APP下载

基于高频电磁阀的脉宽调制变量喷头喷雾特性

2016-04-09李龙龙何雄奎宋坚利仲崇山中国农业大学理学院北京0093中国农业大学信息与电气工程学院北京00083

农业工程学报 2016年1期
关键词:电磁阀喷雾雾化

李龙龙,何雄奎※,宋坚利,仲崇山(.中国农业大学理学院,北京0093;.中国农业大学信息与电气工程学院,北京00083)



基于高频电磁阀的脉宽调制变量喷头喷雾特性

李龙龙1,何雄奎1※,宋坚利1,仲崇山2
(1.中国农业大学理学院,北京100193;2.中国农业大学信息与电气工程学院,北京100083)

摘要:为探究基于高频电磁阀的变量喷雾特性,该研究采用高频、对信号快速响应的电磁阀设计了高于20 Hz的脉宽调制(pulse width moderation, PWM)变量喷雾系统;针对农业施药作业上常用ST标准扇形和IDK防飘喷头,测试了不同频率和占空比对流量、雾滴粒径、雾化过程、纵向沉积分布均匀性的影响。结果表明,在高频下,流量与占空比呈线性关系,随着频率的增大,流量线性区间减小,增大压力和频率,可以有效增大流量调节倍数,30 Hz时最大可达10倍;PWM喷雾时,瞬间雾滴粒径发生周期性变化,增大频率,雾滴体积中值中径(volume medium diameter,VMD)平均值受占空比的影响变小,占空比增大,VMD有减小的趋势,对于ST110-02号喷头各频率下VMD从占空比20%~100%下降了100 μm;沉积试验中,频率和占空比都会影响沉积均匀性,对于IDK120-04号喷头,占空比为40%时,30 Hz下的C.V(coefficient of variation)值较15 Hz减小了6.07%;15 Hz时,IDK120-02和04号喷头在占空比40%到100%变异系数分别下降了11.75%和18.31%;30 Hz时,两喷头在占空比40%到100%变异系数分别下降8.72%和12.24%,并且,ST喷头沉积均匀性优于IDK喷头。该研究为高频电磁阀在PWM变量施药系统中的应用及参数选择提供理论基础。

关键词:喷雾;农业机械;喷头;高频电磁阀;变量施药;雾化;沉积;流量

李龙龙,何雄奎,宋坚利,仲崇山.基于高频电磁阀的脉宽调制变量喷头喷雾特性[J].农业工程学报,2016,32(01):97-103.doi:10.11975/j.issn.1002-6819.2016.01.013 http://www.tcsae.org

Li longlong, He Xiongkui, Song Jianli, Zhong Chongshan.Spray characteristics on pulse-width modulation variable application based on high frequency electromagnetic valve[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(01): 97-103.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.01.013 http://www.tcsae.org

0 引言

随着人们对农药环境污染及食品安全的日益重视,基于按需喷药的变量施药技术正在成为植保领域的重点发展方向[1]。目前,变量施药控制主要有以下3种:压力调节式、浓度调节式和PWM(pulse width modulation)间歇喷雾流量调节式[2],其中,基于PWM的喷雾流量调节系统由于反应时间短,响应速度快、流量调节范围大,且使用常规喷头即可获得良好的喷雾特性而受到越来越多研究人员的关注[3-5]。1990年Giles等人首次利用电磁阀和一个标准喷头组合实现变量喷雾并测试了固定频率下雾滴大小和雾化状态[3]。随后的二十多年里,研究人员对PWM在变量施药技术上的应用做了大量的研究工作,Giles等人在1997年试验发现通过改变占空比和压力可以得到固定的雾滴粒径[6];John研究了在10 Hz频率下,不同占空比的喷雾质量评价,研究发现在较低的占空比下雾滴中径的变化最大,并且<100 μm的可飘失雾滴百分比最大[7];Lebeau等人设计了基于喷杆速度变化的PWM变量施药控制系统,并对此控制系统进行试验测试,最终选定试验所用占空比为16 Hz[8-9];Pierce Robert等人研究频率为16 Hz,不同占空比下的沉积特性,试验发现纵向沉积变异系数在占空比100%时为10%,25%占空比时为65%[10],说明改变占空比会影响喷雾沉积均匀性。在国内PWM变量施药研究时间相对较短,随着人们对现代精准农业的重视,PWM变量施药研究也日趋增多[11-24]。其中,翟长远等人设计了PWM变量控制系统,在2~10 Hz频率下试验得出了喷头流量模型,参数检验和失拟检验表明喷头流量模型合适[25];邓巍等人分析讨论了PWM间歇式脉动变量喷雾在10Hz频率以下的雾化特性[26]。这些研究均在低频条件下进行。

实际上,较高的PWM频率是喷雾覆盖连续性的保证[8],可以提高纵向沉积分布均匀性,尤其在高速作业的情况下。因此,本文在高频电磁阀的基础上设计了PWM变量控制系统,

可根据工况需求改变频率和占空比,通过开展流量、雾滴粒径、雾化过程、沉积分布均匀性与频率、占空比的关系诸方面的研究,了解高频电磁阀在PWM变量喷雾中的雾化特性,分析高频电磁阀在PWM变量施药中的适用性,以期为高频电磁阀在PWM变量施药系统中的应用提供理论基础。

1 材料与方法

1.1PWM变量喷雾系统

PWM变量喷雾系统由12 V电源、驱动、单片机、电磁阀、喷头体、计算机、串口通信模块组成,利用计算机实时改变频率和占空比,从而达到变量施药的目的,控制界面如图1a。计算机模拟信号发生器,通过USB转RS232转换线与单片机连接,计算机发出指令后通过单片机将信号传输给电磁阀。变量喷雾系统中使用的电磁阀为压缩天然气(compressed natural gas,CNG)高频电磁阀,电磁阀的性能如表1所示,喷雾试验系统如图1b。

图1 PWM变量控制喷雾系统Fig.1 PWM variable spray control system

表1 高频电磁阀参数Table 1 Parameters of high-frequency electromagnetic valve

1.2流量测试

理论上讲,喷雾压力和频率一定时,喷头流量与占空比成正相关。为了验证试验中所用高频电磁阀是否符合这一规律,在0.2~0.5 MPa喷雾压力、不同频率和占空比工况下测量不同喷头的流量。

试验用喷头为德国Lechler公司生产的标准扇形雾喷头ST110-02,ST110-03,ST120-04,频率范围为12~37 Hz,占空比范围为20%~100%。试验用自来水作为试验液体。每次测量中,秒表记录喷雾时间(30 s),万分之一天平测量30 s内液体重量,进而算得喷头流量(L/min),每次试验重复五次,最后得到测试条件下的流量平均值并根据公式(1)求得流量调节倍数P。

式中P为流量调节倍数;qx=100为占空比100%时的喷头流量,L/min;qx=20为占空比20%时的喷头流量,L/min。

1.3雾滴粒径测试

采用英国Malvern公司生产的Spraytec雾滴粒径分析仪定点测量雾化区的雾滴粒径,将喷头置于雾滴粒径分析仪的正上方50 cm处,该仪器可测试连续一定时间段(比如10 s)的粒径,也可每秒0~500 Hz断续测量某一间隔时间内的雾滴粒径。由于PWM变量喷雾为断续喷雾,因此采用连续(10 s)和间断(100 Hz)两种测量模式探究雾滴粒径与PWM参数(频率和占空比)的关系,本文采用体积中值中径(volume medium diameter, VMD)计量雾滴粒径。

将Spraytec分析仪的测量模式设为连续测量10 s,试验压力定为0.3 MPa,分别测量ST110-02,ST110-03,ST120-04 3种喷头的雾滴粒径,PWM喷雾系统频率分别为15、20、25、30、35 Hz,占空比从20%~100%每隔5%做一个设置。每个测试重复3次,得到VMD平均值。非连续间断测量试验中,将Spraytec分析仪设为间断测量模式,测量频率设为100 Hz,即每秒钟测量100次,其他试验参数与连续测量一致。

1.4喷头雾化区的可视化研究

为了进一步研究PWM变量喷雾的雾化特性,压力0.3 MPa下,使用高速摄影仪对喷头雾化区进行整体动态视频拍摄并保存。高速摄影仪拍摄帧数为3000FPS,快门速度1/4 000 s;PWM控制系统频率为15、25和30 Hz,占空比为25%、50%和75%。试验喷头为ST110-02,ST110-03 和ST120-04,利用文献[27]中介绍的方法进行拍摄,拍摄完成后将保存的视频转换成图像,不同工况下观察PWM变量喷雾雾化特性,试验用中国农业大学饮水系统中自来水作为试验液体。

1.5纵向沉积测试

1.5.1测试平台

为了测试和分析基于高频电磁阀的PWM变量施药的沉积特性,在中国农业大学药械与施药技术实验室设计了基于喷雾天车的PWM喷雾沉积测试平台,如图2所示,装有喷头的喷杆固定在天车上,喷头正下方放一雾滴收集台用以放置雾滴收集器,喷头与收集台的垂直距离为0.5 m,试验中用直径35 mm的塑料培养皿作为雾滴收集器,平行放置5列,相邻间隔12 cm,每一列紧密排列16个培养皿(0.56 m),第3列放置于喷头X轴正下方。

1.5.2沉积测试

3‰柠檬黄溶液作为示踪剂,测试结束后迅速盖上培养皿盖,将培养皿放置于黑箱内,防止光照引起柠檬黄分解。试验选取15 Hz和30 Hz 2个频率,占空比分别设置为40%、70%、和100%,天车运行速度为2 m/s,喷雾压力为0.3 MPa,试验所用喷头为常规扇形雾喷头ST110-02,ST120-04和防飘喷头IDK120-02,IDK120-04。每个试验重复3次。试验结束后,培养皿内加3.5 mL去离子水洗脱、震荡,最后用分光光度计测量吸光度,利用文献[28]中介绍的方法求得沉积量(mL/cm2),最终根据沉积量求得纵向平均变异系数(coefficient of variation,C.V)值。

图2 PWM喷雾沉积测试平台Fig.2  Platform for spray deposition test

2 结果与讨论

2.1喷头流量

通过3种喷头的流量测试显示,基于高频电磁阀的PWM变量喷雾的喷头流量与频率和占空比有关,在一定的压力和频率下,流量开始随着占空比成线性正相关,达到一定占空比之后流量不再增长,喷头流量与占空比的关系为q=a·x+b,q为喷头流量(L/min);a,b为常数,x为占空比。图3是ST120-04号喷头在各工况下的流量变化。

图3 0.3 MPa压力下ST120-04喷头流量与频率和占空比的关系Fig.3 Relationship between flow rate and frequency and duct cycle under pressure of 0.3 MPa

将试验得到的流量数据进行拟合,图4a、4b分别为ST120-04号喷头在30 Hz频率和0.3 MPa喷雾压力下流量拟合直线斜率、R2、线性区间(线性区间为流量与占空比成正相关关系的占空比范围,如占空比在20%~80%时喷头流量成线性正相关则线性区间为0.6的变化。可以看出压力和频率变化对流量变化拟合度影响较小;与频率变化相比,喷雾压力变化能够更有效的调节喷头流量,且线性区间变化相对较小。

图4 作业参数和拟合直线斜率、R2、线性区间的关系Fig.4 Relationship between working parameter and slope, R2and interval linear

根据公式(1)求得ST120-04号喷头的流量调节倍数,如图5。压力一定时,流量调节倍数随着频率的增大呈现增大的趋势,这种趋势在压力大时比较明显,30 Hz、0.5 MPa工况下流量倍数可达10,流量调节范围对实际作业有指导性意义,根据流量调节倍数和作业需要,选取合适的频率和喷雾压力来达到作业要求。

图5 作业参数与流量调节倍数关系Fig.5 Relationship between working conditions and flow regulation

2.2雾滴粒径

图6分别为3种喷头不同压力,连续10 s测量雾滴粒径随频率和占空比的变化关系。从图中可以看出,3种喷头雾化区的雾滴粒径总体上随占空比的增大而减小,占空比达到60%后,各频率下的粒径曲线几乎趋于一致。ST110-03和ST120-04号喷头的粒径在占空比较小时先增大,最后出现和ST110-02号喷头相同的变化趋势,这是由于03和04号喷头形成雾化区所需的流量较大,在较小占空比时,由于流量较小不能形成完整的雾化区而产生大雾滴。

图6 连续测量模式下3种喷头雾滴粒径与占空比、频率的关系Fig.6 Relationship between particle diameter and duty cycle and frequency of three species of nozzles in continuous measurement mode

0.3MPa压力下ST120-04号喷头在非连续测量模式下的测试结果如图7所示,测试时的PWM参数为频率15 Hz,占空比50%,测试时间为0.4 s,正好对应6个PWM周期。从图中可以看出,雾滴粒径随着PWM的变化呈现周期性变化,在平均值252 μm上下不断变化,这说明PWM喷雾过程中雾滴粒径会发生明显的改变。造成这种现象的原因是电磁阀快速开闭造成的湍流和压力不稳定。为了进一步探究频率和占空比对雾滴粒径的影响,在100 Hz测量模式下分别测量15 Hz和30 Hz下3个占空比的雾滴粒径,试验结果如表2所示,用方差表示每个工况下的雾滴粒径的变化浮动。进一步研究发现,增大频率和占空比可以减小雾滴粒径的变化,并且各个工况下的雾滴粒径平均值与连续测量模式下的试验结果一致。

图7 100 Hz测量模式下ST120-04号喷头雾滴粒径与测量时间关系Fig.7 Relationship between particle diameter and measure time of ST120-04 nozzle in measure mode of 100 Hz

表2 不同工况下雾滴粒径的变化Table 2 Changes of particle diameter under different working condition

2.3喷头雾化区的可视化分析

为了进一步探究试验2.2中雾滴粒径的变化,利用文献[24]的方法对喷头雾化区进行高速摄影分析,发现PWM变量喷雾过程中由于电磁阀瞬间开闭会导致雾化带断裂,表3给出的是不同频率下喷头雾化带断裂时最大占空比,对于ST110-02号喷头,各个工况下雾化带断裂时占空比均小于20%;ST120-04号喷头的断裂占空比最大,这是由于该型号喷头流量最大,因此雾化带断裂时的最大占空比也较大。此外,通过图片发现喷头雾化区断裂瞬间,喷嘴下方50 cm处会产生大雾滴,这也解释了连续测量模式下各个喷嘴雾滴粒径曲线变化的原因,由于较小占空比时流量较小,ST110-03和ST120-04号喷头雾化带断裂导致大雾滴产生,因此雾滴粒径有先增大后平缓减小的趋势。

表3 不同喷头雾化带断裂时的占空比Table 3 Duty cycle at fracture of nozzle atomization area

2.4纵向沉积特性

图8为0.3 MPa压力下,IDK-04号喷头在15 Hz,占空比40%、70%和100%下纵向沉积变化,从图中看出纵向沉积量呈现出周期性的变化规律。表4是15 Hz时3个占空比下流量和沉积量,流量平均值(40%∶70%∶100%)=1∶1.73∶2.29,沉积量平均值(40%∶70%∶100%)=1∶1.43∶1.76。

图8 IDK-04号喷头在行驶方向上沉积量变化示意图Fig.8 Schematic of deposition quantity on travelinging direction of IDK-04

表4 IDK-04号喷头在不同占空比下的流量与沉积量Table 4  Flow rate and deposition quantity in different duty cycle of IDK-04

图9分别为ST110-02和04、IDK120-02和04喷头在15 Hz和30 Hz,各占空比的C.V值,从图中可以看出,PWM变量喷雾的沉积受频率和占空比的影响,同一占空比,高频下的纵向C.V值比低频下的小,对于IDK120-04号喷头,占空比为40%下,15 Hz时的C.V值为28.31%,30 Hz时的C.V值为22.24%,减小了6.07%;相同频率下,随着占空比的增大,C.V值有减小的趋势,15 Hz时,IDK-02和04号喷头从占空比40%到100%分别下降了11.75%和18.31%;30 Hz时,IDK-02和04号喷头从占空比40%到100%分别下降了8.72%和12.24%。因此在PWM变量喷雾系统中,高频是沉积均匀性的保证,不仅要考虑流量的变化范围,也要考虑到占空比的选择范围,低占空比时会增大沉积不均匀性的几率。

相比于IDK喷头,ST喷头的纵向沉积均匀性相对较好,C.V值都在10%左右,随频率和占空比的影响较小。但也呈现出和IDK喷头一样的趋势,频率大的沉积均匀性较低频的好,随着占空比增大,沉积均匀性有变好的趋势,C.V值变化相对平缓。

图9 4种喷嘴在不同工况下的C.V值Fig.9 C.V-value in different working condition of four nozzles

3 结论

1)基于高频电磁阀的PWM变量喷雾,对于标准扇形雾喷头,在压力和频率一定时,流量和占空比呈线性关系,线性区间随频率增大逐渐减小,增大压力和频率可有效增大流量调节范围。

2)采用PWM变量喷雾时,瞬间雾滴粒径发生周期性的变化;VMD在平均值附近以正弦波上下浮动,增大频率和占空比,可以减小雾滴粒径的变化。

3)由于PWM变量喷雾的工作特性会导致喷头雾化区雾化带断裂,并且不同类型喷头在不同频率下雾化带断裂的最大占空比不同,ST-110-02号喷头在各频率下占空比都小于20%,ST120-04号在15 Hz时的最大,为60%。雾化带断裂瞬间会产生大雾滴,导致雾滴粒径瞬间增大。

4)PWM频率和占空比影响雾滴沉积,增大占空比和频率能够提高雾滴沉积均匀性。

[参考文献]

[1]何雄奎.改变我国植保机械和施药技术严重落后的现状[J].农业工程学报,2004,20(1):13-15.He Xiongkui.Improving severe draggling actuality of plant protection machinery and its application techniques[J].Transactions of the Chinese Society of Agricultural Engineering (Transaction of CSAE), 2004, 20(1): 13-15.(in Chinese with English abstract)

[2]邱白晶,李佐鹏,吴昊,等.变量喷雾响应性能的试验研究[J].农业工程学报,2007,23(11):148 -152.Qiu Baijing, Li Zuopeng, Wu Hao, et al.Experimental study on variable-rate spraying equipment response capability [J].Transactions of the Chinese Society of Agricultural Engineering (Transaction of CSAE), 2007, 23(11): 148-152.(in Chinese with English abstract)

[3] Giles D K, Comino J A.Droplet size and spray pattern characteristics of an electronic flow controller for spray nozzles [J].Journal of Agricultural Engineering Research, 1990, 47(4): 249 - 267.

[4]邓巍,丁为民.基于PWM技术的连续式变量喷雾装置设计与特性分析[J].农业机械学报,2008,39(6):77-80.Deng Wei, Ding Weimin.Variable-rate continuous spray equipment based on PWM technology and it’s spray characteristics [J].Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(6): 77-80.(in Chinese with English abstract)

[5]王丽霞,张书慧,马成林,等.基于ARM的变量喷药控制系统设计[J].农业工程学报,2010,26(4):113-117.Wang Lixia, Zhang Shuhui, Ma Chenglin, et al.Design of variable spraying system based on ARM[J].Transactions of the Chinese Society of Agricultural Engineering Engineering (Transactions of the CSAE), 2010, 26(4): 113-117.(in Chinese with English abstract)

[6] Giles D K.Independent control of liquid flow rate and spray droplet size from hydraulic atomizers[J].Atomization and Sprays, 1997, 7: 161-181.

[7] John P Lang.Evaluation of pulse width modulation sprays for spray quality[C].2013 ASAE paper No.131620682, 2013.

[8] Lebeau F.Modeling the dynamic distribution of spray deposits [J].Biosystems Engineering, 2004, 89(3): 255-265.

[9] Lebeau F, Bahir L EI, Destain M-F, et al.Improvement of spray deposit homogeneity using a PWM spray controller to compensate horizontal boom speed variation.Computers and Electronics in Agriculture, 2004(43): 149-161.

[10] Pierce Robert A, Ayers Paul D.Evaluation of deposition and application accuracy of a pulse width modulation variable rate field sprayer, SAE paper, 2001.

[11]史万苹,王熙,王新忠,等.基于PWM控制的变量喷药技术体系及流量控制试验研究[J].农机化研究,2007(10):125-127.Shi Wanping, Wang Xi, Wang Xinzhong, et al.Study on variable rate spraying technology based on pulse width modulation and volume control[J].Journal of Agricultural Mechanization Research, 2007(10): 125-127.(in Chinese with English abstract)

[12]陈勇,郑加强.精确施药可变量喷雾系统的研究[J].农业工程学报,2005,5(21):69-72.Chen Yong, Zheng Jiaqiang.Control system for precision pesticide application based on variable rate technology[J].Transactions of the Chinese Society of Agricultural Engineering(Transaction of CSAE), 2005, 5(21): 69-72.(in Chinese with English abstract)

[13]王锦江,陈志,杨学军.基于AT89C51单片机的变量施药控制系统研究[J].农机化研究,2007(11):147-149.Wang Jinjiang, Chen Zhi, Yang Xuejun.Study on controlling system based on AT89C51 single-chip microcomputer for variable spraying[J].Journal of Agricultural Mechanization Research, 2007(11): 147-149.(in Chinese with English abstract)

[14]邓巍,何雄奎,丁为民.用大喷头脉宽调制间歇喷雾提高沉积率的试验研究[J].农业工程学报,2009,25(1):104-108.Deng Wei, He Xiongkui, Ding Weimin.Experimental study on improving deposition rate using PWM-based intermittent spray from enlarged nozzle[J].Transactions of the Chinese Society of Agricultural Engineering(Transaction of CSAE), 2009, 25(1): 104-108.(in Chinese with English abstract)

[15] Han S, Hendrickson L L, Ni B, et al.Modification and testing of a commercial sprayer with PWM solenoids for precision spraying [J].Applied Engineering in Agriculture, 2001, 17(5): 591-594.

[16]随顺涛,朱瑞祥,王丽丽.基于脉宽调制的变量喷药技术控制系统[J].农机化研究,2009,31(4):143-145.Sui Shuntao, Zhu Ruixiang, Wanglili.Controlling system based on pulse width modulation for variable spraying[J].Journal of Agricultural Mechanization Research, 2009, 31(4): 143-145.(in Chinese with English abstract)

[17] Bennur P J, Taylor R K.Evaluating the response time of a rate controller used with a sensor-based, variable rate application system[J].Applied Engineering in Agriculture, 2010, 26(6): 1069-1075.

[18]邹伟,李丽,王秀,等.基于PWM调速的变流量喷药系统[J].农机化研究,2011,33(2):163-166.Zou Wei, Li Li, Wang Xiu, et al.Variable pesticide spraying system based on PWM speed control[J].Journal of Agricultural Mechanization Research, 2011, 33(2): 163-166.(in Chinese with English abstract)

[19] Gu J, Zhu H, Ding W, et al.Droplet size distributions of adjuvant-amended sprays from an air-assisted five-port PWM nozzle.Atomization and Sprays,2011, 21(3): 263-274.

[20]魏新华,于达志,白敬,等.脉宽调制间歇喷雾变量喷施系统的静态雾量分布特性[J].农业工程学报,2013,29(5):19-24.Wei Xinhua, Yu Dazhi, Bai Jing, et al.Static spray deposition distribution characteristics of PWM-based intermittently spraying system[J].Transactions of the Chinese Society of Agricultural Engineering(Transaction of CSAE), 2013, 29(5): 19-24.(in Chinese with English abstract)

[21]闫栋,张文爱,王秀,等.基于PWM的农药变量注入控制系统设计与试验[J].农机化研究,2011(6):115-118.Yan Dong, Zhang Wenai, Wang Xiu, et al.The design of pesticide variable injection control system based on PWM [J].Journal of Agricultural Mechanization Research, 2011(6): 115-118.(in Chinese with English abstract)

[22] Bora G C, Schrock M D, Oard D L, et al.Reliability tests of pulse width modulation(PWM)valves for flow rate control of anhydrous ammonia[J].Applied Engineering in Agriculture, 2005, 21(6): 955-960.

[23]刘伟,汪小旵,丁为民,等.背负式喷雾器变量喷雾控制系统设计与特性分析[J].农业工程学报,2012,28(9):16-21.Liu Wei, Wang Xiaochan, Ding Weimin, et al.Design and characteristics analysis of variable spraying control system for knapsack sprayer[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2012, 28(9): 16-21.(in Chinese with English abstract)

[24]吴春笃,杜彦生,张伟,等.脉宽调制型变量喷雾系统雾量沉积分布[J].农业机械学报,2007,38(12):70-73.Wu Chundu, Du Yansheng, Zhang Wei, et al.Study on the deposit distribution of the modulated variable rate spray system [J].Transactionsofthe Chinese Societyfor Agricultural Machinery, 2007, 38(12): 70-73.(in Chinese with English abstract)

[25]翟长远,王秀,等.PWM变量喷雾喷头流量模型[J].农业机械学报,2012,43(4):40-44.Zhai Changyuan, Wang Xiu.Nozzle flow model of PWM variable-rate spraying[J].Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 40-44.(in Chinese with English abstract)

[26]邓巍,丁为民,何雄奎.PWM间歇式变量喷雾的雾化特性[J].农业机械学报,2009,40(1):74-78.Deng Wei, Ding Weimin, He Xiongkui.Spray characteristics of PWM-based intermittent pulse variable spray[J].Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(1): 74-78.(in Chinese with English abstract)

[27]张文君,何雄奎,宋坚利,等.助剂S240对水分散性粒剂及乳油药液雾化的影响[J].农业工程学报,2014,30(11):61-67.Zhang Wenjun, He Xiongkui, Song Jianli, et al.Effect of adjuvant S240 on atomization of water dispersible granule and emulsion solution[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2014, 30(11): 61-67.(in Chinese with English abstract)

[28]马宁.防飘喷头和标准扇形雾喷头的喷雾特性研究[D].北京:中国农业大学,2012:35.Ma Ning.Study of spray characteristics of Anti-floating nozzle and standard fan-shaped nozzle[D].Beijing: China agricultural university, 2012: 35.

Spray characteristics on pulse-width modulation variable application based on high frequency electromagnetic valve

Li Longlong1, He Xiongkui1※, Song Jianli1, Zhong Chongshan2
(1.College of Science, China Agricultural University, Beijing 100193, China; 2.College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

Abstract:High frequency solenoid valve has the advantage of fast response, and it can effectively improve the deposition uniformity especially for high-speed operation.In order to study the variable spraying characteristics of high frequency solenoid valve, a pulse width modulation(PWM)variable rate spraying system based on high frequency solenoid valve was developed.The minimum pulse width of the solenoid valve used in the research was 1.3 ms.The PWM variable rate spraying system was made up of power supply, drive, single chip microcomputer, solenoid valve, serial communication module, computer, and so on.Frequency and duty cycle of solenoid valve could be regulated by the PWM control system in real time.This article applied the ST standard fan nozzle and IDK anti-drift nozzle which are commonly used in the agriculture to carry out experiment, which focused on how frequency and duty cycle of solenoid valve influenced flow rate, droplet diameter, atomization process and longitudinal deposition uniformity.In the flow rate test, 12~37 Hz and 20%~100% were chosen as the working frequency and duty cycle and the working pressure was 0.2~0.5 MPa.The water weight was measured by precision balance in 30 s to get flow rate(L/min), and each test was repeated 5 times.It was observed that the flow rate had a linear relation with the duty cycle in the fixed working pressure and the R2 of regression line was greater than 0.9 at 12~37 Hz.Linear interval was 0.8 at 12 Hz and 0.56 at 37 Hz, and it was concluded that the linear interval decreased with the increasing of frequency.For the nozzle of ST120-04 under the working condition of 0.4 MPa and 30 Hz, the flow rate increased by 6 times at duty cycle of 100% compared to 20%, while the flow rate increased by 10 times in the pressure of 0.5 MPa.Therefor it was essential to collect proper frequency and spraying pressure to meet working requirement.In the article, 2 measurement modes of Spraytec particle sizer were chosen in the test of droplet diameter.The continuous measurement mode could measure the droplet diameter continuously for 10 s.Droplets could be measured discontinuously at the measure frequency of 100 Hz which meant that droplets were measured for 100 times in one second by the Spraytec particle sizer.The frequency and duty cycle were 15~35 Hz and 20%~100% and the working pressure was 0.3 MPa.Nozzle was fixed at 50 cm above the Spraytec particle sizer and volume medium diameter(VMD)was used to describe the droplet diameter in the article.The results showed that in the continuous measurement mode, the droplet diameter decreased from 20% to 100% respectively for the nozzle of ST110-02, ST110-03 and ST120-04.Moreover, for ST110-03 and ST120-04, the droplet diameter increased from 20% to 40%, because these 2 nozzles needed more flow rate to form the atomization zone yet the flow rate was too small from 20% to 40%.In the discontinuous measurement mode, the droplet diameter changed periodically and the average VMD of 3 nozzles was consistent with the test result of continuous measurement mode.In order to further research the atomization characteristics of PWM variable spraying system based on the high frequency solenoid valve, high-speed camera was used to observe the atomization zone at different frequency and duty cycle.The frame and shutter of high-speed camera were set in 3 000 FPS and 1/4000 s respectively.It was observed that the atomization zone would break up because of nozzle's instantaneous open-close.The duty cycles at the fracture of atomization zone were 26%~43% and 35%~60% for the ST110-03 and ST120-04 nozzle from 15 to 35 Hz.Deposition test bench based on the traveling boom was developed in the Center of Chemical Application Technology, China Agricultural University.Petri dishes(35 mm)were used to collect droplets.The collectors were set in 5 parallel columns and the interval of adjacent 2 columns was 12 cm.Each column contained 16 Petri dishes and the 3rd column was placed under the traveling direction of nozzle.Tartrazine(3‰)was chosen as the tracer material and spray boom speed was 2 m/s.In the deposition test, 15 and 30 Hz, and 40%, 70% and 100% were chosen as the working frequency and duty cycle.The results showed that frequency and duty cycle would influence deposition uniformity.For the IDK120-04 nozzle at duty cycle of 40%, the CV(coefficient of variation)at 30 Hz decreased by 6.07% compared with 15 Hz.From 40% to 100%, CV decreased by 11.75% and 18.31% respectively for IDK120-02 and IDK120-04 at 15 Hz while decreased by 8.72% and 12.24% respectively at 30 Hz.Also, the deposition uniformity of ST standard nozzle was better than the IDK anti-drift nozzle.These results show that the high frequency solenoid valve can be used in the PWM variable rate spraying system and it has advantage in longitudinal deposition uniformity.

Keywords:spraying; agricultural machinery; nozzles; high frequency electromagnetic valve; variable spray application; atomization; deposition; flow rate

通信作者:※何雄奎(1966-),教授,博士生导师,主要从事植保机械与施药技术研究。北京中国农业大学理学院,100193。Email:xiongkui@cau.edu.cn

作者简介:李龙龙(1989-),博士生,主要从事植保机械与施药技术研究。北京中国农业大学理学院,100193。Email:lizefeng1219@126.com

基金项目:国家自然科学基金资助项目(31470099);公益性行业(农业)科研专项资助项目(201203025,201503130)

收稿日期:2015-09-14

修订日期:2015-11-18

中图分类号:S491

文献标志码:A

文章编号:1002-6819(2016)-01-0097-07

doi:10.11975/j.issn.1002-6819.2016.01.013

猜你喜欢

电磁阀喷雾雾化
能追光、充电、照明和喷雾的太阳伞
基于ANSYS Maxwell的比例电磁阀隔磁环仿真分析与优化
低速机电控喷油器电磁阀换热特性计算
保湿喷雾大测评!效果最惊艳的才20块!
还原喷雾
福特6F35变速器的电磁阀控制策略
慢性咽炎雾化剂含漱治疗慢性咽炎的疗效观察
哪些情况需要雾化治疗?
雾化时需要注意什么?
睡眠喷雾