miR-185对肝癌细胞增殖、凋亡的影响及机制
2016-04-05李曼妮刘建平陶永胜陈静波陈馨馨谭志琴
李曼妮,刘建平,陶永胜,陈静波,陈馨馨,谭志琴
(1公安边防部队总医院,广东深圳 518029;2湖南师范大学附属湘南医院)
miR-185对肝癌细胞增殖、凋亡的影响及机制
李曼妮1,刘建平1,陶永胜1,陈静波1,陈馨馨1,谭志琴2
(1公安边防部队总医院,广东深圳 518029;2湖南师范大学附属湘南医院)
目的 探讨miR-185对肝癌细胞增殖、凋亡的影响及机制。方法 用Targetscanhuman在线软件预测miR-185调控的靶基因;采用荧光素酶报告载体系统检测miR-185对M2型丙酮酸激酶(PKM2)3′UTR荧光酶活性的影响;蛋白质印迹法检测miR-185对PKM2蛋白表达的影响。将肝癌HepG2细胞分为观察1组、对照1组、观察2组、对照2组、观察3组。观察1组转染miR-185mimics,对照1组转染Scramble;观察2组转染PKM2-siRNA,对照2组转染Control-siRNA;观察3组转染miR-185inhibitors与PKM2-siRNA。采用MTT法检测上述5组细胞增殖能力,采用AnnexinV-FITC和PI染色法检测上述5组细胞凋亡率。结果 在线预测软件发现miR-185与PKM2的3′UTR有共同的结合位点,荧光素酶报告载体系统显示在HepG2细胞中miR-185能抑制Wild-PKM2报告质粒组荧光素酶的活性,Westernblotting结果显示miR-185能下调HepG2细胞中PKM2蛋白表达,证实PKM2是miR-185直接调控的靶基因;MTT结果显示,观察1组与观察2组HepG2细胞OD值分别为0.446±0.034、0.472±0.028,与对照1组(0.649±0.041)和对照2组(0.610±0.023)相比,差异均有统计学意义(P均<0.05)。观察3组的OD值为0.606±0.016,与对照1组或对照2组相比,差异均无统计学意义;凋亡实验结果显示,观察1组与观察2组HepG2细胞凋亡率分别为(29.13±2.04)%、(27.46±1.95)%,对照1组、对照2组分别为(8.76±0.53)%、(8.51±0.47)%,观察1组、观察2组与对照1组、对照2组比较,P均<0.05。观察3组的凋亡率为(9.47±0.61)%,与对照1组或对照2组相比,差异均无统计学意义。结论miR-185可抑制人肝癌细胞增殖并诱导细胞凋亡;机制可能是通过下调PKM2表达实现。
肝癌;微小RNA-185;M2型丙酮酸激酶;细胞增殖;细胞凋亡
miRNAs是一类非编码的小RNA分子,其与靶mRNA以碱基互补配对原则结合,使翻译抑制或mRNA降解,从而在转录后水平调控基因表达。最近大量研究显示,miRNAs在原发性肝细胞癌(HCC)生长调控中发挥重要作用[1~4]。Budhu等[5]研究证实有20个miRNAs表达特征与肝癌的转移相关,且能预测肝癌患者的生存和复发,其中一个就是miR-185。miR-185位于22q11.21染色体,研究证实miR-185在多种肿瘤中低表达,且类似抑癌基因样作用[6~8]。Zhi等[9]研究显示,miR-185能抑制肝癌细胞增殖与侵袭,且miR-185在肝癌中低表达与患者的高复发和低生存率相关。M2型丙酮酸激酶(PKM2)是糖酵解过程中的关键限速酶,其功能是催化其底物磷酸烯醇式丙酮酸(PEP)产生丙酮酸。研究[10~13]显示,PKM2在肺癌、前列腺癌、胶质瘤、肝癌等肿瘤中能促进有氧糖酵解与肿瘤的发生。Xu等[14]研究发现,miR-122通过靶向调控PKM2抑制肝癌细胞增殖并诱导细胞凋亡。而miR-185与PKM2在肝癌中的生物作用和相关机制目前尚未完全阐明。本研究通过在线软件预测、荧光素酶报告载体及Western blotting等技术探讨miR-185与PKM2的关系,并进一步分析miR-185在肝癌中的生物学作用及相关分子机制。
1 材料与方法
1.1 材料 人肝癌HepG2细胞由南华大学肿瘤研究所惠赠,细胞用含10%胎牛血清的RPMI1640培养,置于37 ℃、5%CO2的恒温箱中培养。Lipofectamine2000转染试剂购自美国Invitrogen公司,miR-185 mimics、inhibitors及Scramble购自美国Ambion公司,PKM2 siRNA质粒购自Santacruz公司,PKM2 3′UTR的各种报告基因(Wild- PKM2-3′UTR vector,Mut- PKM2-3′UTR vector)、双报告基因载体由广州复能基因公司构建,双荧光素酶活性检测试剂盒购自Promega公司,PKM2抗体和β-actin抗体购自美国Epigentek公司,PRIM1640培养基和小牛血清购自Gibco公司,MTT粉购自美国Sigma公司。
1.2 miRNA和质粒瞬时转染 消化细胞并吹打制成5×104个细胞/mL的悬液,按2 mL/孔铺至6孔板内,置于37 ℃、5%CO2的细胞培养箱中培养至细胞汇合度达30%~50%时用于转染。在无菌EP管中配好Lipofectamin2000及待转染试剂;室温放置20 min,使脂质体与DNA形成复合体。用无血清培养液轻轻洗涤待转染细胞,加入无血清RPMI1640 1 mL,然后将孵育好的载体和脂质体的混合溶液加至6孔板中,将细胞置于37 ℃、5%CO2培养箱中培养,转染6 h后换成RPMI1640完全细胞培养基继续培养48 h。
1.3 靶基因在线预测及荧光素酶活性检测 打开Target scan human软件(http://www.targetscan.org/),在物种中选择人类,在相应miRNA文本框中选择miR-185,然后提交,系统自行运行后出现该miRNA可能调控的基因。培养肝癌HepG2细胞,将HepG2细胞分为实验1、2、3、4组,实验1组转染miR-185与Wild-PKM2,实验2组转染Scramble与Wild-PKM2,实验3组转染miR-185与Mut-PKM2,实验4组转染Scramble与Mut-PKM2,48 h后收获细胞。按照Promega公司双荧光素酶活性检测试剂盒说明书操作,用单光子检测仪检测细胞荧光素酶活性。计算相对荧光素酶活性=萤火虫荧光素酶活性值/海肾荧光素酶活性值。每组实验重复3次。
1.4 PKM2蛋白表达检测 采用Western blotting法。将肝癌HepG2细胞接种到24孔板中,分别转染miR-185 mimics与Scramble序列,48 h后收集细胞,并提取细胞总蛋白。BCA法测定蛋白浓度。各组取等量样本,进行SDS-PAGE凝胶电泳后将蛋白转移至PVDF膜上,5%脱脂牛奶封闭,加入PKM2抗体或β-actin抗体,4 ℃过夜。TBST洗膜30 min,加入二抗室温孵育1 h,TBST洗膜30 min,然后加ECL发光剂,X线片曝光、显影、定影。
1.5 细胞增殖能力检测 采用MTT法。将肝癌HepG2细胞分为观察1组、对照1组、观察2组、对照2组、观察3组。观察1组转染miR-185 mimics,对照1组转染Scramble;观察2组转染PKM2-siRNA,对照2组转染Control-siRNA;观察3组转染miR-185 inhibitors与PKM2-siRNA,培养48 h,收获细胞。消化各组细胞,取200 μL即5 × 103个细胞接种于96孔板中,设复孔6个,培养至近饱和,每孔加20 μL MTT液,孵育4 h,每孔中加入DMSO 150 μL,低速振荡10 min,选择波长为570 nm,于酶标仪上测定各孔OD值,实验重复3次。OD值代表细胞增殖能力。
1.6 细胞凋亡检测 采用AnnexinV-FITC/PI染色法。细胞分组同MTT法,收集各组培养至80%左右汇合度的细胞,用PBS液洗涤细胞2次,离心,取约1×106个细胞,加入100 μL的结合缓冲液悬浮细胞。加Annexin V-FITC 5 μL混匀,再加PI 1 μL混匀。室温下避光反应15~30 min,上机,流式细胞仪检测。
1.7 统计学方法 采用SPSS13.0统计软件。计量资料以表示,两组间比较采用t检验,多组间比较采用单因素方差分析。P<0.05为差异有统计学意义。
2 结果
2.1 荧光素酶活性及PKM2蛋白表达比较 在线预测软件(Targetscanhuman)预测发现miR-185与PKM2有共同的结合位点。荧光素酶活性检测结果显示,实验1、2、3、4组HepG2细胞荧光素酶活性强度分别为0.582±0.051、0.973±0.053、0.880±0.032、0.970±0.020,实验1组与实验2组比较,P<0.01;实验3组与实验4组比较差异无统计学意义。表明miR-185mimics对突变型MutPKM2质粒组荧光素酶活性强度无明显影响,但能明显抑制野生型Wild-PKM2报告质粒组荧光素酶活性。Westernblotting结果显示,在肝癌HepG2细胞中转染miR-185 48h后PKM2蛋白相对表达量为0.437±0.015,较转染Scramble者(1.204±0.183)明显下调(P<0.01)。结果均支持PKM2是miR-185直接调控的靶基因。
2.2 各组肝癌细胞增殖能力比较MTT结果显示,观察1组与观察2组HepG2细胞的OD值分别为0.446±0.034、0.472±0.028,与对照1组(0.649±0.041)和对照2组(0.610±0.023)相比,差异均有统计学意义(P均<0.05)。观察3组的OD值为0.606±0.016,与对照1组或对照2组比较差异均无统计学意义。在肝癌细胞中外源高表达miR-185或沉默PKM2的表达,均能明显抑制HepG2细胞增殖,而miR-185inhibitors可拮抗si-PKM2对HepG2细胞的增殖抑制作用。
2.3 各组肝癌细胞凋亡情况比较 凋亡实验结果显示,观察1组与观察2组HepG2细胞凋亡率分别为(29.13±2.04)%、(27.46±1.95)%,对照1组、对照2组分别为(8.76±0.53)%、(8.51±0.47)%,观察1组、观察2组与对照1组、对照2组比较,P均<0.05;观察3组的细胞凋亡率为(9.47±0.61)%,与对照1组或对照2组相比,差异均无统计学意义。在肝癌细胞中外源高表达miR-185或沉默PKM2表达,均能明显诱导HepG2细胞发生凋亡,而miR-185inhibitors可拮抗si-PKM2对HepG2细胞的凋亡诱导作用。
3 讨论
HCC是一种常见的恶性肿瘤。2008年调查显示,全球的新发病例超过700 000例[15]。肝癌患者临床治疗效果较差,通常5年以上生存仅5%~9%。手术切除、肝移植及射频消融术是早期HCC患者的主要治疗手段,但遗憾的是大部分患者在确诊时已达晚期阶段。此外,HCC对多种化疗方案高度耐药,诸多患者死于癌症复发。因此,新的治疗策略开发迫在眉睫。近年来,大量研究表明miRNA在肝癌发生发展中起重要调控作用,进一步研究其相关调控机制可能为肝癌的治疗干预提供新的靶点。
在肿瘤发生中,miRNA通过调控其特定靶基因发挥癌基因或抑癌基因样作用。在肿瘤中高表达的miRNAs通过下调肿瘤抑制基因参与肿瘤的形成。然而,在肿瘤中表达缺失的miRNAs往往使癌基因表达上调。miRNA在肿瘤的发生发展过程中起重要作用,其主要原因:①miRNA在肿瘤中的表达水平明显异于正常组织和血液;②miRNA在体内外表达调控能修饰肿瘤的表型[16,17]。miRNA在不同肿瘤中的功能关键与其调控的靶点相关。大量研究表明,miR-185在多种肿瘤组织或细胞中表达下调,包括肝癌,并在肿瘤细胞的增殖、转移及凋亡过程中发挥重要作用。miR-185在前列腺癌通过靶向雄激素受体抑制肿瘤细胞的增殖、迁移与侵袭[6]。miR-185在胶质瘤中通过直接靶向DNMT1、RhoA及CDC42抑制肿瘤细胞的增殖与侵袭[7]。miR-185在乳腺癌中靶向调控c-Met,抑制乳腺癌细胞的增殖[8]。miR-185在肝癌细胞中低表达与患者复发、生存时间相关,即低表达者复发率高且生存时间短,而高表达者则相反[9]。Qadir等[18]研究发现,miR-185在肝癌细胞中通过靶向DNMT1/PTEN/Akt通路抑制肿瘤细胞生长。本研究结果发现,在肝癌细胞中高表达miR-185不仅能抑制肿瘤细胞增殖,还能诱导肿瘤细胞凋亡。
最初研究发现PKM2在胚胎组织中表达,而近年研究发现PKM2在肿瘤组织中亦高表达[19]。研究显示,PKM2在多种肿瘤中高表达,包括肝癌,且PKM2在肝癌中高表达与患者不良预后相关[20]。Kefas等[21]在胶质瘤细胞和胶质瘤干细胞中用siRNA特异性敲低PKM2,发现细胞的增殖、侵袭及存活率明显降低。此外,沉默PKM2后还能抑制胶质瘤细胞的新陈代谢,谷胱甘肽和ATP水平明显降低。PKM2在前列腺癌中高表达,在前列腺细胞中沉默PKM2能明显抑制细胞的增殖能力[22]。PKM2在乳腺癌中高表达,其高表达与乳腺癌患者的预后相关,且能促进乳腺癌干细胞的自我更新与成球能力,其机制可能与Wnt/β-catenin通路相关[23]。PKM2在胃癌中高表达,而外源高表达miR-let-7a能下调PKM2表达水平,并通过靶向调控PKM2从而抑制胃癌细胞的增殖、迁移与侵袭[24]。本研究通过在线预测软件与荧光素酶报告载体证实PKM2是miR-185调控的直接靶基因。在肝癌细胞中沉默PKM2能抑制肝癌细胞的增殖并诱导凋亡,而将miR-185抑制剂与siRNA-PKM2共同转染于肝癌细胞,能逆转肝癌细胞的增殖抑制与凋亡诱导作用;说明miR-185可能通过靶向调控PKM2抑制肝癌细胞的增殖与诱导凋亡。上述结果以PKM2为靶点揭示了miR-185在肝癌中的抑瘤机制,为今后肝癌的治疗干预提供了新的切入点。
[1]SongX,WangZ,JinY,etal.LossofmiR-532-5pinvitropromotescellproliferationandmetastasisbyinfluencingCXCL2expressioninHCC[J].AmJTranslRes, 2015,7(11):2254-2261.
[2]WangL,YueY,WangX,etal.FunctionandclinicalpotentialofmicroRNAsinhepatocellularcarcinoma[J].OncolLett, 2015,10(6):3345-3353.
[3]MengX,LuP,FanQ.miR-367promotesproliferationandinvasionofhepatocellularcarcinomacellsbynegativelyregulatingPTEN[J].BiochemBiophysResCommun, 2016,470(1):187-191.
[4]ZhaoL,WangW.miR-125bsuppressestheproliferationofhepatocellularcarcinomacellsbytargetingSirtuin7[J].IntJClinExpMed, 2015,8(10):18469-18475.
[5]BudhuA,JiaHL,ForguesM,etal.Identificationofmetastasis-relatedmicroRNAsinhepatocellularcarcinoma[J].Hepatology, 2008,47(3):897-907.
[6]QuF,CuiX,HongY,etal.MicroRNA-185suppressesproliferation,invasion,migration,andtumorigenicityofhumanprostatecancercellsthroughtargetingandrogenreceptor[J].MolCellBiochem, 2013,377(1-2):121-130.
[7]ZhangZ,TangH,WangZ,etal.MiR-185targetstheDNAmethyltransferases1andregulatesglobalDNAmethylationinhumanglioma[J].MolCancer, 2011,10:124.
[8]FuP,DuF,YaoM,etal.MicroRNA-185inhibitsproliferationbytargetingc-Metinhumanbreastcancercells[J].ExpTherMed, 2014,8(6):1879-1883.
[9]ZhiQ,ZhuJ,GuoX,etal.Metastasis-relatedmiR-185isapotentialprognosticbiomarkerforhepatocellularcarcinomainearlystage[J].BiomedPharmacother, 2013,67(5):393-398.
[10]ChristofkHR,VanderHeidenMG,HarrisMH,etal.TheM2spliceisoformofpyruvatekinaseisimportantforcancermetabolismandtumourgrowth[J].Nature, 2008,452(7184):230-233.
[11]SunQ,ChenX,MaJ,etal.Mammaliantargetofrapamycinup-regulationofpyruvatekinaseisoenzymetypeM2iscriticalforaerobicglycolysisandtumorgrowth[J].ProcNatlAcadSciUSA, 2011,108(10):4129-4134.
[12]YangW,XiaY,HawkeD,etal.PKM2phosphorylateshistoneH3andpromotesgenetranscriptionandtumorigenesis[J].Cell, 2012,150(4):685-696.
[13]XuQ,LiuX,ZhengX,etal.PKM2regulatesGli1expressioninhepatocellularcarcinoma[J].OncolLett, 2014,8(5):1973-1979.
[14]XuQ,ZhangM,TuJ,etal.MicroRNA-122affectscellaggressivenessandapoptosisbytargetingPKM2inhumanhepatocellularcarcinoma[J].OncolRep, 2015,34(4):2054-2064.
[15]JemalA,BrayF,CenterMM,etal.Globalcancerstatistics[J].CACancerJClin, 2011,61(2):69-90.
[16]SaplacanRM,MirceaPA,BalacescuL,etal.MicroRNAsasnon-invasivescreeningbiomarkersofcolorectalcancer[J].ClujulMed, 2015,88(4):453-456.
[17]XieC,HanY,LiuY,etal.miRNA-124down-regulatesSOX8expressionandsuppressescellproliferationinnon-smallcelllungcancer[J].IntJClinExpPathol, 2014,7(11):7518-7526.
[18]QadirXV,HanC,LuD,etal.miR-185inhibitshepatocellularcarcinomagrowthbytargetingtheDNMT1/PTEN/Aktpathway[J].AmJPathol, 2014,184(8):2355-2364.
[19]LluoW,SemenzaGL.EmergingrolesofPKM2incellmetabolismandcancerprogression[J].TrendsEndocrinolMetab, 2012,23(11):560-566.
[20]HuW,LuSX,LiM,etal.PyruvatekinaseM2preventsapoptosisviamodulatingBimstabilityandassociateswithpooroutcomeinhepatocellularcarcinoma[J].Oncotarget, 2015,6(9):6570-6583.
[21]KefasB,ComeauL,ErdleN,etal.PyruvatekinaseM2isatargetofthetumor-suppressivemicroRNA-326andregulatesthesurvivalofgliomacells[J].NeuroOncol, 2010,2(11):1102-1112.
[22]WongN,YanJ,OjoD,etal.ChangesinPKM2associatewithprostatecancerprogression[J].CancerInvest, 2014,32(7):330-338.
[23]ZhaoZ,SongZ,LiaoZ,etal.PKM2promotesstemnessofbreastcancercellbythroughWnt/β-cateninpathway[J].TumourBiol, 2015,37(3):4223-4234.
[24]TangR,YangC,MaX,etal.MiR-let-7ainhibitscellproliferation,migration,andinvasionbydown-regulatingPKM2ingastriccancer[J].Oncotarget, 2016,7(5):5972-5984.
Effects of miR-185 on proliferation and apoptosis of hepatocellular carcinoma cells
LIManni1,LIUJianping,TAOYongsheng,CHENJingbo,CHENXinxin,TANZhiqin
(1GeneralHospitalofPublicSecurityFrontierDefense,Shenzhen518029,China)
Objective To investigate the effects of miR-185 on proliferation and apoptosis of hepatocellular carcinoma cells and its mechanism.Methods The online prediction software was employed to predict the target genes of miR-185. The effect of miR-185 on the activity of pyruvate kinase isozyme type M2 (PKM2) 3′UTR was examined by luciferase reporter vector system. The effect of miR-185 on PKM2 protein expression was observed by Western blotting. HepG2 cells were divided into the observation group 1, control group 1, observation group 2, control group 2, and observation group 3. The observation group 1 was transfected by miR-185 mimics, the control group 1 was transfected with scramble, the observation group 2 was transfected by PKM2-siRNA, the control group 2 was transfected by control-siRNA, and the observation group 3 was transfected by miR-185 inhibitors and PKM2-siRNA. MTT assay was used to observe the changes of cell proliferation in the five groups, and Annexin V-FITC and PI staining were used to measure the apoptotic rate of the five groups.Results The online prediction software confirmed that miR-185 and 3'UTR of PKM2 had the common binding sites. Luciferase reporter vector system showed that miR-185 inhibited the luciferase activity of Wild-PKM2 reporter plasmid. Western blotting showed that the protein level of PKM2 was decreased by miR-185, which showed that PKM2 was a target gene directly regulated by miR-185. MTT assay showed that the OD values of HepG2 cells in the observation group 1 and observation 2 were 0.446±0.034 and 0.472±0.028, respectively, which were significantly lower than those in control group 1 (0.649±0.041) and control group 2 (0.610±0.023) (allP<0.05). The OD value of the observation group 3 was 0.606±0.016, which was not significantly different as compared with that of the control group 1 or the control group 2. The apoptotic rates of HepG2 cells in the observation group 1 and observation group were 29.13%±2.04% and 27.46%±1.95%, which were significantly higher than those in control group 1 (8.76%±0.53%) and control group 2 (8.51%±0.47%), and the difference was statistically significant between the observation group 1, 2 and the control group 1, 2 (allP<0.05). The apoptotic rate of the observation group 3 was 9.47%±0.61%, which was not significantly different from that of the control group 1 or 2.Conclusion miR-185 inhibits cell proliferation and induces apoptosis by down-regulating PKM2 expression in hepatocellular carcinoma.
hepatocellular carcinoma; microRNA-185; pyruvate kinase isozyme type M2; cell proliferation; apoptosis
湖南省卫生厅课题(B2014-067)。
李曼妮(1970-),女,副主任医师,博士,主要研究方向为肝病及感染病学。E-mail:limanni1234@163.com
10.3969/j.issn.1002-266X.2016.41.003
R735.7
A
1002-266X(2016)41-0010-04
2016-02-11)