不同类型水冷苗床的根际降温效果及其对番茄穴盘苗生长的影响*
2016-04-06李胜利牛旭旭孙治强
李胜利,牛旭旭,孙治强
(河南农业大学园艺学院,郑州 450002)
不同类型水冷苗床的根际降温效果及其对番茄穴盘苗生长的影响*
李胜利,牛旭旭,孙治强
(河南农业大学园艺学院,郑州 450002)
摘要:为了降低夏季蔬菜集约化育苗时幼苗的根区高温环境,利用地下水作为循环媒介,设计了用于根区降温的水冷苗床。试验分别采用金属梯形管(M)和塑料圆管(P)作为冷水管,以未采用根区降温的苗床为对照,研究两种水冷苗床的根区降温效果及其对番茄幼苗生长的影响。结果表明,两种水冷苗床番茄幼苗根区日均温、白天均温和最高温度均显著低于对照苗床(P<0.05)。M式和P式苗床番茄幼苗根区日均温分别为23.2℃和26.0℃,全天根区温度高于25℃的历时为8.3h和11.6h,分别比对照苗床减少7.5h和4.2h。水冷苗床显著促进了番茄幼苗生长和干物质积累,提高了番茄幼苗茎流速率、根系呼吸速率和光合能力,M式和P式水冷苗床番茄幼苗单株干质量依次为4.52和3.90mg,分别比对照(2.85mg)增加58.6%和36.8%(P<0.01)。两种水冷苗床番茄幼苗的壮苗指数和根冠比均显著高于对照。综合根区降温效果和番茄幼苗生长来看,M式水冷苗床更有利于番茄幼苗的生长。
关键词:番茄;根区降温;穴盘苗;高温历时;壮苗指数
李胜利,牛旭旭,孙治强.不同类型水冷苗床的根际降温效果及其对番茄穴盘苗生长的影响[J].中国农业气象,2016,37(1):19-25
夏季(6-9月)是蔬菜越冬茬栽培和秋延后栽培的育苗期,设施内高温或亚高温是影响蔬菜幼苗健壮生长的关键因素之一[1-3]。穴盘育苗方式下幼苗的根区温度受气温的影响很大,设施内高温将导致幼苗根区温度过高[4]。根区高温严重影响根系对水分和养分的吸收[5-6],导致幼苗质量下降,进而影响幼苗的生长和花芽分化,最终影响产量和品质[7-8]。Xu等[9]研究认为,过高的根区温度比高气温对植株的影响更大,适宜、稳定的根区温度是植物根系生长和代谢的重要保证。蔬菜集约化育苗普遍采用穴盘育苗,由于根系生长空间的限制,幼苗更容易遭受逆境胁迫[10-11]。番茄(Solanum lycopersicum)是全球范围内设施栽培面积最大的蔬菜作物之一,幼苗最适的根区温度为20~25℃[12]。李胜利等[13]研究表明,夏季集约化育苗下,穴盘苗根区最高温度可达35.6℃。夏季设施常用的降温方法主要以降低气温为主[14-16],近年,根区降温技术开始受到关注,Kenichiro等[17]通过在土壤中埋设多孔管道,以冷空气作为降温介质,使根区平均温度降低了2.8℃。Moon等[18]在15cm土壤深处埋设管道,以冷水作为循环媒介,这种方法可使10cm地温平均降低6℃。Huang等[19-21]采用冷水灌溉的方法一定程度上降低了幼苗根区温度,提高了壮苗指数,Beyza等[22]通过相变物质来控制根区温度获得了良好的效果。本文在前期设计的水冷式苗床的基础上[13],以番茄为对象,分别采用金属梯形管和塑料圆管作为冷却管道,研究两种水冷式苗床的根区降温效果以及对番茄幼苗生长的影响,以期为水冷苗床的优化设计及科学应用提供理论支撑。
1 材料与方法
1.1 试验概况
试验分别于2013、2014年6-8月在河南农业大学郑州毛庄科教园区(郑州市,112°42' E,34°16' N)育苗温室内进行,试验期间仅进行自然通风。育苗试验在温室内3个钢架育苗床上进行,分别布置2种水冷苗床和对照苗床(没有根区降温),苗床长、宽、高分别为30m、1.6m和1m。沿苗床长度方向每10m作为一个小区,共设置9个小区,每个小区面积16m2,3次重复随机排列。供试番茄品种为粉都77(河南),采用72孔穴盘,穴孔深5cm。
1.2 试验设计
水冷式苗床直接在钢架苗床上铺设,由进水管、冷水管、回水管、单向阀控制阀门等组成[13]。试验设计的两种水冷式苗床结构相同,采用不同的冷水管道,分别用M和P表示。M式苗床冷水管的横截面为梯形(9.0mm上底×25.0mm下底×35.0mm高),管材采用1mm不锈钢板,P式苗床冷水管为PE材质的塑料圆管,直径为12mm,管壁厚1mm(图1)。每个穴盘采用3根冷水管,以地下约50m深的井水作为冷源,井水经过降温苗床经出水管道流回井中,水流速率为2.0m3·h−1,育苗期间不断循环。对照CK穴盘直接摆放在苗床上,底部无降温装置。其它管理措施3个处理相一致。
图1 不同水冷式降温苗床剖面示意图Fig. 1 Profile of different root-zone cooling bed
1.3 项目测定
1.3.1 根区温度
根据每个处理苗床长度和宽度均匀布设9个温度测点,苗床长度方向距进水口2.5、5.0、7.5m处分别设置3排温度测点,每排设置3个等距间隔温度测点,测点距苗床一侧分别为0.4、0.8和1.2m。温度探头放置在穴孔3cm深处。采用TRM-120温度自动记录仪测定,数据记录间隔时间为1h,9个点的平均值为该小区的根区温度。
计算育苗期间根区日平均温度和昼、夜平均温度。日平均温度为每日0:00-24:00各整点温度的平均值,昼均温为每天7:00-19:00整点根区温度的平均值,夜均温为19:00-次日7:00整点根区温度的平均值。
按照游程理论[23-24],设定每天测试的24个根际温度值为1个温度序列tk(k=1,2,…,24),这个序列被一给定水平t0截取,当tk在1个或多个时段内依次大于t0时出现正游程,高于设定温度的时间为正游程长,游程值越大表明根系受高温的影响越大。t0对应的正游程为高温历时。在育苗时间j(j=1,2,…,34,育苗期共34d)内,给定一个截取水平t0即可得到34个正游程序列,每个正游程内的每个样本均与截取水平有个差值,这些差值之和即为这个正游程对应的正游程和。正游程长与正游程和一一对应,正游程长即为高温历时,正游程和即为高温烈度。高温烈度与高温历时之比即为高温强度。用Lj(j=1,2,…,34)表示根际高温历时,Dj(j=1,2,…,34)表示根际高温烈度,Hj(j=1,2,…,34)表示根际高温强度,其对应的统计特征值分别为
式中,L为平均正游程长,LM为最大正游程长,表示极限高温历时;为平均高温烈度,DM为极限高温烈度;表示平均高温强度,HM为最大高温强度,m为统计时间,即育苗期(34d)。
1.3.2 番茄幼苗形态指标
番茄幼苗4叶1心时,每个处理随机取5株测定株高、下胚轴长、茎粗和幼苗干质量。株高和下胚轴长度采用直尺测量,茎粗采用游标卡尺测量,幼苗干质量采用烘干称质量法测量,壮苗指数按照张振贤等[25]的方法计算;每个处理另选取5株,用蒸馏水洗净根系表面基质,然后用Epson perfection 4990 PHOTO根系扫描仪(日本)进行扫描,采用WINRHIZO 2012b软件分析根系总长度、表面积、根系直径和根系体积。
1.3.3 番茄幼苗生理指标
番茄幼苗4叶1心时选择晴天(2014-07-02),每个处理选取10株进行叶片生理指标测定。光合速率、蒸腾速率和气孔导度用CIRAS-1型光合仪测定,测试部位为幼苗第4片真叶,8:00-16:00每隔2h测试一次,取平均值;叶片叶绿素含量用80%丙酮[25]提取测定;根系活力用TTC法测定;根系呼吸速率(nmol·g−1·h−1)参照Kawasaki等[12]的方法进行测试。
1.4 数据处理与分析
采用DPS7.05进行数据处理和统计分析。
2 结果与分析
2.1 不同类型水冷苗床根区降温效果比较
2.1.1 根区温度
表1为2014年育苗期间不同处理根区温度特征值,由表可以看出,测试期间,温室内日平均气温高达30.2℃,日最高气温平均值为39.6℃,无降温的CK处理番茄幼苗根区温度的日平均值高达28.2℃,日最高温度平均值为34.6℃,均超出番茄幼苗适宜的根区温度[6]。增加水冷苗床后,M式和P式两个处理中番茄幼苗根区的日平均温度分别为23.2℃和26.0℃,比对照苗床分别降低5.0℃和1.8℃(P<0.05)。且M式水冷苗床番茄幼苗根区平均温度比P式水冷苗床低2.8℃,说明前者降温效果显著优于后者(P<0.05)。M式和P式水冷苗床番茄幼苗根区平均温度日较差分别为2.2℃和3.2℃,表明前者根区温度变幅较小。
表1 不同类型苗床番茄幼苗根区温度比较(平均值±均方差,℃)Table 1 Comparison of root-zone temperature of tomato seedling among treatments(Mean±SD,℃)
2.1.2 根区温度游程特征
参照Sen[23]的方法对2014年育苗期内不同处理番茄幼苗根区温度进行游程分析,分别给定截取水平25℃(番茄幼苗根系适宜生长温度)和28℃(番茄幼苗根系适宜生长温度上限),得到不同水冷苗床番茄幼苗根区温度游程特征值(表2)。由表2可以看出,两种水冷苗床在2个截取温度下番茄幼苗根区温度游程特征值均小于对照。高温历时表明一天内番茄幼苗根系遭受高温胁迫持续的时间,M式和P式水冷苗床番茄幼苗平均根区温度高于25℃的时间为8.3h和11.6h,比对照减少7.5h和4.2h,高于28℃的历时为2.9h和4.3h,比对照苗床减少7.6h和6.2h。根区高温历时的降低表明幼苗根系一天中遭受高温胁迫时间减少,幼苗可以较长时间生长在适宜的根温范围之内,从而保证根系正常的生理活动。
表2 不同水冷苗床番茄幼苗根区温度游程特征值Table 2 Comparison of run features of root-zone temperature between different water-cooled seedling beds
2.2 不同类型水冷苗床对番茄幼苗营养生长的影响
由表3可以看出,两种水冷式苗床番茄幼苗营养生长指标均显著或极显著高于对照,表明在夏季高温下,根区降温措施促进了番茄幼苗生长和干物质积累。其中水冷苗床番茄幼苗的株高、叶面积、单株干质量和根冠比与对照的差异达到了极显著水平(P<0.01),M式和P式水冷苗床番茄幼苗单株干重比对照分别提高58.6%和36.8%。M式与P式水冷苗床相比,前者番茄幼苗的叶面积、干质量、根冠比和壮苗指数显著高于后者(P<0.05),表明M式水冷苗床幼苗生长状况优于P式水冷苗床。
2.3 不同水冷苗床对番茄幼苗根系生长的影响
由表4可见,高温下根区降温促进了番茄幼苗根系的生长,其中M式水冷苗床番茄幼苗根系生长优于P式水冷苗床。两种水冷苗床番茄幼苗根系总长、根系表面积与对照的差异均达到极显著水平(P <0.01),根系体积和根系平均直径与对照相比也有显著提高(P<0.05)。单位根系体积的根系表面积(RSA/RV)是反映根系根毛发育的一个指标,M式水冷苗床番茄幼苗RSA/RV值为0.093,比对照提高了24%(P<0.05)。
2.4 不同水冷苗床对番茄幼苗生理活性的影响
由表5可见,水冷苗床降低了番茄幼苗的根区温度,与对照相比,两种苗床番茄幼苗的生理活性均有显著或极显著提高,M式水冷苗床由于根区降温效果更显著,其幼苗的生理活性又显著高于P式水冷苗床。根系呼吸速率和茎流速率是反映根系活力的重要指标,M式水冷苗床番茄幼苗根系的平均呼吸速率、茎流速率和根系活力分别比对照提高40.0%、54.2%和23.2%。与对照相比,M式水冷苗床番茄幼苗叶片蒸腾速率提高25.2%,净光合速率提高23.9%。
表3 不同类型苗床番茄幼苗营养生长情况比较Table 3 Comparison of tomato seedling growth indices among treatments
表4 不同水冷苗床番茄幼苗根系形态的比较Table 4 Comparison of root morphological traits of seedling among treatments
表5 不同水冷苗床番茄幼苗生理活性的比较Table 5 Comparison of physiological characteristics of seedling among treatments
3 结论与讨论
3.1 结论
夏季集约化育苗中,利用地下冷水为介质设计的两种材质和截面形状水冷苗床均具有良好的根区降温效果。与对照相比,育苗期间不锈钢T形管(M式)和PE材质的塑料圆管(P式)两种水冷苗床的根区日平均温度分别降低5.0℃和1.8℃,一天中番茄幼苗根际温度高于25℃历时减少7.5h和4.2h,高于28℃历时减少7.6h和6.2h,降低了幼苗遭受高温胁迫的强度,其中M式水冷苗床的根区降温效果优于P式水冷苗床。水冷式苗床番茄幼苗营养生长状况显著优于对照苗床,M式水冷苗床番茄幼苗的壮苗指数比P式水冷苗床和对照苗床分别提高12.7% 和27.2%。
3.2 讨论
水冷苗床的根区降温效果与冷水管与根区的接触面积和导热系数有关,金属梯形管苗床(M)的降温效果显著优于塑料圆管苗床(P),这是由于金属梯形管与穴盘的接触面积较大,另外金属的导热性较大,从而可以带走更多的热量,降温效果更显著。从成本来看,塑料苗床的成本低于金属管苗床,另外水冷式苗床降温效果受到水温、流量等因素的影响,塑料圆管取材广泛,便于安装,如何提高其降温效果还需进一步研究。
Fujishige等[26]研究认为,当气温超过30℃时番茄幼苗光合作用和相对生长速率显著降低。试验温室育苗期间平均气温为30.2℃,试验期间M式水冷苗床番茄幼苗基本处于根系适宜生长温度范围内,根区降温促进幼苗根系生长的同时,提高了幼苗的干物质积累,促进了幼苗健壮生长,提高了幼苗壮苗指数,验证了Yamaguchi等[27]的根区适温可以补偿高气温危害的结论。根区降温下番茄幼苗根冠比显著高于对照苗床,表明根区降温对根系生长的促进作用更大,这与Moon等[18]的研究结论相一致。说明在气温30℃时,只要根际温度合适,番茄幼苗仍可正常生长。
根区降温促进番茄幼苗生长的原因在于提高了高气温下幼苗的生理活性。茎流速率和根系呼吸速率是反映根系活力的重要指标[28-29],与对照苗床相比,水冷苗床番茄幼苗根系活力和茎流速率显著高于对照苗床,从而保证了根系吸水正常,提高了疏导组织的导水力和气孔导度,显著增强了番茄幼苗的蒸腾作用[30],叶温可以通过蒸腾冷却,低于气温很多[17],叶温的降低保证了酶的活性,从而缓解了高气温下对番茄幼苗叶片的伤害,保证幼苗较强的光合作用。
参考文献References
[1]Almeselmani M,Deshmukh P S,Sairam R K,et al.Protective role of antioxidant enzymes under high temperature stress[J]. Plant Science,2006,171:382-388.
[2]Wahid A,Gelani S,Ashraf M.Heat tolerance in plants:an overview[J].Environmental and Experimental Botany,2007,61(3):199-223.
[3]孟令波,秦智伟,李淑敏.高温胁迫对黄瓜幼苗根系生长的影响[J].园艺学报,2003,30(6):694-695. Meng L B,Qing Z W,Li S M.Effect of high temperature stress on the root of cucumber seedling[J].Acta Horticulturae Sinica,2003,30(6):694-695.(in Chinese)
[4]Moon J H,Boo H O,Jang I O.Effect of root-zone temperature on water relations and hormone contents in cucumber[J]. Horticulture Environment and Biotechnology,2007,48:257-264.
[5]Tahir I,Nakata N,Yamaguehi T,et al.Influence of high shoot and root-zone temperatures on growth of three wheat genotypes during early vegetative stages[J].Journal of Agronomy and Crop Science,2008,94:141-151.
[6]宋敏丽,温祥珍,李亚灵.根际高温对植物生长和代谢的影响综述[J].生态学杂志,2010,29(11): 2258-2264.Song M L,Wen X Z,Li Y L.Effects of high rhizosphere temperature on plant growth and metabolism:a review[J]. Chinese Journal of Ecology,2010,29(11):2258-2264. (in Chinese)
[7]Amejo D,Rodrguez P,Morales M A,et al.High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility[J].Journal of Plant Physiology,2005,162(1):281-289.
[8]Wahid A,Gelani S,Ashraf M.Heat tolerance in plants:an overview[J].Environmental and Experimental Botany,2007,61(3):199-223.
[9]Xu Q Z,Huang B R.Effects of differential air and soil temperature on carbohydrate metabolism in creeping bentgrass[J]. Crop Science,2000,40:1368-1374.
[10]Allen D J,Ort D R.Impacts of chilling temperatures on photosynthesis in warm-climate plants[J].Trends in Plant Science,2001,6(1):36-42.
[11]Duman I,Duzyaman E.Growth control in processing tomato seedlings[J].Acta Horticulturae,2005, 613:95-102.
[12]Kawasaki Y,Matsuo1 S,Suzuki K,et al.Root-zone cooling at high air temperatures enhances physiological activities and internal structures of roots in young tomato plants[J].Journal of the Japanese Society for Horticultural Science,2013,82(4): 322-327.
[13]李胜利,师晓丹,夏亚真,等.水冷式苗床根际降温效果及其对番茄幼苗生长的影响[J].农业工程学报,2014,30(7): 212-218. Li S L,Shi X D,Xia Y Z,et al.Root-zone cooling effect of water-cooled seedling bed on growth of tomato seedling[J]. Transactions of the CSAE,2014,30 (7):212-218.(in Chinese)
[14]柴立龙,马承伟,张晓蕙.地源热泵温室降温系统的试验研究与性能分析[J].农业工程学报,2008, 24(12):150-154. Chai L L,Ma C W,Zhang X H,et al.Experimental investtigation and performance analysis on ground source heat pump system for greenhouse cooling[J].Transactions of the CSAE,2008,24(12):150-154.(in Chinese)
[15]李霞,解迎革,薛绪掌.温室内密闭小环境降温除湿效果及蒸腾水循环利用[J].农业工程学报,2010, 26(8):254-259. Li X,Xie Y G,Xue X Z,et a1.Effects of cooling,dehumidification and transpiration water recycling of closed micro-environment in greenhouse[J].Transactions of the CSAE,2010,26(8):254-259.(in Chinese)
[16]王吉庆,张百良.几种降温措施在温室夏季降温中的应用研究[J].农业工程学报,2006,22(9):257-260. Wang J Q,Zhang B L.Application of some cooling measures for greenhouse cooling in summer[J]. Transactions of the CSAE,2006,22(9):257-260.(in Chinese)
[17]Kenichiro Y,Mikio Y,Kentaro M.Effect of cooling the root zone with a duct of microporous film on the cultivation of Spinach[J].J Japan Soc Hort Sci,2006,75(1):109-115.
[18]Moon J H,Kang Y K,Suh H D.Effect of root-zone cooling on the growth and yield of cucumber at supraoptimal air temperature[J].Acta Horticulturae,2007,761:271-274.
[19]Huang J Y,Lin C H.Cold water treatment promotes ethylene production and dwarfing in tomato seedlings[J].Plant Physiology and Biochemistry,2003,(41):283-288.
[20]李胜利,刘金,孙治强.不同水温处理对夏季黄瓜穴盘育苗的影响[J].生态学杂志,2012,31(6):1378-1382. Li S L,Liu J,Sun Z Q.Effects of water temperature on cucumber plug breeding in summer[J].Chinese Journal of Ecology,2012,31(6):1378-1382.(in Chinese)
[21]李胜利,陈菲,孙治强.冷水灌溉对高温季节番茄幼苗生长及生理特性的影响[J].河南农业大学学报,2014,48(6):695-700. Li S L,Chen F,Sun Z Q.Effects of cold water irrigation on the growth and physiological characters of tomato seedlings during the high temperature season[J].Journal of Henan Agricultural University, 2014,48(6):695-700.(in Chinese)
[22]Beyza B,Halime P,Yildiz D.Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications[J].Energy Conversion and Managument, 2013,74:446-453.
[23]Sen Z.Run-sums of annual flow series[J].Journal of Hydrology,1997,35(3):311-324.
[24]王谦,孙治强,陈景玲.河南日光温室低温寡照游程特征研究[J].华中农业大学学报,2004,35(4): 125-128. Wang Q,Sun Z Q,Chen J L.The run features of low temperature and overcast days over solar greenhouse[J]. Journal of Huazhong Agricultural University,2004,35(4): 125-128.(in Chinese)
[25]张振贤,程智慧.高级蔬菜生理学[M].北京:中国农业大学出版社,2008. Zhang Z X,Cheng Z H.The advanced vegetable physiology[M]. Beijng:China Agriculture University Press,2008.(in Chinese)
[26]Fujishige N,Sugiyama T,Ogata R.Effect of root temperature on the flower formation and fruit yield of tomatoes[J]. Journal of the Japanese Society for Horticultural Science,1991,60:97-103.
[27]Yamaguchi T,Tsuno Y.Analysis of factors concerning bleeding rate from the basal part of stem in rice plants[J].Journal of Japanese Crop Science,1995,64:703-708.
[28]Nkansah G O,Ito T.Effect of air and root-zone temperatures on physiological characteristics and yield of heat-tolerant and non heat-tolerant tomato cultivars[J].Journal of the American Society for Horticultural Science,1995,64(3):315-320.
[29]杨再强,张婷华,李永秀,等.不同水分胁迫条件下温室番茄茎流和叶片水势的反应[J].中国农业气象,2012,33(3): 382-387. Yang Z Q,Zhang T H,LI Y X,et a1.Response of sap flow and leaf water potential for greenhouse tomato under moisture stress[J].Chinese Journal of Agrometeorolog,2012,33(3): 382-387.(in Chinese)
[30]李胜利,夏亚真,孙治强.水冷苗床对番茄幼苗生理的影响[J].园艺学报,2014,41(7):1461-1466. Li S L,Xia Y Z,Sun Z Q.Effects of root-zone cooling bed with cold water on the physiological mechanism of tomato seedling[J].Acta Horticulturae Sinica,2014,41(7):1461-1466. (in Chinese)
Root-zone Cooling Effect of Different Water-cooled Seedling Bed and Its Effect on the Growth of Tomato Plug Seedlings
LI Sheng-li, NIU Xu-xu, SUN Zhi-qiang
(College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China)
Abstract:In order to alleviate high root-zone temperature injury on intensive seedling production during hot summer. A water-cooled seedling bed was designed, in which underground water was used as the natural coolant. Two different water-cooled seedling beds were exploited in this experiment. Metal stainless steel tube(M-type cooled-bed)and plastic tube(P-type cooled-bed) were used as cooling tube respectively. The seedling bed without root cooling system was used as control(CK).The cooling effect of two different water-cooled seedling bed and its effect on the growth of tomato seedling were investigated. The results showed as follows: the cumulative temperature, mean daily temperature and mean daily maximum temperature of the root-zone both in M and P-type cooled-bed were lowered significantly compared with those of non-cooled seedling bed(CK). The mean daily temperature of M and P-type cooled-bed were 23.2℃ and 26.0℃. The mean high temperature duration of M and P-type cooled-bed above 25℃was 8.3h and 11.6h per day, which were shortened by 7.5h and 4.2h respectively compared with control’s seedling-bed. The growth rate and dry mass accumulation of tomato seedling both in M seedling-bed and P seedling-bed were enhanced significantly, and sap flow velocity, root respiration rate and net photosynthetic rate were also improved. Dry mass of per plant of tomato seedling in two cooled-bed were 4.52mg(M) and 3.90mg(P),which were increased by 58.6% and 36.8% respectively compared with control. Tomato seedling healthy index and the ratio of root to shoot both in two cooled-beds were apparently higher than control. Water-cooled seedling bedbook=20,ebook=23was an effective way to lower the root-zone temperature and it could improve tomato seedling growth during hot summer. The M-type cooled-bed was more beneficial to enhance the growth of tomato seedlings.
Key words:Tomato;Root-zone cooling;Plug seedlings;High temperature duration;Healthy index
作者简介:李胜利(1975-),副教授,主要从事工厂化育苗方面的研究。E-mail:lslhc@yeah.net
基金项目:河南省大宗蔬菜产业技术体系专项(S2010-03-03);国家大宗蔬菜产业技术体系专项(CARS-25-C06)
* 收稿日期:2015-05-24
doi:10.3969/j.issn.1000-6362.2016.01.0032