APP下载

利用Pluronic三维胶系统研究植物寄生线虫的趋化性

2016-04-09王从丽李春杰胡岩峰

土壤与作物 2016年1期

王从丽,李春杰,胡岩峰

(中国科学院 东北地理与农业生态研究所 黑土区农业生态院重点实验室,黑龙江 哈尔滨 150081)



利用Pluronic三维胶系统研究植物寄生线虫的趋化性

王从丽,李春杰,胡岩峰

(中国科学院 东北地理与农业生态研究所 黑土区农业生态院重点实验室,黑龙江 哈尔滨 150081)

摘要:化学趋向性是植物寄生线虫寻找寄主的重要机制。文章在综述植物寄生线虫对寄主及其土壤根围中潜在的一些化学物质趋性研究进展的基础上,详细介绍了利用可模拟土壤三维空间的、透明的、热可逆的Pluronic胶系统在线虫趋化性研究中的应用及相关研究进展。通过该凝胶系统明确了根结线虫趋于偏酸性(pH4.5~5.4);CO2对根结线虫的吸引是由于CO2改变了介质的pH值而导致的;低浓度的HCN(15 μM~22 μM)对根结线虫具有集聚作用,并且这个聚团基因已被标记到根结线虫的基因组上;植物激素中乙烯的信号转导途径介导了线虫的趋化性;由线虫分泌参与调控植物防御和病原抗性的保守小分子化合物蛔甙可能也参与了线虫聚团的调控。鉴定来自植物或线虫中参与介导线虫的趋性物质是目前研究的热点。图1,参150。

关键词:植物寄生线虫;趋化性;Pluronic胶;吸引

0引言

线虫是一种假体腔、不分节的蠕虫性动物,归属于线虫动物门(Nematoda),是动物界中数量最丰富者之一,被记录的物种已超过28 000个,尚有大量种未被命名。绝大多数线虫体小呈圆柱形,又称圆虫(Roundworms)。它们在淡水、海水和陆地上随处可见,不论是个体数量或物种数量都超过其他动物,其中大多数是自由生活线虫(Free-living nematodes),主要取食细菌和真菌,并在南极或热喷泉等极端环境中均有存在[1-2]。土壤中自由生活线虫是地下生态系统的重要组成部分,在土壤食物网中占重要地位,直接或间接参与生态系统的物质循环和能量流动等生物过程,因此,它们也被作为土壤污染调控的指示物种[3]。另外一种取食细菌的有益线虫能够侵染靶标昆虫,然后在昆虫体内释放共生细菌,细菌能在昆虫体内繁殖,通常在48 h内杀死昆虫,因此在农业上常作为一种生防制剂防治隐蔽性害虫,常见的有斯氏线虫属(Steinernema)和异小杆线虫属(Heterorhabditis)[4-5]。除此之外,对人类影响最大的线虫是寄生于植物以及寄生于动物(包括人类)的线虫。针对植物寄生线虫的研究表明,每年由植物寄生线虫引起的农业损失达到1 500亿美元[6],其中约80%的经济损失由根结线虫(Meloidogynespp.)和孢囊线虫(Heteroderaspp.和Globoderaspp.)所致,且发展中国家由线虫病害引起的产量损失远大于发达国家[7-8]。

植物寄生线虫在土壤中能够识别由植物根部或者根际微生物所释放的化学物质而定位寄主,然后侵染寄主,对于移居性的寄生线虫(Migratory nematodes)取食植物细胞后会转移到另外一个细胞,而对于定居性的内寄生线虫(Sedentary nematodes),线虫侵入后会在寄主植物根内形成复杂的取食结构,如根结线虫形成的巨细胞和孢囊线虫形成的合胞体[8-10],利用这些永久的取食位点取食植物,使植物根系正常的生理功能发生改变,阻碍植物对水分和营养的吸收,使植物生长受限,产量降低甚至绝产[11-12]。在线虫与植物复杂的互作过程中,线虫卵的孵化及线虫对寄主的寻找和识别是线虫对寄主预寄生阶段的早期反应。大多数植物寄生线虫生活在土壤中,由于缺乏有效的检测手段使得多数研究主要集中在线虫侵染植物后期,有些综述已经很详细的把近些年对线虫侵染后与植物互作的研究做了总结[9-10,13-16]。

目前,植物寄生线虫的防治仍以化学防治为主,虽然效果很好,但化学药品残留期长且毒性极高,禁用或限制使用溴甲烷薰蒸剂及其它高剧毒的杀线剂,使得对植物寄生线虫防治工作提出了新的挑战。因为线虫对寄主的寻找和识别是线虫成功寄生植物的第一步,所以很多学者认为如果能干扰或切断线虫寻找和识别寄主的信号,那么将对线虫的成功防治起着重要作用。文章详细介绍了利用可模拟土壤三维空间的、透明的、热可逆的Pluronic胶系统在线虫趋化性研究中的应用及相关研究进展,并对线虫趋化性研究现状进行总结和展望,旨在为进一步完善线虫趋化性基础理论研究及探索新的线虫防治策略提供理论参考和应用基础。

1早期的线虫趋化性研究进展

长期以来趋化性(Chemotaxis)被认为是线虫定位寄主植物的主要原因。线虫趋化性是指线虫随着植物或根际微生物所释放的化学信号物质(Semiochemicals)的浓度梯度而移动。线虫是利用其头部感应器官—化感器(Amphids)感应由根本身或根围微生物产生的水溶性或气体的引诱剂被吸引和定位到植物的根部[17-22]。

1925年,Steiner提出了植物寄生线虫依靠化学感应来定位它们的寄主,随后更多的研究证明了线虫的趋化性使植物寄生线虫聚集于植物的根部[23-26]。有研究发现,一系列的植物寄生线虫都能被植物根或释放的物质吸引或排斥,如甜菜孢囊线虫(Heteroderaschachtii)、北方根结线虫(Meloidogynehapla)[27]、爪哇根结线虫(M.javanica)[28]、水稻干尖线虫(Aphelenchoidesbesseyi)[29]、水稻潜根线虫(Hirschmanniellaoryzae)[30]及其它线虫[31]。从银叶茄(Solanumelaeagnifolium)的叶子提取物中发现其对茎线虫(Orrinaphyllobia)有吸引作用[32],根腐线虫(Pratylenchusspp.)被吸引到根部的引诱剂最可能是根渗出物[33-34]。

此后,吸引线虫的一些引诱剂被报道,如研究发现月桂烯(β-myrcene)可能是吸引松材线虫(Bursaphelenchussylophillus)的引诱剂[35],简单的无机盐如钠离子、镁离子、氯离子和醋酸离子及环形腺苷一磷酸(cAMP)均能够吸引肾线虫(Rotylenchulusreniformis)[28],柑橘线虫(Tylenchulus semipenetrans)能被萜烯类化学物质(geijerene,limonene和pregeijerene)[36]及离子[37]吸引。马铃薯金线虫(Globoderarostochiensis)和马铃薯白线虫(G.pallida)被氨基丁酸和谷氨基酸所吸引[38]。一个来自洋葱根分泌物其分子量大于700 kDa的水溶性引诱剂被鉴定出对茎线虫(Ditylenchusdipsaci)有吸引[39]。有研究表明最普遍的趋性物质是二氧化碳[40-45]和氧气[46],大豆孢囊线虫的雄虫引诱剂[46]及马铃薯金线虫对同种线虫的性激素的吸引[47]也被检测到。有学者针对线虫的这些识别机制进行了分析[48-49]。除了植物根以外,一些食线虫的真菌能够吸引线虫[49-52]。

根渗出物既包括吸引线虫的引诱剂,也可能包括排斥线虫的驱虫剂,其作用取决于两者谁占主导力。Zhao等[53]发现南方根结线虫被植物根的吸引或排斥存在着寄主特异性,当去掉根边缘细胞时,没有根结线虫被吸引到根部,然而线虫能被吸引到包含边缘细胞的根尖,同时发现分离的边缘细胞能使二龄幼虫失去移动性,身体变得僵直,但这种现象也是取决于线虫寄主的特异性。对线虫卵孵化的抑制也有一些报道[2,54-60]。Zhang等[61]从甘薯乳液中分离出的十八烷基香豆酸[Octadecyl-(Z)-p-coumarate] 对甘薯茎线虫(Ditylenchusdestructor)有很强的排斥作用。

生长旺盛的根围区存在着氨基酸、离子、pH、温度和CO2等引诱剂,它们被分成三种类型,即长距离、短距离和局部的引诱剂,长距离引诱剂(如挥发性物质CO2)是指把线虫吸引到根围,短距离的引诱剂(如根渗出物,多数是水溶性物质)是指把线虫吸引到根表,而局部引诱剂是指能使内寄生线虫定位到喜欢的侵染位点,如根结线虫和孢囊线虫能够被吸引到植物根尖部位的伸长区域,但这个区域潜在的物理和化学引诱剂仍不清楚,另外根的这个伸长区域温度升高可能影响线虫的识别[2,20,62-64]。

2Pluronic三维胶系统研究方法

很久以前线虫的趋化性已被各种研究方法证实,如琼脂胶法[28,39,65-72]、沙柱法[48],还有利用线虫挥发性物质影响线虫行为的气体流动室[73-74]。但是这些方法有其不足,如琼脂胶比较硬,使线虫的运动空间受阻;沙柱法的不可视性,无法实时观察到线虫的移动状态。而土壤线虫是以三维空间识别化学信号的。Wang等[75]建立了一套可模拟土壤三维空间的Pluronic胶系统,该系统操作简便、快捷、高效,可实时观测到线虫的运动轨迹,现已成功观察到了根结线虫被吸引到植物根部(图1A)的全过程,并证明了这个系统不仅能用于研究线虫与寄主的关系,也能用于研究线虫的其它行为学。Pluronic胶是环氧丙烷和环氧乙烷的共聚体,被广泛地应用于医药和化妆品领域[76-80]。Pluronic胶曾被用于研究线虫、细菌、真菌和植物组织的介质[81],23%的胶在室温时是半固态的,在低于15℃时呈液态且高度透明,这些特点使得它优于琼脂、沙子和其它介质[75]。首先,高度透明的胶让我们容易观察线虫在植物根存在时的移动;其次,Pluronic胶模拟土壤三维空间[73],能够让线虫以三维空间识别信号梯度并在胶中移动;第三,这种胶能形成稳定的信号梯度使得这个检测系统具有很高的可重复性,且能实时定量的观测线虫对根的反应;第四,线虫在低于15℃能被分散到液态胶中,这个温度对线虫无害,相比高温熔化琼脂胶更有利于线虫的分散,并且还可以把固化的胶置于低温下融化,回收被吸引在根围的线虫来研究线虫基因的表达及功能分析;第五,Pluronic胶与琼脂胶相比不易受微生物污染,短时间试验可以不用灭菌,但是如果试验要持续3 d或者更长时间则需要灭菌。这个系统已被证明可以应用于研究除植物寄生线虫外的其它线虫的行为及其与寄主的关系,如昆虫病原线虫与寄主宿主植物的关系[82]及自由生活线虫(待发表)的研究。

Wang等[75]通过实时观察、检测番茄根部对不同种根结线虫(Meloidogynespp.)的吸引和侵染,发现南方根结线虫(M.incognita)和爪哇根结线虫比北方根结线虫更快的移动到植物根部并对其造成更严重的危害;检测发现南方和爪哇根结线虫被吸引现象的最佳时间是接种后2 h~3 h,而北方根结线虫大约是5 h~6 h,见图1A;不仅番茄根对根结线虫有吸引,模式生物拟南芥(Arabidopsis)和苜蓿(M.truncatula)的根也对根结线虫有吸引,并且苜蓿的根龄对线虫的吸引有很大的影响,同3 d的根龄相比,5 d的根龄显著降低了对线虫的吸引;抗病和感病番茄品种对根结线虫的吸引没有差异。Dutta等[83]利用Pluronic胶发现南方根结线虫对番茄根的趋性与对水稻和芥末根相比更强,而水稻上的根结线虫(M.graminicola)对水稻根的趋性强于番茄和芥末根的趋性,说明特异性寄主引诱剂参与了线虫的趋性。此外,利用这个系统研究了小麦孢囊线虫对不同小麦品种抗感根系的吸引差异[84-85]。Danquah等[86]在大蒜的提取物中发现一种为水杨醛(Salicylaldehyde)的化学物质,它能够显著降低对马铃薯孢囊白线虫(G.palida)的吸引。

3趋化性信号物质

3.1酸

Wang等[87]利用Pluronic胶建立了一套简单的线虫对化学物质的趋化性研究系统。所检测的化学物质用Pluronic胶配制成所需浓度,然后注入两端都被剪切的称为化学分配器(Chemical dispenser)的移液器枪头(200 ul或10 ul)内,再将枪头放入含有线虫的培养皿中心使其凝固,实时检测线虫对化学物质的吸引或排斥。首先利用醋酸和pH指示剂证明了在第4 h和第24 h化学分配器两端形成了稳定的酸性梯度,见图1 B-C。利用这个系统检测到根结线虫被吸引到含醋酸的化学分配器两端,适宜的趋酸pH范围在4.5~5.4之间[87],见图1 D-F。结果也表明根结线虫的不同种和小种对pH都有趋性,但趋性的程度有所差异[87]。根结线虫、孢囊线虫和其他植物病原/共生体能够被吸引到根的伸长区域,而生长的根细胞释放出H+能使根的伸长区成为最酸性的区域[88-90]。Mulkey和Evans[88]根据pH指示染色剂,发现在琼脂胶里玉米幼苗根的伸长区域pH<5。利用Pluronic胶和pH指示染色剂,模式植物苜宿和番茄的幼苗根部产生一个酸性梯度,使pH值酸化到5或更低[87]。根部更酸的区域和线虫最喜欢被吸引到根尖部说明了pH梯度是线虫趋化的信号,这些信号被利用来介导线虫移动到生长根的伸长区域。不同种线虫聚集的最适宜的pH范围是不同的,北方根结线虫集聚到所喜欢的酸性区域比南方和爪哇根结线虫快很多,而这个结果却与南方根结线虫、爪哇根结线虫比北方根结线虫移动到番茄根速率快的结果不一致,说明pH不是独一的趋化信号,它的相对重要性可能取决于线虫的株系和寄主[87]。北方根结线虫对不同Bronsted酸的反应也不同,强酸(盐酸、硫酸、次氯酸和甲磺酸)和一元羧酸(醋酸、蚁酸和丙酸)能够吸引线虫到化学分配器的大头端形成晕圈,并在小头端的开口处聚集,见图1D-E。然而在柠檬酸、乳酸和琥珀酸处理中线虫却移动到化学分配器内。不同的柠檬酸盐在pH4.5或在5.5的柠檬酸缓冲液中,线虫表现出和柠檬酸同样的趋化性,进入到化学分配器内,而线虫对醋酸盐没有反应。这些结果说明柠檬酸、乳酸和琥珀酸的离子可能是特殊的引诱剂。同时发现同醋酸pKa(4.8)很相似的吡啶离子(吡啶盐酸盐和吡啶甲磺酸盐)和柠檬酸一样也引起线虫聚集到化学分配器内,说明吡啶(Pyridine)也可能是一个引诱剂[87]。这个结果和早期报道的吡啶是模式生物秀丽隐杆线虫(Caenorhabditiselegans)的引诱剂[91]一样。此结果也表明了线虫在自然环境中对这些错综复杂的信号产生协同或拮抗的反应,因此有必要对这些潜在的引诱剂进行鉴定并研究其互作关系。

3.2二氧化碳

长期以来二氧化碳一直被认为是自由生活、昆虫寄生和植物寄生线虫的引诱剂[42,74,92-93],然而在这些实验中没有用到缓冲液,而CO2在水溶液里能够改变其pH,所以线虫是被CO2还是pH梯度或是两者都吸引呢?Wang等[87]设计了一个实验将CO2通入到含pH值为7和4.9的缓冲液的Plruonic 胶中,在pH值为7的缓冲液胶中,通CO2后能形成CO2和pH两个梯度;因为水饱和的CO2的pH值只有4.4,所以当向pH 4.9的胶中通入CO2时,pH基本不会改变,因此在pH为4.9的缓冲液中只能形成CO2浓度。结果表明在缓冲液为pH4.9的胶中线虫均匀分散而没有聚集到通CO2区域的外围处,然而在pH为7的缓冲液中,聚集发生在通CO2的外围处,而此处的pH值在线虫吸引范围内,说明线虫的吸引是CO2改变了胶中的pH梯度形成的,并非CO2梯度本身。

Wang等[87]在实验中也发现当通入CO2时,通CO2区域的线虫数量在pH为4.9和pH为7的缓冲液胶中没有变化,然而当停止通入CO2后,线虫进入CO2通入区域。发生这种现象可能有几个原因:(1)CO2是麻醉剂,超过10%的浓度能够减缓线虫的移动[42],当停止输入CO2后,CO2浓度降低,线虫能够进入这个区域;(2)中央的pH低于外围的pH值而有助于吸引,pH计检测的结果也证明了这一点;(3)通CO2区域O2的浓度比较低,线虫被吸引到低氧区域,这与秀丽隐杆线虫趋于低氧区报道相一致[94]。

图1 北方根结线虫(Meloidogyne hapla VW9)在Pluronic胶系统里对植物和化学物质的趋性反应。A:线虫暴露于根6 h后对番茄根的趋性反应。培养皿(100×15 mm)内混有5 000条二龄幼虫的15毫升Pluronic胶[75]。B-C:包含0.85 M的醋酸的化学分配器放进含有pH指示剂(pH5.2~6.8,黄色到紫色)的胶里4 h(B)和24 h(C)后在Pluronic胶里形成的pH梯度[87]。D-F: 线虫对醋酸的反应。化学分配器里包含0.85 M的醋酸。解剖显微镜下显示的化学分配器(化学分配器)的小头端醋酸在5 h(D)和24 h(E)时对线虫的吸引,F显示24 h后化学分配器大头端醋酸在低倍光学下对线虫吸引情况[87]。G-I:线虫对氰化钾的浓度梯度反应。化学分配器里含有5 mM氰化钾,在实验5 h后小头端线虫的反应显示在G,在24 h显示在H,大头端显示的是试验后24 h低倍光学下线虫的反应[100]。醋酸和氰化钾实验都是用每毫升胶含600条二龄幼虫的培养皿中进行,每皿20 ml胶。图片里A、D、E、G和H的标尺比例是1 mm。Fig.1 Root-knot Nematode (Meloidogyne hapla VW9) attraction to plants and chemicals in Pluronic gel system. A: Attraction to root tips of tomato VFNT,6 h after initiation of assay. A standard Petri dish (100×15 mm) containing 5 000 J2 in 15 ml Pluronic gel was used for the assay[75]; B-C: pH gradient formation in PF-127 gel at 4 h(B) and 24 h(C) after the dispenser was inserted into the gel. The pH indicator bromocresol purple (pH 5.2-6.8, yellow to purple) was included in the gel. The dispensers initially contained 0.85 M acetic acid[87]; D-F: Migration of nematode in acetic acid gradients in PF-127 gel. Dispensers contain 0.85 M acetic acid. Dissecting microscope images of the dispenser small end were recorded at 5 h(D) and 24 h(E) after inserting dispensers in the gel. Lower magnification edge-lighted photographs of the dispenser large end at 24 h is shown in F[87]. G-I: Response of nematodes to potassium cyanide gradients in the gel. Region of the gel around the small opening of chemical dispenser with 5 mM KCN is shown at 5 h (G) and 24 h (H) after initiation of the assay. Panel I shows a detail of large end of dispenser with 5 mM KCN at 24 h. Panels I is taken at lower magnification with backlighting for the large end of the dispenser with 5 mM KCN at 24 h after assay initiation[100].Petri dish containing 600 J2 per ml PF-127 gel was used for the acetic acid and cyanide assays. Scale bar in A, D, E, G and H is 1 mm.

3.3聚团行为(Clumping behaviors)和氰化物(CN-)

聚团(Clumping)或者集聚(Aggregation)行为在自由生活、植物寄生和动物寄生线虫中都普遍存在[95-99]。利用Pluronic胶系统发现,大部分根结线虫(M.hapla,M.javanica,M.incognita)在有无植物根存在时都能够形成聚团体(clumps,线虫聚成紧紧的一团),无根比有根存在时线虫形成聚团体需要的时间更长,M.hapla比M.javanica和M.incognita需要更长时间[75,100],这可能和前面提到的M.hapla比M.javanica和M.incognita移动缓慢一致。例外的情况是从美国北卡分离到的M.hapla株系NCS线虫能够集聚到一起,但不会聚团;而来源于法国的一个M.hapla株系LM却不能积聚到一起,更不能形成聚团。从美国葡萄上分离到的M.incognita株系Harmony也不能形成聚团体。这些结果说明线虫的聚团行为依赖于线虫种或小种的特异性。

线虫聚团体形成的速度和线虫的群体密度成正相关,并且在胶表面放置盖玻片能够加速聚团体的形成,这说明高的群体密度或加盖盖玻片可能会导致低氧状态并促进线虫间释放挥发性信息素(Pheromones)而造成聚团行为[75]。高密度的线虫也能在根尖周围聚集成团,说明诱发聚团行为信号来自根或二龄幼虫J2。植物寄生线虫这种聚团行为同昆虫病原线虫异小杆属(Heterorhabiditisspp.)在高湿度情况下脱水干燥形成团聚体[98]的行为相似。另外如食真菌性线虫(Aphelenchusavenae)和茎线虫(Ditylenchusdipsaci)在无水状态下能够集聚成很大的“虫毛球(Eelworm wool)”聚团体,这种聚团体在干燥状况下能存活多年[96,101]。但是根结线虫在完全干燥状态下不能存活,当把新鲜植物根放在聚团体附近,聚团体立即解散而移动到根部,这说明其聚团行为可能是应对不利环境的一种生存策略。此外,雄虫对雌虫的强烈吸引也说明了线虫之间存在信息素。

Wang等[100]利用化学分配器系统检测到氰离子(CN-),它能够使线虫几个小时后就能集聚到一起,24 h后能聚集成团,见图1G-I,其最适宜集聚的CN-浓度是15 μM~22 μM。氰化物对很多生物都是有毒的,常被认为是一些根围细菌释放的有毒物质如绿脓杆菌(Pseudomonasaeriginosa)释放的氰化物能杀死秀丽隐杆线虫[102],所以被用来防治土壤中的病虫害(包括线虫)[103-104]。此外,受伤的植物组织也能释放出HCN,此过程被认为是一个抵抗害虫的防御反应[105],已有人把产生氰化物的植物开发用于防治线虫[106]。一定浓度的氰离子能吸引线虫,可能是HCN的存在导致了低氧状态而干预了对氧气的识别;亦或是CN-是来自根围天然的引诱剂,如根际微生物或植物释放的CN-等。

目前对线虫的集聚行为研究中有关调控秀丽隐杆线虫取食行为的集聚基因NPR-1(Neuropeptide receptor 1,NPR-1)的研究最多、最清楚,NPR-1基因是一种与哺乳动物神经肽Y(Neuropeptide Y,NPY)受体相似的G蛋白偶联受体。其变异的等基因位点能调控秀丽隐杆线虫的聚集(Social feeding)和边集取食行为(Boarding feeding)[107]。NPR-1通过感应神经元表达的鸟苷酸环化酶(Guanylatecyclases)在不同的O2浓度下调控线虫的集聚及平衡线虫的吸引和排斥[94,108-111]。根结线虫被一定浓度HCN所吸引有可能是利用这个酶来调控的,对北方根结线虫的两个不同株系鉴定发现,线虫都能够集聚,但只能在一个亲本上形成聚团体,说明了线虫通过像NPR-1基因变异的等基因位点来调控的可能性比较大。利用北方根结线虫F2进一步分离群体鉴定了一个单基因控制线虫的聚团性,并把对HCN的聚团基因定位到线虫的遗传连锁群L8上,这是第一个被标记的专性植物寄生线虫的表现型基因[100],根结线虫全基因组序列[6,112-113]及其高密度的SNP遗传图谱[114]的发表使得克隆这个基因成为可能。

此外,FMRF酰胺相关多肽(FMRFamide-like neuro peptides,FLPs)flp-18和flp-21作为NPR-1的内源性配体参与调节线虫对O2的感知过程[115]。大豆孢囊线虫和秀丽隐杆线虫的鸟苷酸环化酶基因组成员在序列和基因组表达上都具有很高的同源性,植物寄生线虫与秀丽隐杆线虫flp基因也有很高的同源性[6,116-119]。Kimber等[118]对马铃薯金线虫flp-18基因进行dsRNA浸泡24h后发现线虫几乎丧失了移动的能力。RNA干扰南方根结线虫的flp-14和flp-18两个基因后,线虫的移动、吸引、侵染和繁殖都被降低,这两个基因单独或混合情况下在不同的时间里都能影响线虫的趋性反应[120-121]。参与神经调控的这些基因成为新型杀虫剂最具潜力的药物靶标之一。但是秀丽隐杆线虫的集聚是活跃的四龄幼虫或成虫在取食时松散的集聚在一起,而植物寄生线虫是非取食的早期二龄幼虫集聚成团,由更多的线虫紧紧的集聚在一起,这说明了两者集聚的原因必有其相同和不同之处。

3.4植物激素

植物激素在植物生长发育及胁迫反应中发挥着重要作用。许多研究表明植物激素也参与调控植物线虫取食位点的形成[122-128],Siddique等[129]研究发现,植物寄生线虫也能通过向寄主释放细胞分裂素来调控植物细胞分裂及促进取食位点的形成。但对激素是否介导线虫早期识别寄主植物的研究极少,其中原因之一就是缺乏有效的前期检测手段。模式植物拟南芥具有基因组小、繁殖快及遗传操作简便等优点,同时也是一种植物寄生线虫的良好寄主,作为替代型操作对象已被广泛用于线虫与寄主的互作机制研究。乙烯是简单的气体化合物,能够调控植物各个生长发育过程,如种子萌发、开花、衰老和果实成熟,也包括对生物和非生物胁迫等的生理反应过程[130-131]。乙烯含量升高不仅能诱导防御反应而合成相关的蛋白[132-133],还是产生拮抗微生物肽和次级代谢物所包括的植保素(Phytoalexins)所必需的[134-135]。早期Wubben等[128]利用琼脂胶作为介质,发现拟南芥乙烯过量合成突变体(eto),根分泌物比野生型根系渗出物吸引更多的甜菜孢囊线虫(H.schachtii),说明乙烯途径可能在孢囊线虫侵染寄主早期就已经发挥作用,上述结论得到Kannerhofer等[126]进一步的验证(琼脂胶块法),他们发现乙烯处理的拟南芥根显著增加了对甜菜孢囊线虫的吸引,而AVG处理的拟南芥根对线虫的吸引与对照相比没有区别。然而,孢囊线虫具有相对较狭窄的寄主范围,而根结线虫具有更广泛的寄主范围,植物对两者的吸引可能也存在差异。Fudali等[136]利用Pluronic胶系统研究了乙烯途径在根结线虫对植物早期识别过程中的作用,发现添加乙烯合成抑制剂AVG(2-aminoethoxyvinylglycine)增加了拟南芥根对线虫的吸引,而乙烯过量表达突变体(eto1,eto2,eto3)却减少了对线虫的吸引,说明乙烯本身或乙烯途径介导拟南芥根对线虫的吸引。ETR1处于乙烯受体基因的下游位置,对下游乙烯信号传导起负调控作用,其组成型表达突变体ctr1却能降低对线虫的吸引。与野生型拟南芥相比,乙烯受体功能获得性突变体(etr1-3,ein4-1和ers2-1)和乙烯信号途径正调控因子的不敏感型突变体(ein2-7)却增加了对线虫的吸引,这些结果进一步证实乙烯信号途径参与调控植物对线虫的吸引。线虫对植物根系渗出物表现出不同响应,包括被吸引、排斥或休眠,这可能与根系释放部位有关[53,137],但目前仍不清楚具体是哪些化学物质起作用。乙烯途径调控线虫对植物识别可能与线虫、根分泌物的种类有关。因此,拟南芥中乙烯信号减弱可能导致下游次生代谢发生改变,增加了吸引根结线虫的挥发性诱导物的释放,但是却可能减少了孢囊线虫引诱物的分泌。这些结果也说明乙烯对广寄主的根结线虫与窄寄主的甜菜孢囊线虫调控不一样。然而当我们利用Pluronic胶系统检测乙烯对大豆孢囊线虫的吸引影响时却发现,大豆孢囊线虫对乙烯信号的反应和根结线虫一样(待发表)。大豆孢囊线虫和甜菜孢囊线虫属于同一个属,但大豆孢囊线虫的寄主范围比甜菜孢囊线虫更狭窄,从这个角度来讲,甜菜孢囊线虫、根结线虫与大豆孢囊线虫的吸引差异是否由于所用方法的不同而导致的结果差异值得探讨。研究者是利用包含根系分泌物的琼脂块检测甜菜孢囊线虫的吸引,是否能代表活体根还需要进一步研究,因此,很有必要利用Pluronic胶系统来证实乙烯对甜菜孢囊线虫的吸引。

Feng等[138]利用Pluronic胶系统发现高浓度生长素增加了对水稻干尖线虫(A.besseyi)的吸引,可能是因为生长素这类化合物的pH呈酸性。内源生长素含量高的水稻品种比内源生长素低的品种更易被水稻干尖线虫侵染,外源喷施萘乙酸后稻穗种子内的线虫数量明显增加,但是生长素运输抑制剂处理的稻穗种子内有很少的线虫,说明生长素对根腐线虫的吸引、侵入及繁殖都起着重要的作用。Kannerhofer等[126]利用琼脂胶发现茉莉酸激活植物对线虫的早期防御反应,而水杨酸在后期线虫合胞体的形成和雌虫的发育过程中起到负调控作用。我们利用Pluronic胶系统检测了拟南芥生长素、茉莉酸和水杨酸等激素突变体对根结线虫和大豆孢囊线虫的吸引,发现突变体和野生型间没有差异,说明这些激素可能在线虫侵染后期起作用(待发表)。结果表明线虫的不同属、种甚至小种对植物信号物质有不同的反应,说明了反应特异性。植物激素茉莉酸、水杨酸、乙烯和生长素等信号途径存在复杂的交互作用[139],目前的研究仅局限于单个激素的研究,激素之间的交互作用对线虫早期信号的识别将是下一步研究的目标。

3.5线虫蛔甙(Ascarosides)信息素(Pheronmones)

蛔甙(Ascarosides)是起初从秀丽隐杆线虫中分离的小分子信息素,能够调控雌雄吸引、排斥、集聚、嗅觉可塑性及进入抵抗压力的休眠(Dauer)等行为[140-144],近期引起了植物线虫及病理学家的广泛关注。蛔甙是线虫特有的一种携带亲脂侧链脂肪酸的双脱氧蛔糖基(Dideoxysugar ascarolyse)的糖苷,广泛存在于自由生的秀丽隐杆线虫[145]、Pristionchuspacificus[46]、寄生昆虫的昆虫病原线虫异小杆线虫(Heterorhabditisbacteriophora)[147]、寄生植物的根结线虫(M.incognita、M.javanica和M.hapla)、大豆孢囊线虫(H.glycine)和最短尾短体线虫(Pratylenchusbrachyurus)中[148],不同种特异性蛔甙混合物能够调控线虫进入抵抗压力的分散(Dispersal)或侵染幼虫阶段。蛔甙的生物活性与其构象有关,而且极低的蛔甙浓度能够引起生物学活性[142]。目前已经从20多种不同线虫里鉴定出200多种不同的蛔甙结构,这说明蛔甙代表着线虫高度保守的分子特征。其中,蛔甙ascr#18广泛存在于自由生活、昆虫寄生和植物寄生性线虫体内,根结线虫中它的含量最丰富;蛔甙ascr#18的丰度与线虫的发育阶段密切相关,如成虫和幼虫体内蛔甙ascr#18的含量明显不同[142]。这些现象表明线虫的植物寄主、动物寄主及和线虫相关的微生物都利用不同进化策略来识别这类高度保守的小分子化合物[148],如捕食性真菌通过识别蛔甙进而形成特殊性捕食装置[149]。蛔甙ascr#18诱导植物的根部和叶部产生保守防御反应(如水杨酸和茉莉酸介导的信号途径),并且低浓度ascr#18处理的植物能够提高对某些病毒、细菌、真菌、根结线虫或孢囊线虫的抗性,然而高浓度ascr#18不能诱导植物产生抗性;和植物地上部分器官相比,根部对低浓度ascr#18的响应更为灵敏;分离的其它类型蛔甙也能激发植物产生诱导抗性[148]。ascr#18激发的这种抗性反应机制与其他病原物类似,如拟南芥是依靠细菌鞭毛蛋白、脂多糖和肽苷等病原相关分子元件(Pathogen-associated molecular pattern,PAMP)低浓度时来识别外源病原菌[148]。蛔甙信息素也能影响植物线虫早期对寄主的识别过程,Williamson等[150]报道了蛔甙asc#18浸泡过的北方根结线虫更容易被番茄根所吸引。经线虫分泌物浸泡的线虫更容易加速集聚成团,说明了蛔甙可能参与了线虫的集聚过程。然而,具体是哪些线虫组分在该过程中起作用,需要对线虫分泌物的成分作进一步的分离鉴定。

4结论和展望

文章综述了植物寄生线虫对寄主及其土壤中潜在化学物质趋性的研究进展,详细介绍了模拟土壤三维空间透明的Pluronic胶是目前研究线虫对植物趋性的良好介质。通过该凝胶系统,明确了根结线虫趋于低酸性(pH 4.5~5.4);CO2对根结线虫的吸引是由于CO2改变了介质的pH值所致;根结线虫对低浓度的HCN有集聚现象,这个聚团基因被标记到根结线虫的基因组上;线虫在有无植物根存在时都会聚集在一起,说明可能存在诸如蛔甙类的小分子物质作为媒介参与了线虫间的群体感应;寄主的植物激素信号途径同样也介导了线虫对寄主的早期识别过程。具体是哪些寄主植物或者线虫自身体内的活性物质参与介导线虫的趋化性可能是将来的研究热点,鉴定这些化学物质将为线虫的安全有效防治提供有价值的理论和应用基础。

从分子生物学角度来看,植物释放的化学信号导致线虫的行为发生变化,而行为的变化亦可能伴随着基因表达的变化,像基因的从头转录(De novo transcription)、预先存在的mRNA或预先存在的蛋白发生了修饰等,因此鉴定这些参与早期信号识别的基因及研究这些基因的功能将是另外一个研究重点。Pluronic胶系统是目前用来建立一套线虫反应寄主根系信号梯度的cDNA文库的最理想系统,此系统能显示信号梯度并控制收集线虫的时间,且避免了土壤中的微生物污染。因此通过这个系统可以研究线虫在识别寄主植物前后基因表达变化的转录组分析(Transcriptome analysis,RNA-seq)和蛋白组分析(Proteome analysis),从而在全基因组范围内来预测所参与识别信号的线虫基因并解析其功能,对探索新的防治策略具有重要的理论价值。

参考文献:

[1]Cobb N A. Antarctic marine free-living nematodes of the Shackleton Expedition[M]. In:Cobb N A(eds). Contributions to a Science of Nematology, Baltimore: Williams and Wilkins Co., 1914.

[2]Perry R N, Moens M.Introduction to plant-parasitic nematodes; Modes of parasitism[M].In:Jones J, Gheysen G,Fenoll C(eds). Genomics and molecular genetics of plant-nematode interactions. New York: Springer Netherlands, 2011, 3-20.

[3]Wilson M J, Khakouli-Duarte T. Nematodes as environmental indicators[M]. Wallingford: CABI Publishing, 2009.

[4]Ehlers R U. Mass production of entomopathogenic nematodes for plant protection[J].Applied Microbiology and Biotechnology, 2001, 56(5): 623-633.

[5]Gaugler R, Han R.Production technology[M].In:Gaugler R(eds). Entomopathogenic nematology. Wallingford: CABI Publishing, 2002.

[6]Abad P, Gouzy J, Aury J M, et al.Genome sequence of the metazoan plant-parasitic nematodeMeloidogyneincognita[J]. Nature Biotechnology, 2008, 26(8): 909-915.

[7]Nicol J M, Turner S J, Coyne D L, et al. Current nematode threats to world agriculture[M].In:Jones J, Gheysen G, Fenoll C(eds). Genomics and molecular genetics of plant-nematode interactions. New York: Springer Netherlands, 2011,21-43.

[8]Jones J T, Haegeman A, Danchin E G J, et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Molecular Plant Pathology, 2013, 14(9): 946-961.

[9]Williamson V M, Gleason C A. Plant-nematode interactions[J]. Current Opinion in Plant Biology, 2003, 6(4): 327-333.

[10]Hewezi T, Baum T J. Manipulation of plant cells by cyst and root-knot nematode effectors[J]. Molecular Plant-microbe Interactions, 2013, 26(1): 9-16.

[11]Jones M G K, Goto D B. Root-knot nematodes and giant cells[M].In:Jones J, Gheysen G, Fenoll C(eds). Genomics and molecular genetics of plant-nematode interactions. New York: Springer Netherlands, 2011, 83-100.

[12]Sobczak M, Golinowski W. Cyst nematodes and syncytia[M].In:Jones J, Gheysen G, Fenoll C(eds). Genomics and molecular genetics of plant-nematode interactions. New York: Springer Netherlands, 2011, 61-82.

[13]Baum T J, Hussey R S, Davis E L. Root-knot and cyst nematode parasitism genes: the molecular basis of plant parasitism[M].In:Setlow J K(eds). Genetic Engineering: Principles and Methods. New York: Springer Netherlands, 2007, 17-43.

[14]Gheysen G, Mitchum M G.How nematodes manipulate plant development pathways for infection[J]. Current Opinion in Plant Biology, 2011, 14(4): 415-421.

[15]Kandoth P K, Mitchum M G. War of the worms: how plants fight underground attacks[J]. Current Opinion in Plant Biology, 2013, 16(4): 457-463.

[16]Goverse A, Smant G. The activation and suppression of plant innate immunity by parasitic nematodes[J]. Annual Review of Phytopatholgoy, 2014, 52(1): 243-265.

[17]Bird A F.The attractiveness of roots to the plant parasitic nematodesMeloidogynejavanicaandM.hapla[J]. Nematologica, 1959, 4(4): 322-335.

[18]Dusenbery D B. Theoretical range over which bacteria and nematodes locate plant roots using carbon dioxide[J]. Journal of Chemical Ecology, 1987, 13(7): 1617-1624.

[19]Grewal P S, Wright D J. Migration ofCaenorhabditiselegans(Nematoda: Rhabditidae) larvae towards bacteria and the nature of the bacterial stimulus[J]. Fundamental and Applied Nematology, 1992, 15(2): 159-166.

[20]Perry R N. Plant signals in nematode hatching and attraction[M].In:Grundler F M W,Ohl S,Fenoll C(eds). Cellular and molecular aspects of plant-nematode interactions. New York: Springer Netherlands, 1997, 10: 38-50.

[21]Young I M, Griffiths B G, RobertsonW M. Continuous foraging by bacteria feeding nematodes[J]. Nematologica, 1996, 42(3): 378-382.

[22]Prot J C. Migration of plant-parasitic nematodes toward plant roots[J]. Revue de Nematologie, 1980, 3: 305-318.

[23]Azmi M I, Jairajpuri M S. Attraction of plant-parasitic nematodes to host roots[J]. Nematologica, 1977, 23(1): 119-121.

[24]Lownsbery B F, Viglierchio D R. Mechanism of accumulation of Meloidogyne incognita acrita around tomato seedlings[J]. Phytopathology,1960,50:178-179.

[25]Lownsbery B F, Viglierchio D R.Importance of response ofMeloidogynehaplato an agent from germinating tomato seeds[J]. Phytopathology, 1961, 51: 219-221.

[26]Prot J C, Van Gundy S D. Effect of soil texture and the clay component on migration ofMeloidogyneincognitasecond-stage juveniles[J]. Journal of Nematology, 1981, 13(2): 213-217.

[27]Viglierchio D R. Attraction of parasitic nematodes by plant root-emanations[J]. Phytopathology, 1961, 51(3): 136-142.

[28]Riddle D L, Bird A F.Responses of the plant parasitic nematodesRotylenchulusreniformis,AnguinaagrostisandMeloidogynejavanicato chemical attractants[J]. Parasitology, 1985, 91(1): 185-195.

[29]Lee Y B, Evans A A F. Correlation between attractions and susceptibilities of rice varieties toAphelenchoidesbesseyiChristie[J]. Korea Journal of Plant Protection, 1942, 12: 147-151.

[30]Bilgrami A L, Ahmad L, Jairajpuri M. Responses of adultHirschmanniellaoryzaetowards different plant roots[J]. Revue Nematology, 1985, 8(3): 265-272.

[31]Green C D. Mating and host finding behavior of plant nematodes[M].In:Zuckeman B M, Maic W F, Rohde R A(eds). Plant Parasitic Nematodes, 2nded. New York: CAB, 1971, 247-266.

[32]Robinson A F, Saldaa G. Characterization and partial purification of attractants for nematodeOrrinaphyllobiafrom foliage of Solanum elaeagnifolium[J]. Journal of Chemical Ecology, 1989, 15(2): 481-495.

[33]Baxter R I, Blake C D. Invasion of wheat roots by Pratylenchus thornei[J]. Nature, 1967, 215(5106): 1168-1169.

[34]Linsell K J, Riley I T, Davies K A,et al. Characterization of resistance toPratylenchusthornei(nematode) in wheat (Triticumaestivum):attraction, penetration, motility, and reproduction[J]. Phytopathology, 2014, 104(2): 174-187.

[35]Ishikawa M, Shuto Y, Watanabe H. Beta myrcene a potent attractant component of pine Pinus densiflora wood for the pine wood nematode Bursaphelenchus sylophillus[J]. Agricultural and Biological Chemistry, 1986, 50(7): 1863-1866.

[36]Ali J G, Alborn H T, Stelinski L L.Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes[J]. Journal of Ecology, 2011, 99(1): 26-35.

[37]Abou-Setta M M, Duncan L W. Attraction ofTylenchulussemipenetransandMeloidogynejavanicato salts in vitro[J]. Nematropica, 1998, 28(1): 49-59.

[38]Riga E. Orientation behavior[M].In:Gaugler R, Bilgrami A L(eds).Nematode Behaviour. Wallingford: CABI, 2004, 63-90.

[39]Spiegel Y, Burrows P M, Bar-Eyal M. A chemo attractant in onion root exudates recognized byDitylenchusdipsaciin laboratory bioassay[J].Phytopathology,2003,93(1):127-132.

[40]Bird A F. Additional notes on the attractiveness of roots to plant parasitic nematodes[J]. Nematologica, 1960, 5(3): 217.

[41]Klinger J. On the orientation of plant nematodes and of some other soil animals[J]. Nematologica, 1965, 11(1): 14-18.

[42]Pline M, Dusenbery D B. Responses of plant-parasitic nematodeMeloidogyneincognitato carbon dioxide determined by video camera computer tracking[J]. Jornal of Chemical Ecology, 1987, 13(4): 873-888.

[43]Viglierchio D R. Carbon dioxide sensing byPanagrellus silusiae and Ditylenchus dipsaci[J]. Revue de Nematologie, 1990, 13(4): 425-432.

[44]McCallum M E, Dusenbery D B. Computer tracking as a behavioral GC detector: nematode responses to vapor of host roots[J]. Journal of Chemical Ecology, 1992, 18(4): 585-592.

[45]Robinson A F, Perry R N. Behaviour and Sensory Perception[M].In:Perry R N, Moens M(eds). Plant nematology.Wallingford: CABI, 2006, 210-233.

[46]Huettel R N, Jaffe H. Attraction and behavior ofHeteroderaglycines, the soybean cyst nematode, to some biological and inorganic compounds[J]. Proceedings of the Helminthological Society of Washington, 1987, 54(1): 122-125.

[47]Riga E, Holdsworth D R, Perry R N, et al. Electrophysiological analysis of the responses of males of the potato cyst nematodeGloboderarostochiensisto fractions of their homospecific sex pheromones[J]. Parasitology, 1997, 115(3):311-316.

[48]Dusenbery D B. Chemotatic behavior of nematodes[J]. Journal of Nematology, 1983, 15(2): 168-173.

[49]Zuckerman B M, Jansson H B. Nematode chemotaxis and possible mechanism of host/prey recognition[J]. Annual Review of Phytopathology, 1984, 22: 95-113.

[50]Balan J, Kirzkova L, Nemec P, et al. A qualitative method for detection of nematode attracting substances and proof of production of three different attractants by the fungusMonacrosporiumrutgeriensis[J]. Nematologica, 1976, 22: 306-311.

[51]Klink J W, Dropkin V H, Mitchell J E. Studies on the host-finding mechanisms ofNeotylenchuslinfordi[J]. Journal of Nematology, 1970, 2: 106-117.

[52]Jansson H B, Nordering-Hertz H B. The endoparasitic nematophagus fungusMeriaconiosporainfects neamtodes specifically at the chemosensory organs[J]. Microbiology, 1983, 129(4): 1121-1126.

[53]Zhao X, Schmitt M, Hawes M C. Species-dependent effects of border cell and root tip exudates on nematode behavior[J]. Phytopathology, 2000, 90(11): 1239-1245.

[54]Balam C T, Rainstrick H, Todd A R, et al. The potato eelworm hatching factor[J]. Biochemical Journal, 1949, 45(5): 513-527.

[55]Carroll K K. Purification and properties of eelworm hatching factors[J]. Nematologica, 1958, 3(3): 197-204.

[56]Hartnell W V, Dahlstrom R V, Neal A L. A crystalline hatching stimulant for the golden nematode[J]. Phytopathology,1960,50(8):612-615.

[57]Jatala P, Arens M L, Christiansen J. Effects of bitter potato root exudates on hatching ofGloboderapallidaandG.rostochiensis[J]. Journal of Nematology, 1977, 9: 273.

[58]Jones P W, Tylka G L, Perry R N. Hatching[M].In:Perry R N, Wright D J(eds).The physiology and biochemistry of free-living and plant-parasitic nematodes. Wallingford: CABI Publishing, 1998, 181-212.

[59]Turner S J, Stone A R. Hatching of potato cyst-nematodes (Globoderarostochiensis,G.pallida) in root exudates of solanum vernei hybrids[J]. Nematologica, 1981, 27(3): 315-318.

[60]Perry R N. Hatching[M]. In: Lee DL(eds). The biology of nematodes. London: Taylor and Francis, 2002.

[61]Zhang C L, Sun H J, Xu Z, et al. Attractant and repellent effects of sweet potato root exudates on the potato rot nematode,Ditylenchusdestructor[J]. Nematology, 2015, 17(1): 117-124.

[62]Rolfe R N, Barrett J, Perry R N. Analysis of chemosensory responses of second stage juveniles ofGloboderarostochiensisusing electrophysiological techniques[J]. Nematology, 2000, 2(2): 523-533.

[63]Perry R N. An evaluation of types of attractants enabling plant-parasitic nematodes to locate plant roots[J]. Russian Journal of Nematology, 2005, 13: 83-88.

[64]Reynolds A M, Dutta T K, Curtis R H C, et al. Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes[J]. Journal of The Royal Society Interface,2011,8(57): 568-577.

[65]Rende J F, Tefft P M, Bone L W. Pheromone attraction in the soybean cyst nematodeHeteroderaglycinesrace 3[J]. Journal of Chemical Ecology, 1982, 8(6): 981-991.

[66]Saux R L,Queneherve P. Differential chemotactic responses of two plant-parasitic nematodes,MeloidogyneincognitaandRotylenchulusreniformis,to some inorganic ions[J]. Nematology, 2002, 4(1): 99-105.

[67]Wuyts N, Maung Z T Z, Swennen R, et al. Banana rhizodeposition: characterization of root border cell production and effects on chemotaxis and motility of the parasitic nematodeRadopholussimilis[J]. Plant and Soil, 2006, 283(1): 217-228.

[68]孙漫红, 刘杏忠. 淡紫拟青霉发酵滤液对大豆胞囊线虫趋化性的影响[J]. 植物病理学报, 2004, 34(4): 376-379.

[69]王雪,段玉玺,陈立杰,等. 不同大豆品种根系对大豆胞囊线虫趋化性的影响[J]. 大豆科学,2008, 27(6): 1015-1018.

[70]何琪,邢骥,张声扬,等. 不同类型杀线剂对甘薯茎线虫趋化性的影响[J]. 植物保护, 2010, 36(4): 75-79.

[71]马娟,李秀花,王容燕,等. 几种真菌对马铃薯腐烂茎线虫趋化性的影响及其引诱物质的初步分析[J]. 中国生物防治学报, 2015, 31(1): 123-129.

[72]孟丽,漆永红,刘玉霞,等. 南方根结线虫二龄幼虫对不同类型盐离子的趋化反应[J]. 植物保护, 2014, 40(2): 85-89.

[73]Robinson A F. Movement of five nematode species through sand subjected to natural temperature gradient fluctuations[J]. Journal of Nematology, 1994, 26(1): 46-58.

[74]Robinson A F. Optimal release rates for attractingMeloidogyne incognita, Rotylenchulus reniformis, and other nematodes to carbon dioxide in sand[J]. Journal of Nematology, 1995, 27(1): 42-50.

[75]Wang C L, Lower S, Williamson V M. Application of Pluronic gel to the study of root-knot nematode behaviour[J]. Nematology, 2009, 11(3): 453-464.

[76]Barichello J M,Morishita M,Kozo T,et al. Absorption of insulin from Pluronic F-127 gels following subcutaneous administration in rats[J].International Journal of Pharmaceutics, 1999, 184(2): 189-198.

[77]Farrugia M, Morgan S P, Alexander C, et al. Ultrasonic monitoring of drug loaded pluronic F127 micellular hydrogel phase behavior[J]. Materials Science and Engineering C-Materials for Biological Applications, 2014, 34: 280-286.

[78]Marsh L H, Alexander C, Coke M, et al. Absorbed Pluronics on the skin of human volunteers: effects on bacterial adhesion[J]. International Journal of Pharmaceutics, 2003, 251(1-2): 155-163.

[79]Morishita M, Barichello J M, Takayama K, et al. Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin[J]. International Journal of Pharmaceutics, 2001, 212(2): 289-293.

[80]Zhang W, Gilstrap K, Wu L, et al. Synthesis and characterization of thermally responsive pluronic F127-chitosan nanocapsules for controlled release and intracellular delivery of small molecules[J]. ACS Nano, 2010, 4(11): 6747-6759.

[81]Ko M P, Gundy S D V. An alternative gelling agent for culture and studies of nematodes, bacteria, fungi, and plant tissues[J]. Journal of Nematology, 1988, 20(3): 478-485.

[82]Li C, Wang Y, Hu Y, et al. Three dimensional study of wounded plant roots recruiting entomopathogenic nematodes for protection with pluronic gel as a medium[J]. Biological Control, 2015, 89: 68-74.

[83]Dutta T K, Powers S J, Kerry B R, et al. Comparison of host recognition, invasion, development and reproduction of Meloidogyne graminicola and M. incognita on rice and tomato[J]. Nematology, 2011, 13(1): 509-520.

[84]崔磊, 高秀, 王晓鸣, 等. 不同抗性小麦根与菲利普孢囊线虫(Heterodera filipjevi) 互作的表型特征[J]. 作物学报, 2012, 38(6): 1009-1017.

[85]胡小斌, 梁旭东, 张龙, 等. 禾谷孢囊线虫与不同小麦根系的互作表型特征[J]. 植物保护, 2015, 41(4): 78-83.

[86]Danquah W B, Grove I, Back M, et al. Effects of a plant extract-based nematicide (G8014S) and its components on the host finding behaviour and multiplication of Globodera pallida on glasshouse-grown potatoes[J]. Nematology 2013, 15(7):821-834.

[87]Wang C, Bruening G, Williamson V M. Determination of preferred pH for root-knot nematode aggregation using pluronic F-127 gel[J]. Journal of Chemical Ecology, 2009, 35(10): 1242-1251.

[88]Mulkey T J, Evans M L. Geotropism in corn roots: evidence for its mediation by differential acid efflux[J]. Science, 1981, 212(4490):70-71.

[89]Peters W S, Felle H H. The correlation of profiles of surface pH and elongation growth in maize roots[J]. Plant Physiology. 1999, 121(3): 905-912.

[90]Pilet P E, Versel J M, Mayor G. Growth distribution and surface pH patterns along maize roots[J]. Planta, 1983, 158(5): 398-402.

[91]Dusenbery D B. Attraction of nematodeCaenorhabditiselegansto pyridine[J]. Comparative Biochemistry and Physiology Part C Comparative Pharmacology, 1976, 53(1): 1-2.

[92]O’halloran D M, Burnell A M. An investigation of chemotaxis in the insect parasitic nematodeHeterorhabditisbacteriophora[J]. Parasitology, 2003, 127(4): 375-385.

[93]Rasmann S, Ali J G, Helder J, et al. Ecology and evolution of soil nematode chemotaxis[J]. Journal of Chemical Ecology, 2012, 38(6): 615-628.

[94]Gray J M, Karow D S, Hang L, et al. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue[J]. Nature, 2004, 430(6997): 317-322.

[95]Croll N A. Behaviour of nematodes, their activity, senses and responses[M]. London: Edward Arnold (Publishers) Ltd, 1970, 117.

[96]Crowe J H, Madin K A C. Anhydrobiosis in nematodes: evaporative water loss and survival[J]. Journal of Experimental Zoology, 1975, 193(3): 323-333.

[97]Roberts T M, Thorson R E. Chemical attraction between adults ofNippostrongylusbrasiliensis:description of the phenomenon and effects of host immunity[J]. Journal of Parasitology, 1977, 63(2): 357-363.

[98]O’Leary S A, Power A P, Stack C M, et al. Behavioural and physiological responses of infective juveniles of the entomopathogenic nematodeHeterorhabditisto desiccation[J]. BioControl, 2001, 46(3): 345-362.

[99]Wharton D A. Survival strategies[M].In:Gaugler R, Bilgrami A L(eds). Nematode behaviour. Wallingford, UK: CABI Publishing, 2004, 371-399.

[100]Wang C, Lower S, Thomas V P, et al. Root-knot nematodes exhibit strain-specific clumping behavior that is inherited as a simple genetic trait[J]. PLoS One, 2010, 5(12): e15148.

[101]Moens M, Perry R N. Migratory plant endoparasitic nematodes: a group rich in contrasts and divergence[J]. Annual Review of Phytopathology, 2009, 47: 313-332.

[102]Gallagher L A, Manoil C. Pseudomonas aeruginosa PAO1 KillsCaenorhabditiselegansby cyanide poisoning[J]. Journal of Bacteriology, 2001, 183(21): 6207-6214.

[103]Blumer C, Haas D. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis[J]. Archives of Microbiology, 2000, 173(3): 170-177.

[104]Siddiqui I A, Shaukat S S, Sheikh I H, et al. Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato[J]. World Journal of Microbiology and Biotechnology, 2006, 22(6): 641-650.

[105]Poulton J E. Cyanogenesis in plants[J]. Plant Physiology, 1990, 94(2): 401-405.

[106]Widmer T L, Abawi G S. Relationship between levels of cyanide in sudangrass hybrids incorporated into soil and suppression ofMeloidogyne hapla[J]. Joural of Nematology, 2002, 34(1): 16-22.

[107]De Bono M, Bargmann C I. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and foodresponse inC.elegans[J].Cell, 1998, 94(5): 679-689.

[108]Busch K E, Laurent P, Soltesz Z, et al. Tonic signaling from O2sensors sets neural circuit activity and behavioral state[J]. Nature Neuroscience, 2012, 15(4): 581-591.

[109]Carrillo M A, Guillermin M L, Rengarajan S, et al. O2-sensing neurons control CO2response in C. elegans[J]. The Journal of Neuroscience:The Official Journal of the Society for Neuroscience, 2013, 33(23): 9675-8310.

[110]Persson A, Gross E, Laurent P, et al. Natural variation in a neural globin tunes oxygen sensing in wildCaenorhabditiselegans[J]. Nature, 2009, 458(7241): 1030-1033.

[111]Zimmer M, Gray J M, Pokala N, et al. Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases[J]. Neuron, 2009, 61(6): 865-879.

[112]Bird D M, Williamson V M, Opperman C H. Exploiting solved genomes of plant-parasitic nematodes to understand parasitism[J]. Advances in Botanical Research, 2015, 73: 241-258.

[113]Opperman C H, Bird D M, Williamson V M, et al. Sequence and genetic map ofMeloidogynehapla:a compact nematode genome for plant parasitism[J]. Proceedings of the National Academy of Sciences, USA,2008, 105(39): 14802-14807.

[114]Thomas V P, Fudali S L, Schaff J E, et al. A sequence-anchored linkage map of the plant-parasitic nematodeMeloidogynehaplareveals exceptionally high genome-wide recombination[J]. G3: Genes, Genomics, Genetics, 2012, 2(7): 815-824.

[115]Rogers C, Reale V, Kim K, et al. Inhibition of Caenorhabditis elegans social feeding by FMRF amide-related peptide activation of NPR-1[J]. Nature Neuroscience, 2003, 6(11): 1178-1185.

[116]Johnston M J G, McVeigh P F, McMaster S, et al. MRFamide-like peptides in root knot nematodes and their potential role in nematode physiology[J]. Journal of Helminthology, 2010, 84(3): 253-265.

[117]Kimber M J, Fleming C C, Bjourson A J, et al. FMRFamide-related peptides in potato cyst nematodes[J]. Molecular and Biochemical Parasitology, 2001, 116(2):199-208.

[118]Kimber M J, McKinney S, McMaster S, et al. Flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference[J]. Faseb Journal, 2007, 21: 1233-1243.

[119]彭焕, 胡先奇, 黄文坤, 等. 马铃薯腐烂茎线虫类FMRF酰胺多肽基因(Dd-flp-1)的克隆与表达定位分析[J]. 农业生物技术学报, 2011, 19(5): 924-931.

[120]Papolu P K, Gantasala N P, Kamaraju D, et al. Utility of host delivered RNAi of Two FMRF amide like peptides,flp-14 andflp-18,for the management of root knot nematode,meloidogyneincognita[J]. PLoS One, 2013, 8(11): e80603.

[121]Banakar P, Sharma A, Lilley C J, et al. Combinatorial in vitro RNAi of two neuropeptide genes and a pharyngeal gland gene onMeloidogyneincognita[J]. Nematology, 2015, 17(2): 155-167.

[122]Cabrera J, Díaz-Manzano, F E,Fenoll C, et al. Developmental pathways mediated by hormones in nematode feeding sites[J]. Advances in Botanical Research, 2015, 73: 167-188.

[123]De Meutter J, Tytgat T, Witters E, et al. Identification of cytokinins produced by the plant parasitic nematodesHeteroderaschachtiiandMeloidogyneincognita[J]. Molecular Plant Pathology, 2003, 4(4): 271-277.

[124]Goverse A, Bird D. The role of plant hormones in nematode feeding cell formation[M].In:Jones J, Gheysen G, Fenoll C(eds).Genomics and Molecular Genetics of Plant-Nematode Interactions. New York: Springer Netherlands, 2011, 325-347.

[125]Goverse A, Overmars H, Engelbertink J S A, et al. Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin[J]. Molecular Plant-microbe Interactions, 2000, 13(10): 1121-1129.

[126]Kammerhofer N, Radakovic Z, Regis J M A, et al. Role of stress-related hormones in plant defence during early infection of the cyst nematodeHeteroderaschachtiiinArabidopsis[J]. New Phytologist, 2015, 207(3): 778-789.

[127]Lohar D P,Schaff J E,Laskey J G,et al. Cytokinins play opposite roles in lateral root formation,and nematode and rhizobial symbioses[J].The Plant Journal : for Cell and Molecular Biology, 2004, 38(2): 203-214.

[128]Wubben M J E, Su H, Rodermel S R, et al. Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction inArabidopsisthaliana[J]. Molecular Plant-microbe Interactions, 2001, 14(10): 1206-1212.

[129]Siddique S, Radakovic Z S,de la Torre C M, et al. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants[J]. Proceedings of the National Academy of Sciences, USA, 2015, 112(41): 12669-12674.

[130]Abeles F B, Morgan P W, Saltveit M E, et al. Ethylene in Plant Biology[M]. San Diego CA, U.S.A.: Academic Press, 1992.

[131]Broekaert W F, Delauré S L, De Bolle M F C, et al. The role of ethylene in host-pathogen interactions[J]. Annual Review of Phytopathology, 2006, 44: 393-416.

[132]Deikman J. Molecular mechanisms of ethylene regulation of gene transcription[J]. Physiologia Plantarum, 1997, 100(3): 561-566.

[133]Ecker J R, Davis R W. Plant defense genes are regulated by ethylene[J]. Proceedings of the National Academy of Sciences, USA, 1987, 84(15): 5202-5206.

[134]Nakazoto Y, Tamogami S, Kawai H, et al. Methionine-induced phytoalexin production in rice leaves[J]. Bioscience Biotechnology and Biochemistry, 2000, 64(3): 577-583.

[135]Penninckx I A, Thomma B P, Buchala A, et al. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensing gene inArabidopsis[J].The Plant Cell, 1998, 10(12): 2103-2114.

[136]Fudali S L, Wang C, Williamson V M. Ethylene signaling pathway modulates attractiveness of host roots to the root-knot nematodeMeloidogynehapla[J]. Molecular Plant-Microbe Interaction, 2013, 26(1): 75-86.

[137]Diez J A, Dusenbery D B. Preferred temperature ofMeloidogyneincognita[J]. Journal of Nematology, 1989, 21(1): 99-104.

[138]Zhou Y, Shao Y, Gao C, et al. The white-tip nematode,Aphelenchoidesbesseyi,exhibits an auxin-orientated behavior affecting its migration and propagation[J]. Nematology, 2014, 16(7): 837-845.

[139]Robert-Seilaniantz A, Grant M, Jones J D. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism[J]. Annual Review of Phytopathology, 2011, 49: 317-343.

[140]Choe A, Von Reuss S H, Kogan D, et al. Ascaroside signaling is widely conserved among nematodes[J]. Current Biology, 2012, 22(9): 772-780.

[141]Golden J W, Riddle D L. A pheromone influences larval development in the nematodeCaenorhabditiselegans[J]. Science, 1982, 218(4572): 578-580.

[142]Schroeder F C. Modular assembly of primary metabolic building blocks: a chemical language inC.elegans[J]. Chemistry and Biology, 2015, 22(1): 7-16.

[143]Srinivasan J, Kaplan F, Ajredini R, et al. A blend of small molecules regulates both mating and development inCaenorhabditiselegans[J]. Nature, 2008, 454(7208): 1115-1118.

[144]Srinivasan J, von Reuss S H, Bose N, et al. A modular library of small molecule signals regulates social behaviors inCaenorhabditiselegans[J]. PLos Biology, 2012, 10(1): e1001237.

[145]Pungaliya C, Srinivasan J, Fox B W, et al. A shortcut to identifying small molecule signals that regulate behavior and development inCaenorhabditiselegans[J]. Proceedings of the National Academy of Sciences, USA, 2009, 106(19): 7708-7713.

[146]Bose N, Ogawa A,vonReuss S H, et al. Complex small-molecule architectures regulate phenotypic plasticity in a nematode[J]. Angewandte Chemie International Edition, 2012, 51(50): 12438-12443.

[147]Noguez J H, Conner E S, Zhou Y, et al. A novel ascaroside controls the parasitic life cycle of the entomopathogenic nematodeHeterorhabditisbacteriophora[J]. ACS Chemical Biology, 2012, 7(6):483.

[148]Manosalva P, Manohar M, von Reuss S H, et al. Conserved nematode signaling molecules elicit plant defenses and pathogen resistance[J]. Nature Communications, 2015, 6: 7795.

[149]Hsueh Y P, Mahanti P, Schroeder F C. Nematode-trapping fungi eavesdrop on nematode pheromones[J]. Current Biology Cb, 2013, 23(1): 83-86.

[150]Williamson V M, Danquah W B, Schroeder F. Root-knot nematode behavior in response to plant and nematode semiochemicals[J]. Journal of Nematology, 2015, 47: 277-278.

Pluronic Gel System: An Approach to Investigate Chemotaxis of Plant Parasitic Nematodes

WANG Cong-li,LI Chun-jie,HU Yan-feng

(KeyLaboratoryofMollisolsAgroecology,NortheastInstituteofGeographyandAgroecology,CAS,Harbin150081,China)

Abstract:Cheomtaxis is the most important mechanism for host-localization of plant-parasitic nematodes.In this review, we discuss the research advances of chemotaxis of plant-parasitic nematodes to plant and potential chemicals from root rhizosphere. We introduce that one transparent thermos-reversible Pluronic gel simulates soil three-dimensional way to allow nematodes move freely in the gel and currently the gel is the best medium to study nematode behavior and chemotaxis. Through this gel system, root-knot nematodes were found to prefer to gather together at low pH (pH range 4.5~5.4); the attraction of CO2 to nematodes was not due to CO2 itself but due to acidification of solutions by dissolved CO2 in the gel; nematodes formed clumps at low concentration of HCN (15 μM~22 μM) and the clumping gene was mapped to nematode genome; ethylene signal pathway modulated nematode attraction. In addition, ascarosides as conserved nematode signaling molecules eliciting plant defenses and pathogen resistance also involved in nematode aggregation and clumping. Current research hotspot is to identify semiochemicals from root or nematode exuduates which modify or regulate nematode chemotaxis.

Key words:plant parasitic nematodes; chemotaxis; Pluronic gel; attraction

中图分类号:S432.4+5

文献标识码:A

作者简介:第一作者及通讯王从丽(1973-),女,河南唐河人,博士,研究员,主要从事线虫和植物互作研究.

基金项目:国家自然科学基金项目(31471749)和中国科学院“百人计划”项目.

收稿日期:2015-01-05.

文章编号:2095-2961(2016)01 -0001 -13

doi:10.11689/j.issn.2095-2961.2016.01.001