数/全部新梢数×100%
1.3.3百叶质量在果实膨大期采摘100叶片,测定鲜叶质量。采摘叶片时选择代表本树长势的叶片,每株分别采摘3次重复,并带回实验室称质量。
1.3.4土壤含水量
在试验地内利用0~500 cm土钻进行人工打钻取土样,用烘干法测定土壤水分含量。取样深度为500 cm,于2009-2014 a分别在苹果不同生育期进行,取样时间一般在春稍生长期、秋梢生长期、收获后,特殊年份根据果树生长变化和降水等因素取样,取样时间2009 a为06-07、07-25、09-01和10-16,2010 a为04-03、06-28、08-04和10-15,2011 a为05-24、07-17和10-14,2012 a为04-26、07-25和10-15,2013 a为05-29、09-07和10-17,2014 a为05-03、09-28和10-29,每年测定3次,由于干旱原因,分别在2009 a和2010各加取一次。土壤水分含量的测定用105℃烘干法,以20 cm为一个层次,共25个层次。文章中土壤容重选取0~500 cm平均值,为1.3 g/cm3。
土壤质量含水量(%)=(湿土质量-干土质量)/干土质量×100%
土壤水分相对亏缺指数是指不同层次土壤水分相对于对照的亏缺程度。
CSWDIi=(CPi-SWi)/(CPi-WM)
CPi为对照第i层土壤湿度;SWi为处理后第i层土壤湿度;WM为凋萎湿度,即土壤水分减少到使植物叶片开始呈现萎蔫状态时的土壤湿度。根据李玉山对黄土高原区土壤凋萎湿度的划分,本研究区域为中壤Ⅰ带,所以本文凋萎湿度为5%。
3.很多学生有完美主义倾向,尤其是女孩子在使用错题本时,常常是外在大于实际,把错题本弄得美美的,当成“艺术品”来对待,反而没有关注到错题本的本质;
2 结果分析
2.1不同年份不同处理对苹果产量影响
2009-2014 a连续6 a定位监测,由于2011和2013 a受到冰雹和霜冻自然灾害,没有产量数据。其余4 a数据结果如表1所示,BF和BF+R单果质量、单株产量、优果率和百叶质量明显高于对照,单株产量和单果质量分别较CK增加12.46%、16.68%和10.55%、14.51%,BF+R较BF分别增加3.75%和3.57%;优果率BF+R较CK提高6.6个百分点,百叶质量增加17.04%。4 a平均值方差分析显示处理各指标与对照之间差异均显著(0.05>P),BF与BF+R差异不显著。说明处理后显著增加果园单株产量和优果率,改善了百叶质量和增加光合面积,有利于干物质积累和运转。
表1 不同处理年份之间单株产量和优果率之间的差异Table 1 Different years charge yield and optimal fruit rate
2.2不同处理对苹果形态指标的影响
新梢生长量是衡量果园建设的一项重要的形态指标,苹果结实以短枝为主,但长枝的生长保证了果树的光合作用,促进根系生长。不同处理春、秋梢生长量在5%水平上差异显著,平均生长量28~32 cm,BF和BF+R处理春梢和秋梢平均生长量分别较CK增加了14.25%和7.15%;短枝比例BF+R处理显著高于BF和CK,分别增加了22.75%和11.84%见表2。说明覆盖+集雨立体入渗技术显著提高了春梢和秋梢的生长量,合理改善了长短枝比例,为来年高产奠定基础。
表2 不同覆盖方式下形态指标变化(2012年)Table 2 Charge morphological index of different mulching(2012a)
2.3不同处理对深层土壤水分的影响
2009~2014 a 10月苹果采摘后测定不同处理对深层土壤水分的影响,见图1。在2009 a不同处理在240~300 cm均出现低湿层,经过分水年降雨补给,CK入渗深度达到300cm左右,BF和BF+R处理分别达到了360 cm和480 cm处,300 cm以下土壤在2011、2012、2013、2014 a平均含水量分别较CK高2.94、1.72、2.83、0.42和1.57、2.63、1.72、0.50%。0~500 cm总含水量来看,不同处理基本一致,对照主要蓄积在300 cm以上土层,BF和BF+R处理均向较深层蓄积,防止冬春干旱季蒸发损耗,对深层土壤干燥化有一定缓解作用。
2.4不同处理不同年份土壤水分亏缺指数季节性变化规律
果园深层土壤干燥化普遍存在,随着果园种植年限增加,深层土壤水分出现上移,深层水分干燥化加剧。本研究主要采用黑色地膜覆盖起到抑制蒸发的作用,通过2009-2014 a不同季节土壤水分相对亏缺指数可以看出,BF和BF+R处理较对照水分相对亏缺指数为-0.038和-0.054,说明处理后抑制了水分亏缺,对苹果园土壤水分起到了保蓄作用。
从不同生育期来看,见表3,试验初期2009 a和2010 a秋梢生长期、2012 a收获后出现水分亏缺,BF和BF+R相对亏缺指数分别为:0.12和0.11、0.09和0.04、0.08和0.04;其他年限不同生育期土壤水分相对对照均保持平衡或者略有补充,春季花期、收获后BF和BF+R处理平均水分亏缺指数为-0.06和-0.07、-0.05和-0.07,BF+R较BF处理水分略有补偿,5月初土壤水分较对照没有降低,地膜覆盖后能有效缓解土壤水分蒸发,保证冬春季干旱果树生长用水。
3 讨论
苹果树冠层较大,蒸腾耗水高,遇到干旱年份果树耗水加深,不仅消耗了当季降水,而且还消耗了更深层土壤水分,导致土壤水分严重亏缺的黄土旱塬区深层有效持水减少,干燥化趋势随着苹果树龄的增加愈演愈烈[12],直接影响到果园产量。地膜覆盖栽培措施能有效抑制无效蒸发,提高低温,改善土壤理化性质,有效提高百叶质量和单果质量[13]。本文研究结果显示,BF和BF+R处理能有效改善土壤微环境,提高根层以下土壤含水量,补偿冬春干旱季节果树生长耗水,使苹果树受到的干旱胁迫较小,提高单株产量、苹果树百叶质量和新梢短枝比例。BF+R处理较BF处理在产量、优果率、百叶质量和新梢短枝比例均成增加趋势,其中BF+R处理百叶重和短梢比例较对照分别增加了17.03%和17.31%,改善了苹果树生长环境,促进花芽分化,单株产量和优果率较对照平均增加16.49%和8.91%,有效的预防了苹果树大小年的出现。说明BF+R处理改善了苹果树生长微环境,果树生态指标得到了改善,该技术为黄土旱塬区苹果产业可持续发展提供保障。
土壤含水量高、土质疏松、通透性强等良好的土壤环境,是苹果树健康生长的基础条件,也是旱塬区被认为是苹果优势产区之一的基本条件。地膜覆盖能有效改善土壤容重和孔隙度[9],从而扩大了土壤对水分的保蓄能力。地膜覆盖后阻断了土壤和大气的水分交换,降低了地表的无效蒸发,提高了土壤含水量,改善了根层生长条件,增加了根系密度和生长量[14],有利于果树健康生长。本研究连续6 a定点观测结果显示,BF和BF+R处理在苹果生长期覆盖后,深层土壤含水量逐年增加,BF+R处理改变了480 cm以上土壤含水量。赵刚等研究表明[10],在年降雨量小于400 mm时,苹果生长主要消耗300 cm以下土壤含水量。陈宝群研究发现[15],“低降水、高蒸发”是黄土高原区干层形成的决定性因素。因此,本研究提出的集雨立体入渗技术,作用是降低了土壤的无效蒸发,收集树盘降水,通过重力水作用向深层蓄积,缓解了深层土壤干燥化。由于埋设了40 cm入渗桶,改变了土壤物理性质,改善了根系生长环境,果树形态指标得到了有效改观。
表3 2009-2014年不同覆盖方式不同生育期土壤水分亏缺指数变化Table 3 Charge different mulching soil CMWDI in different growth 2009-2014a
不同植被下0~200 cm土壤含水量在4-10月份苹果园含水量最低[16],这是由于苹果园树冠较大,在生长期耗水过大所致[17],然而黑色地膜覆盖有效提高了土壤含水量和土壤春夏季温度[18],苹果园在不同生育期含水量变化不同,4-10月份土壤含水量成“W”型变化[19]。本研究根据不同时期土壤相对水分亏缺指数,分析了果园在不同时期的覆盖后降水的蓄集效果,在试验开始初期水分在6月上旬期、8月下旬和9月上旬覆盖处理水分出现了亏缺,主要原因为该期恰是水分高耗水期,黑膜覆盖后温度较高,果树长势好,水分消耗较大,导致了水分相对亏缺,然而随着试验年限的推移,覆盖处理逐渐水分盈余并向果园深层蓄集,BF+R处理显著高于BF处理,说明该项技术能有效向深层蓄集雨季水分,为冬春季干旱提供有效蓄水,实现了降水跨季节利用,能有效缓解果园深层土壤干燥化。
4 结论
1)黑色地膜覆盖+立体集雨入渗处理不仅抑制土壤水分无效蒸发,而且增加了入渗深度,分别较黑色地膜覆盖处理和对照降水入渗深度增加120 cm和280 cm,贮水量平均增加6.2 mm和17.3 mm。
2)萌芽期和收获后黑色地膜覆盖+立体集雨入渗处理水分相对亏缺指数为-0.05~-0.07,水分较对照呈增加趋势,雨季水分的深层入渗并有效蓄积,保证了苹果萌芽期果树生长所需水分,不在消耗土壤已有蓄水,使萌芽期降水再蓄积,深层土壤水分良性增加,实现了旱季利用雨季降水,有效缓解了土壤深层干燥化。
3)深层土壤水分的改善,有利于苹果形态指标的发育,黑色地膜覆盖+立体集雨入渗处理短枝比例较对照增加9.82~13.85百分点,单株产量增加6.76%~29.93%,优果率80%以上,较对照增加3.2~12.4百分点。因此黑色地膜覆盖+立体集雨入渗处理在改善土壤水分的同时,提高了苹果产量和优果率。
[参考文献]
[1]张义,谢永生.不同覆盖措施下苹果园土壤水文差异[J].草业学报,2011,20(2):85-92.Zhang Yi, Xie Yongsheng.Effects of different patterns of surface mulching on soil hydrology in an apple orchard [J].Acta Prataculturae Sinica, 2011, 20(2): 85-92.(in Chinese with English abstract)
[2]李玉山.黄土高原森林植被对陆地水循环影响的研究[J].自然资源学报,2001,16(5):427-432.Li Yushan.Effects of forest on water circle on Loess Plateau[J].Journal of natural resources, 2001, 16(5): 427-432.(in Chinese with English abstract)
[3]李生秀.中国旱地农业[M].北京:中国农业出版社,2004.
[4]李会科,梅立新,高华.黄土高原旱地苹果园生草对果园小气候的影响[J].草地学报,2009,17(5):615-620.Li Huike, Mei Lixin, Gao Hua.Effect of grass planting on the microclimate of apple orchard in the dryland area of Loess Plateau[J].Acta Agrestia Sinica, 2009, 17(5): 615-620.(in Chinese with English abstract)
[5]李成华,马成林.有机物覆盖地面对土壤物理因素影响的研究(Ⅱ):有机物覆盖对土壤孔隙度的影响[J].农业工程学报,1997,14(2):82-85.Li Chenhua, Ma Chenglin.Soil cover with organic mulch and its influences on soil physical parameters(Ⅱ)—change of soil porosity under organic mulch cover[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 1997, 14(2): 82-85.(in Chinese with English abstract)
[6]李会科,张广军,赵政阳,等.生草对黄土高原旱地苹果园土壤性状的影响[J].草业学报,2007,16(2):32-39.Li Huike, Zhang Guangjun, Zhao Zhengyang, et al.Effects of interplanted herbage on soil properties of non-irrigated apple orchards in the Loess Plateau[J].Acta Prataculturae Sinica, 2007, 16(2): 32-39.(in Chinese with English abstract)
[7]赵政阳,李会科.黄土高原旱地苹果园生草对土壤水分的影响[J].园艺学报,2006,33(3):481-484.Zhao Zhengyang, Li Huike.The effects of interplant different herbage on soil water in apple orchards in the area of Weibei plateau[J].Acta Horticulturae Sinica, 2006, 33(3): 481-484.(in Chinese with English abstract)
[8]高茂盛,廖允成,李侠,等.不同覆盖方式对渭北旱作苹果园土壤贮水的影响[J].中国农业科学,2010,43(10):2080-2087.Gao Maosheng, Liao Yuncheng, Li Xia, et al.Effects of different mulching patterns on soil water-holding capacity of non-irrigated apple orchard in the Weibei plateau[J].Scientia Agricultura Sinica, 2010, 43(10): 2080-2087.(in Chinese with English abstract)
[9]刘小勇,李红旭,李建明,等.不同覆盖方式对旱地果园水热特征的影响[J].生态学报,2014,34(3):746-754.Liu Xiaoyong, Li Hongxu, Li Jianming, et al.The effects of different mulching way on soil water thermal characteristics in pear orchard in the arid area[J].Acta Ecologica Sinica, 2014, 34 (3): 746-754.(in Chinese with English abstract)
[10]赵刚,樊廷录,李尚中,等.黄土旱塬区苹果园土壤水分动态[J].应用生态学报,2015,26(4): 1199-1204.Zhao Gang, Fan Tinglu, Li Shangzhong, et al.Soil moisture dynamics of apple orchard in Loess Plateau dryland [J].Chinese Journal of Applied Ecology, 2015, 26(4): 1199-1204.(in Chinese with English abstract)
[11]范鹏,李军,张丽娜,等.宝鸡不同密度旱作苹果园产量和深层土壤水分动态响应模拟[J].中国生态农业学报,2013,21 (11):1377-1385.Fan Peng, Li Jun, Zhang Lina, et al.Dynamic simulation of apple yield and dynamic response of deep soil moisture under rain-fed apple orchards of different planting densities at Baoji[J].Chinese Journal of Eco-Agriculture, 2013, 21(11): 1377-1385.(in Chinese with English abstract)
[12]殷淑燕,黄春长.黄土高原苹果基地土壤干燥化原因及其对策[J].干旱区资源与环境,2005,19(2): 77-80.Yin Shuyan, Huang Chunchang.Soil dryization of the apple basein the Loess Plateau and its countermeasures[J].Journal of Arid Land Resources and Environmen, 2005, 19(2): 77-80.(in Chinese with English abstract)
[13]董铁,刘小勇,张坤,等.旱塬区地面覆盖对苹果园土壤性状和树体生长的影响[J].西北农业学报,2014,23(2):155-160.Dong Tie, Liu Xiaoyong, Zhang Kun, et al.Effect of mulching treatment on growth of apple tree and soil characters in dry land of eastern gansu province[J].Acta Agriculyurae Borealioccidentalis sinica, 2014, 23(2): 155-160.(in Chinese with English abstract)
[14]孙文泰,张坤,刘小勇,等.垄膜集雨对陇东旱塬苹果根系分布及土壤性状的影响[J].西北农业学报,2012,21(10):100-105.Sun Wentai, Zhang Kun, Liu Xiaoyong, et al.Influence of plastic film-mulching on ridge and rain harvesting on root distribution characteristics of apples and soil properties in dryland orchards of Longdong Areas[J].Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(10): 100-105.(in Chinese with English abstract)
[15]陈宝群,赵景波,李艳花.黄土高原土壤干层形成原因分析[J].地理与地理信息科学,2009,25(3):85-89.Chen Baoqun, Zhao Jingbo, Li Yanhua.Research on causes of dried soil layer in the Loess Plateau[J].Geography and Geo-Information Science, 2009, 25(3): 85-89.(in Chinese with English abstract)
[16]赵传普,徐学选,高朝侠,等.黄土丘陵区不同植被类型下土壤水分动态[J].水土保持研究,2015,35(1):68-72.Zhao Chuanpu, Xu Xuexuan, Gao Zhaoxia, et al.Dynamics of soil moisture under different vegetation types in Loess Hilly Area[J].Bulletin of Soil and Water Conservation, 2015, 35(1): 68-72.(in Chinese with English abstract)
[17]刘贤赵,衣华鹏,李世泰.渭北旱塬苹果种植分区土壤水分特征[J].应用生态学报,2004,15(11):2055-2060.
[18]王金锋,张林森,张永旺,等.地布覆盖对渭北旱塬苹果园土壤水热效应及产量品质的影响[J].灌溉排水学报,2015,34 (1):75-78.Wang Jinfeng, Zhang Linsen, Zhang Yongwang, et al.Effects of ground cloth mulching on soil water temperature yield and quality in apple orchard in Weibei Plateau[J].Journal of Irrigation and Drainage, 2015, 34(1): 75-78.(in Chinese with English abstract)
[19]黄金辉,廖允成,高茂盛,等.耕作和覆盖对黄土高原苹果园土壤水分和温度的影响[J].应用生态学报,2009, 20(11):2652-2658.Huang Jinhui, Liao Yuncheng, Gao Maosheng, et al.Effects of tillage and mulching on orchard soil moisture content and temperature in Loess Plateau[J].Chinese Journal of Applied Ecology, 2009, 20(11): 2652-2658.(in Chinese with English abstract)
Effects of rain-harvesting and moisture-conserving measures on apple tree growth and development and soil water moisture in arid areas of loess plateau
Zhao Gang, Fan Tinglu, Li Shangzhong , Zhang Jianjun, Dang Yi, Wang Lei
(Gansu Academy of Agricultural Sciences Institute of Dryland, Lanzhou 730070, China)
Abstract:The arid areas of the loess plateau represent the second largest apple advantage production area in China.However, the desiccation in deep soil layers of the apple gardens in these areas constrains the sustained development of apple industry.Therefore, it is of vital importance to study the desiccation in deep soil layers.This research aims to effectively alleviate the desiccation in deep soil layers of the apple gardens in arid areas of the loess plateau, and to ensure the sustainable development of apple industry.From 2009 to 2014, gardens with full bearing period(20 years)apple trees in Zhenyuan County, Gansu Province were selected as testing areas.The treatments included rain-harvesting patterns as black film mulching and black film mulching+ Rainfall collection tri-infiltration, which made the outside of the main trunk incline ramp, covered with black film, was in close contact with the ground compaction and ease of catchment.The tree disks been covering about Apr-20, and adopting the cultivating pattern of local farmers as controlled group(CK).In consecutive 6 years, such indexes as apple yield, new shoot growth and soil water content were localized and measured within soil layer depths of 0~500 cm, and morphological indexes of apple trees were periodically measured.Changes in apple yield, morphological indexes and relative water deficit indexes within soil layer depths of 0~500 cm at different growth stages were analyzed.The result showed that compared with those under CK and black film mulching, black film mulching+ Rainfall collection tri-infiltration made average apple yield within 6 years increase by 16.49% and 3.63%, respectively, and the rate of optimal fruit improve by 8.91% and 3.86%, respectively, so the technology prevented apple tree from yield fluctuation during years.The proportion of short shoots in black film mulching+ Rainfall collection tri-infiltration was significantly higher than under both black film mulching and CK, and enhanced by 22.75% and 11.84%, respectively.Compared with those under CK, soil water contents within soil layer depths of 300~500 cm increased by 0.50%~2.63% in black film mulching+Rainfall collection tri-infiltration.and its infiltration depth of precipitation amounts to 480cm, which was 120cm and 280 cm deeper than those under black film mulching and CK, respectively.Compared with those under black film mulching and CK, average water storage in black film mulching+Rainfall collection tri-infiltration, increased by 6.2 mm and 17.3 mm, respectively, Because the black mulching can suppress evaporation of moisture invalid, lay a 40 cm depth of infiltration, increase the accumulative and average depth of infiltration, change the physical properties of the soil, and improve root growth environment, fruit morphology index has been effectively improved.Compared with that under CK, relative water deficit indexes reached -0.038 and -0.054 0, respectively under black film mulching and black film mulching+ Rainfall collection tri-infiltration, which indicated that both treatments repressed water deficit within soil layer depths of 0~500 cm and exerted moisture-conserving effects on soil water content in apple gardens.Black film mulching+ Rainfall collection tri-infiltration made infiltration depth of precipitation remain balanced, and soil water content in the main areas of root system distribution remained unabated.Their relative water deficit indexes within soil layer depths of 60~500 cm ranged within -0.12~-0.05, and the maximum compensation depths range was within 200~300 cm.Water compensations occur at the flowering period in spring and the harvesting period, can effectively relieve drought in next spring.Therefore, extruded infiltration + black film mulching can enhance apple yield and optimal fruit rate, improve water conditions and alleviates desiccation in deep soil layers of apple gardens through ensuring water consumption for apple tree growth during drought periods in spring and winter.
Keywords:soils; moisture; growth; loess plateau; apple orchard; soil keeping measures
作者简介:赵刚,男,甘肃华亭人,硕士,助理研究员,主要从事农田土壤水分,旱作区果园栽培的研究。兰州甘肃省农业科学院旱地农业研究所,730070。Email:7635423@163.com
基金项目:国家科技支撑计划(2012BAD09B03,2012BAD20B04-4)
收稿日期:2015-08-25修改日期:2015-11-20
中图分类号:S157.4+2
文献标志码:A
文章编号:1002-6819(2016)-01-0155-06
doi:10.11975/j.issn.1002-6819.2016.01.021