浑善达克沙地沙丘剖面颜色变化的古气候意义
2016-03-30付旭东周广胜张新时
付旭东 周广胜 张新时
(1.河南大学环境与规划学院 河南开封 475004;2.中国科学植物研究所植被与环境变化国家重点实验室 北京 100093)
浑善达克沙地沙丘剖面颜色变化的古气候意义
付旭东1,2周广胜2张新时2
(1.河南大学环境与规划学院河南开封475004;2.中国科学植物研究所植被与环境变化国家重点实验室北京100093)
摘要为研究中国沙漠东部广泛分布的风成沙—古土壤沉积序列的颜色变化与古气候之间的可能联系,以浑善达克沙地为研究区,测定了7个天然风成沙—古土壤沉积序列的颜色(L*a*b*)、有机碳、总氮和粒度。结果表明:L*(亮度)、a*(红度)、b*(黄度)值分别介于32.41~65.89,2.73~7.52和-1.68~17.16;L*、a*、b*值之间存在正相关关系,其中L*和b*之间的相关性最显著(R2=0.90),而L*和a*之间的相关性最低(R2=0.26);L*、a*、b*值在垂直方向上具有相同的变化趋势和特征,它们在风成沙层位处为高值,在灰色—黑色砂质古土壤层位处为低值,但L*值变化较大,a*和b*值变化较小。均值的非参数检验表明L*可指示风成沙—古土壤沉积序列的风成沙和古土壤层的变化,而a*在这类沉积序列上变化不敏感。影响L*的主要因素与有机质含量和成壤作用有关,它们都与东亚夏季风强弱变化关系密切,因此L*有明确的古气候意义;L*低值对有机质含量增加和成壤作用的加强具有指示作用,是东亚夏季风增强的信号。基于颜色参数L*可以很好地重建中国沙漠东部风成沙—古土壤沉积序列的古气候变化。
关键词浑善达克沙地风成沙—古土壤亮度有机质东亚夏季风
颜色是土壤、沉积物最直观的物理特征之一[1-3]。传统的Munsell色系是基于肉眼对样品与标准色卡图的对比,带有较大的主观性,且得到的结果是定性的,难以区别细微的色差,不适宜数学分析[4-6]。1976年CIE提出了一个新的三维色系(CIE/L*a*b*)[7],它用便于仪器测量的3个参数L*a*b*(亮度、红度和黄度)定量地表示物体颜色,避免了肉眼判别颜色的主观误差,使得物体颜色的描述更加客观、精准和便捷[3]。鉴于CIE/L*a*b*对颜色表征的这些优点,它被逐渐引入到深海沉积[8-11]、黄土—古土壤序列[1,12-19]、湖泊沉积[20-24]、南方红土[3,25]、白垩纪地层[26]和现代表土[1,27]的颜色定量描述,以探讨海相沉积和陆相沉积颜色变化可能蕴含的不同尺度的气候信息。
风成沙—古土壤沉积序列广泛分布于中国沙漠东部[28-30],如呼伦贝尔[31]、科尔沁[32]、浑善达克[33]和毛乌素[34]沙地的固定半固定沙丘上都普遍保留有风成沙—古土壤沉积序列,它们可能记录了千年尺度的气候变化信息。然而,到目前为止,对这类沉积序列在沙丘剖面呈现的颜色变化所蕴含的古气候信息报道还很少。本研究以浑善达克沙地为研究区,选择典型风成沙—古土壤沉积序列,用CIE/L*a*b*色系定量表征颜色,探讨风成沙—古土壤沉积序列的颜色差异,影响颜色变化的主要因素以及颜色与古气候变化的可能关系。
1研究区与方法
1.1研究区概况
浑善达克沙地(42°30′N~44°30′N,112°30′E~118°E)位于内蒙古高原东南部锡林郭勒大草原上,东西长约360 km,南北宽10~30 km,面积约2.14×104km2(图1)。它是一个典型的固定、半固定沙地,沙丘相对高度为15~20 m。年降水量150~ 400 mm,年平均气温2℃~5℃,全年盛行西风、西北风[35]。研究区全新世沉积以风成沉积为主[36-38],广泛分布于沙地内部及其周边地区。沙丘剖面普遍可见4~6层风成沙和3~5层灰—黑色砂质古土壤[36-38]。
图1 浑善达克沙地概况与剖面位置Fig.1 Schematic map of Otindag sandy land and the location of profile sites
1.2沙丘剖面的样品采集与分析
1.2.1沙丘剖面的样品采集
基于研究区大量的野外考察,选择该沙地东、南、西、北和中部7个天然保留较好的沙丘剖面(图1):Profile 1 (42°53′ N,116°21′ E)、Profile 2 (43°15′ N,116°08′ E)、Profile 3 (42°40′ N,115°56′ E)、Profile 4 (42°55′ N,115°25′ E)、Profile 5 (42°52′ N,115°24′ E)、Profile 6 (42°56′ N,114°48′ E)、Profile 7 (42°43′ N,116°10′ E)。其中Profile 1~Profile 3和Profile 6为固定沙丘人工开挖后的自然剖面,其余3个剖面为固定沙丘被风蚀后残存的露头剖面。这7个剖面最显著的特征是风成砂层与灰/黑色砂质土壤相互叠覆交替出现(图2),砂质土壤最多可达4层;在灰/黑色砂质土壤中可见虫孔、白色钙质胶膜、土壤团粒状结构和明显的成壤特征,且砂质土壤层的机械组成明显细于砂层的颗粒组成。根据每个沙丘剖面风成砂层与灰/黑色砂质土壤层的颜色变化,从其底部依次向上采样,记录取样深度(图2)。
图2 浑善达克沙地沙丘剖面特征与样品采集Fig.2 Field paleosol-sand sedimentary profiles and sampling sites across Otindag sandy land
1.2.2样品的颜色、粒度、有机碳和总氮测定
将沙丘剖面中采集的风成沙、砂质古土壤样品在自然条件下风干,随机分为4等份,分别测定颜色、粒度、有机碳和总氮。样品颜色的测定使用日本Minolta-CM2002光谱光度计测量,将样品粉碎均匀后,平铺在一个无色透明的玻璃板上,仪器可定量输出颜色数值,结果用L*(亮度)、a*(红度)、b*(黄度)表示。粒度分析使用英国Malvern公司的Mastersizer 2000激光粒度仪测定,实验的前处理按照肖举乐等[39]提出的步骤进行,其测量误差为±2%。样品有机碳的测定使用重铬酸钾—外加热法,按照GB7857—87标准进行测定,分析误差为±0.1%[40]。总氮的测定使用开氏定氮法,按照GB7173—87标准进行测定,分析误差为±0.1%[40]。
1.3数据分析
所有颜色参数的统计计算、相关分析、回归分析和均值的非参数检验(Cruskal-Wallis秩和检验),都在IBM SPSS Statistics 20.0软件上运行,统计检验显著水平P<0.05。
2结果
2.1风成沙—古土壤沉积序列颜色的差异
浑善达克沙地7个天然风成沙—古土壤沉积序列的颜色测定结果显示:L*(亮度)值介于32.41~65.89,其中风成沙的L*值为45.74~65.89,灰色古土壤的L*值为41.27~49.81,黑色古土壤的L*值为32.41~41.07;a*(红度)值介于2.73~7.52,其中风成沙的a*值为3.41~7.52,灰色古土壤的a*值为3.31~7.50,黑色古土壤的a*值为2.73 ~5.25;b*(黄度)值介于-1.68~17.16,其中风成沙的b*值为7.46~17.16,灰色古土壤的b*值为2.75~8.84,黑色古土壤的b*值为-1.68~1.84。整体上L*值变化较大,而a*和b*值变化较小。
所有风成沙—古土壤沉积剖面中风成沙、灰色古土壤和黑色古土壤L*a*b*均值的非参数检验(Cruskal-Wallis秩和检验)显示:风成沙、灰色古土壤和黑色古土壤的L*、b*值存在显著差异(P<0.05);但风成沙和灰色古土壤的a*值差异不明显(P>0.05),而它们与黑色古土壤的a*值有显著性差异(P<0.05),见图3。
图3 风成沙—古土壤沉积序列中风成沙、灰色古土壤和黑色古土壤L*a*b*均值的非参数检验Fig.3 Nonparametric tests of mean L*a*b* value on the paleosol-sand stratigraphic profiles across Otindag sandy land
2.2风成沙—古土壤沉积序列颜色的垂直变化
浑善达克沙地3个典型风成沙—古土壤沉积序列的颜色在垂直方向上显示出规律性的变化(图4):即随着剖面深度、风成沙和古土壤层的变化,L*、a*、b*值都呈现相似的变化曲线;它们在风成沙层位处都为高值,在灰色、黑色古土壤层位处会突然降低,但在黑色古土壤层位处会降低得更小,整体上风成沙的L*值>灰色古土壤的L*值>黑色古土壤的L*值,a*值和b*值亦是如此规律,但L*变化值>b*变化值>a*变化值;沙含量(>63 μm,%)在垂直方向上也表现出与L*、a*、b*值相似的变化趋势和特征(图4)。然而,粉沙含量(63~4 μm,%)、黏土含量(<4 μm,%)、有机碳(SOC)、总氮(TN)在垂直方向上却表现出与L*、a*、b*、沙含量变化趋势和特征相反的曲线:它们的值在风成沙层位处都为低值,在灰色、黑色古土壤层位处会突然升高,但在黑色古土壤层位处会升高得更大,整体上黑色古土壤的SOC >灰色古土壤的SOC >风成沙的SOC,总氮、粉沙和黏土含量亦是如此规律(图4,剖面见图2)。研究区其余4个风成沙—古土壤沉积序列的L*、a*、b*、粒度(沙、粉沙、黏土含量)、SOC、TN在垂直方向上也遵循上述的变化趋势和特征。
图4 沙丘剖面的颜色参数与粒度、有机质、总氮的垂直变化Fig.4 Vertical distribution of color parameters, grain size, SOC and TN along the typical paleosol-sand profiles
2.3风成沙—古土壤沉积序列颜色参数与粒度、有机质、总氮的关系
浑善达克沙地风成沙—古土壤沉积序列颜色参数的相关分析显示,它们之间存在显著的正相关(表1),其中L*与b*的相关性最显著(r=0.949,n=36,P<0.01),而L*与a*的相关性最低(图5)。L*、a*、b*与沙含量(>63 μm,%)存在显著的正相关(n=36,P<0.05),与粉沙(63~4 μm,%)、黏土含量(<4 μm,%)、有机质(SOC)、总氮(TN)存在显著的负相关(n=36,P<0.05),但L*与沙、粉沙、黏土含量、SOC、TN的相关性和显著性更高(n=36,P<0.01,表1)。进一步的研究显示:风成沙—古土壤沉积序列的L*值随有机碳、总氮、粉沙和黏土含量对数值的增加呈线性的下降趋势,随沙含量对数值的增加呈线性增加趋势(图6)。
表1 风成沙—古土壤沉积序列颜色参数与粒度、有机质、总氮的Pearson相关分析
注:表内带**数据表示在0.01水平上显著相关;带*数据表示在 0.05水平上显著相关。
图5 风成沙—古土壤沉积序列颜色参数间的相关关系Fig.5 Relationship between L* value and a*,b* value of paleosol-sand profiles
3讨论
3.1影响风成沙—古土壤沉积序列颜色参数的因素
浑善达克沙地广泛分布的风成沙—古土壤沉积序列,在野外露头剖面上表现为风成沙层与浅灰—灰黑色的砂质土壤层交互出现(图2),这是它们最直观的野外现象。定量颜色测定和数据分析表明所有研究剖面的L*(亮度)和b*(黄度)在风成沙、灰色砂质土壤、黑色砂质土壤层位处存在显著差异,但a*(红度)在风成沙和灰色砂质土壤层位处的差异不明显(图3,4)。这表明,CIE/L*a*b*色系的3个颜色参数中只有L*和b*可以指示风成沙—古土壤沉积剖面的层位变化,而a*对这类沉积剖面的岩性变化指示不敏感(图4),这与a*(红度)可指示陆相沉积中的黄土—古土壤序列[14-19]、三趾马红土[41]、南方红土[3,25]、白垩纪地层[26]岩性变化的结论并不一致。土壤学研究表明,赤铁矿和针铁矿等铁氧化物是土壤主要的致色矿物[1,42],赤铁矿呈红色,使土壤呈现红色,针铁矿呈黄色—棕色,使土壤呈现明亮的黄色[43]。前人研究显示,只需1.7%的赤铁矿就可使土壤变红色,赤铁矿含量与土壤红度指数呈显著的正相关[44-45];何柳等[17]对黄土高原东南缘西峰和渭南黄土剖面的颜色研究也表明黄土—古土壤序列的a*主要受控于铁氧化物的含量和种类。土壤中的赤铁矿和针铁矿主要有两种来源,一种来自对母质矿物的继承和保留,另一种来自土壤发育过程中含Fe硅酸盐矿物和其他Fe氧化物的转化[46]。末次冰盛期(LGM)以来研究区的物源并未发生变化[47-48],因而成壤作用应是影响这两种矿物在风成沙—古土壤沉积剖面上变化的主要因素。中国现代表土[1]和西北干旱区现代地表沉积物[27]颜色与气候的定量分析都表明在干冷的干旱—半干旱区,赤铁矿的形成会受到强烈抑制,红度a*在干旱—半干旱区是不敏感的。地处中国北方干旱半干旱区的浑善达克沙地,LGM以来一直维系着草原或荒漠的景观[38,49-50],在这种气候环境条件下,成壤作用较弱,所生成的赤铁矿也较少,因此使得a*值在风成沙—古土壤沉积序列上变化不明显。
图6 风成沙—古土壤沉积序列L*值与粒度、有机质、总氮的关系Fig.6 The functional relationship between L* value and grain size, organic carbon, total nitrogen of paleosol-sand profiles
浑善达克沙地风成沙—古土壤沉积序列颜色参数之间存在正相关关系(表1),其中L*和a*值的相关性最低(R2=0.26),而L*和b*值的相关性最高(R2=0.9),它们在每个沙丘剖面的垂直方向上也表现出相似的变化趋势和特征(图4),这充分说明L*和b*值可能受控于相同的气候因子,具有较为一致的致色物质。由于b*在风成沙—古土壤沉积剖面上的变化值低于L*(图4),因此讨论颜色参数L*的影响因素将更有实际意义。回归分析显示:研究区风成沙—古土壤沉积序列的L*与SOC、TN、黏土和粉沙含量存在显著的负相关关系,其相关系数R2分别为0.89、0.85、0.67和0.63 (图6);与沙含量存在明显的正相关关系(R2=0.55),这说明风成沙—古土壤沉积序列的L*会受有机质含量和土壤机械组成的影响,它能指示此类沉积剖面有机质和成壤作用的变化,这与深海沉积[8-11]以及陆相沉积中的黄土—古土壤序列[17-19]、湖泊沉积[24]的L*能指示有机质含量变化的结论是一致的,杨胜利等[1]对中国表土颜色的定量研究也支持该结论。对于风成沙—古土壤沉积序列的L*与CaCO3含量是否存在关联,需进一步的研究。
综上所述,影响浑善达克沙地风成沙—古土壤沉积序列颜色变化的主要因素是有机质含量和成壤作用,它们与颜色参数中的L*关系最密切。
3.2风成沙—古土壤沉积序列颜色变化的驱动机制
浑善达克沙地位于中国北方干旱半干旱的温带草原带内,在这种水分限制的草地生态系统中,降水量是维系植物生长和衰亡的决定性生态因子[51-52],在干旱的年份,降水量的减少会导致植物有效水分利用的降低,诱发大量的多年生植物死亡[52]。因此,全球和区域降水格局的变化会影响区域荒漠化程度的改变,这也是地球上主要沙漠收缩和扩张的主要驱动力[53-54]。研究区地处现代东亚夏季风的北部边缘[55],末次冰盛期(LGM)以来东亚夏季风降水曾在该区域经历多次的增强与衰弱[29-34,37-38,56-57],这表明浑善达克沙地也经历了多次的收缩和扩张。当东亚夏季风增强时,伴随而来的雨带推进给研究区带来更多的降水,提高了区域植被的盖度和生产力,促进地表有机质的积累,在风成沙层上直接发育砂质土壤,有机质含量的增加使砂质土壤颜色变深[1,12,19],因而L*(亮度)就表现的小;当东亚夏季风减弱时,雨带后撤导致降水量的减少会降低区域植被的盖度和生产力,诱发研究区发生荒漠化,以前被固定的沙丘又重新活化,沙地向外扩张,形成风成砂层,有机质含量的减少和沙含量的增加使其颜色变浅[1,19,24],因此L*就变大;东亚夏季风降水雨带如此进退往复就形成了研究区现今的风成沙—古土壤沉积序列。因此,浑善达克沙地风成沙—古土壤沉积序列L*的变化受控于东亚夏季风降水强弱的变化,但更深层次的驱动机制,如北半球冰盖变化、地球轨道参数诱发太阳辐射变化和大气CO2浓度变化等假说[30],还有待进一步深入研究。
3.3风成沙—古土壤沉积序列颜色变化的古气候意义
浑善达克沙地风成沙—古土壤沉积序列的L*(亮度)可以指示其岩性的变化(图3,4),它与SOC、TN、黏土、粉沙含量存在良好的相关关系(表1和图6),能指示此类沉积序列有机质含量的变化,它们都受东亚夏季风降水的驱动;这意味着L*具有明确的气候意义,能反映区域降水量的变化。这与陆相沉积中黄土—古土壤序列[16-19]、湖泊沉积[20-22]和西北干旱区现代地表沉积物[27]的L*可以反映区域降水变化的结论是一致的。需要说明的是,风成沙—古土壤沉积序列的L*与区域降水量呈负相关关系,L*的低值指示区域降水量增加,可能是东亚夏季风降水增强的信号。
4结论
浑善达克沙地风成沙—古土壤沉积序列的颜色参数(L*a*b*)之间存在正相关关系,其中L*和b*的相关性最显著(R2=0.90),而L*和a*的相关性最低(R2=0.26);L*a*b*在垂直方向上具有相同的变化趋势和特征,但L*值变化较大,a*和b*值变化较小;L*(亮度)可指示风成沙—古土壤沉积序列的风成沙层和古土壤层的变化,而a*(红度)在这类沉积序列上变化不明显,其主要原因可能是受沉积环境和区域条件的影响。影响研究区风成沙—古土壤沉积序列L*变化的主要因素与有机质含量和成壤作用有关,它们可能受东亚夏季风降水雨带进退的影响。L*与有机碳、总氮、黏土和粉沙含量呈显著的负相关,其相关系数R2分别为0.89、0.85、0.67和0.63,低的L*值与高的有机质、黏土含量有良好的一致性,说明L*的低值可指示研究区有机质含量增加和成壤作用的加强,是东亚夏季风增强的信号,反之亦然。风成沙—古土壤沉积序列的L*(亮度)可指示其岩性变化、有机质和黏土含量以及区域降水量的变化,它具有明确的古气候意义。中国沙漠东部的呼伦贝尔沙地、科尔沁沙地、浑善达克沙地和毛乌素沙地同处现代东亚夏季风降水的北部边缘地带,末次冰盛期以来东亚夏季风降水雨带曾在这些区域内经历多次的进退,造就了如今广泛分布的风成沙—古土壤沉积序列,在重建这些区域高精度的古气候时,颜色参数L*是一种便捷、可快速获取的气候代用指标。
参考文献(References)
1Yang S L, Fang X M, Li J J, et al. Transformation functions of soil color and climate[J]. Science in China Series D: Earth Sciences, 2001, 44(1): 218-226.
2Hartemink A E, Minasny B. Towards digital soil morphometrics[J]. Geoderma, 2014, 230-231: 305-317.
3Hu X F, Du Y, Guan C L, et al. Color variations of the Quaternary Red Clay in southern China and its paleoclimatic implications[J]. Sedimentary Geology, 2014, 303: 15-25.
4Post D F, Bryant R B, Batchily A K, et al. Correlations between field and laboratory measurements of soil color[M]//Bigham J M, Ciolkosz E J. Soil Color. Madison: Soil Science Society of America, 1993: 35-49.
5Guo Z T, Liu T S, Fedoroff N, et al. Climate extremes in loess of China coupled with the strength of deep-water formation in the north Atlantic[J]. Global and Planetary Change, 1998, 18(3/4): 113-128.
6Wills S A, Burras C L, Sandor J A. Prediction of soil organic carbon content using field and laboratory measurements of soil color[J]. Soil Science Society of America Journal, 2007, 71(2): 380-388.
7Robertson A R. The CIE 1976 color-difference formulae[J]. Color Research & Application, 1977, 2(1): 7-11.
8Nagao S, Nakashima S. The factors controlling vertical color variations of North Atlantic Madeira Abyssal Plain sediments[J]. Marine Geology, 1992, 109(1/2): 83-94.
9Helmke J P, Schulz M, Bauch H A. Sediment-color record from the Northeast Atlantic reveals patterns of millennial-scale climate variability during the past 500000 years[J]. Quaternary Research, 2002, 57(1): 49-57.
10黄维,翦知湣,Hüring C B. 南海北部ODP 1144站颜色反射率揭示的千年尺度气候波动[J]. 海洋地质与第四纪地质,2003,23(3):5-10. [Huang Wei, Jian Zhimin, Hüring C B. The millennial-scale climate fluctuations revealed by the records of color reflectance from ODP site 1144 in the northern South China Sea[J]. Marine Geology & Quaternary Geology, 2003, 23(3): 5-10.]
11Pan Huijuan, Chen Minte. Evaluating color reflectance spectral methods for estimating biogenic contents of South China Sea sediments[J]. Journal of Asian Earth Sciences, 2013, 69: 121-132.
12Porter S C. High-resolution paleoclimatic information from Chinese eolian sediments based on grayscale intensity profiles[J]. Quaternary Research, 2000, 53(1): 70-77.
13Chen Jun, Ji Junfeng, Balsam W, et al. Characterization of the Chinese loess-paleosol stratigraphy by whiteness measurement[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 183(3/4): 287-297.
14Yang S L, Ding Z L. Color reflectance of Chinese loess and its implications for climate gradient changes during the last two glacial-interglacial cycles[J]. Geophysical Research Letters, 2003, 30(20): 2058.
15陈一萌,陈兴盛,宫辉力,等. 土壤颜色—一个可靠的气候变化代用指标[J]. 干旱区地理,2006,29(3):309-313. [Chen Yimeng, Chen Xingsheng, Gong Huili, et al. Soil color-a new sensitive indicator for climatic change[J]. Arid Land Geography, 2006, 29(3): 309-313.]
16丁敏,庞奖励,黄春长,等. 全新世黄土—古土壤序列色度特征及气候意义——以关中平原西部梁村剖面为例[J]. 陕西师范大学学报: 自然科学版,2010,38(5):92-97. [Ding Min, Pang Jiangli, Huang Chunchang, et al. Chroma characteristics and its climatic significance in Holocene loess-paleosol sequence-A case study of the Holocene Liangcun Profile in the western Guanzhong Basin[J]. Journal of Shaanxi Normal University: Natural Science Edition, 2010, 38(5): 92-97.]
17何柳,孙有斌,安芷生. 中国黄土颜色变化的控制因素和古气候意义[J]. 地球化学,2010,39(5):447-455. [He Liu, Sun Youbin, An Zhisheng. Changing color of Chinese loess: controlling factors and paleoclimatic significances[J]. Geochimica, 2010, 39(5): 447-455.]
18Sun Y B, He L, Liang L J, et al. Changing color of Chinese loess: geochemical constraint and paleoclimatic significance[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1131-1138.
19石培宏,杨太保,田庆春,等. 靖远黄土—古土壤色度变化特征分析及古气候意义[J]. 兰州大学学报:自然科学版, 2012,48(2):15-23. [Shi Peihong, Yang Taibao, Tian Qingchun, et al. Chroma characteristics in the loess-paleosol at Jingyuan section and its signification to paleoclimate[J]. Journal of Lanzhou University: Natural Sciences, 2012, 48(2): 15-23.]
20吴艳宏,李世杰. 湖泊沉积物色度在短尺度古气候研究中的应用[J]. 地球科学进展,2004,19(5):789-792. [Wu Yanhong, Li Shijie. Significance of lake sediment color for short time scale climate variation[J]. Advances in Earth Science, 2004, 19(5): 789-792.]
21宋春晖,白晋锋,赵彦德,等. 临夏盆地13~4.4Ma湖相沉积物颜色记录的气候变化探讨[J]. 沉积学报,2005,23(3):507-513. [Song Chunhui, Bai Jinfeng, Zhao Yande, et al. The color of lacustrine sediments recorded climatic changes from 13 to 4.5 Myr in Linxia Basin[J]. Acta Sedimentologica Sinica, 2005, 23(3): 507-513.]
22韩志勇,李徐生. 泥河湾盆地洞沟剖面的光谱光度时间序列[J]. 海洋地质与第四纪地质,2006,26(4):73-79. [Han Zhiyong, Li Xusheng. Spectrophotometric time Series of Donggou Section in Nihewan Basin[J]. Marine Geology & Quaternary Geology, 2006, 26(4): 73-79.]
23Chao Luo, Peng Zicheng, Yang Dong, et al. A lacustrine record from Lop Nur, Xinjiang, China: Implications for paleoclimate change during Late Pleistocene[J]. Journal of Asian Earth Sciences, 2009, 34(1): 38-45.
24田庆春,杨太保,石培宏,等. 可可西里BDQ0608钻孔沉积物色度环境意义及其影响因素[J]. 海洋地质与第四纪地质,2012,32(1):133-140. [Tian Qingchun, Yang Taibao, Shi Peihong, et al. Environmental implication of color reflectance of drill hole BDQ0608, Keke Xili region and its influencing factors[J]. Marine Geology & Quaternary Geology, 2012, 32(1): 133-140.]
25朱丽东,刘名瑜,谷喜吉,等. 金衢盆地网纹红土色度及其环境意义[J]. 海洋地质与第四纪地质,2014,34(3):133-141. [Zhu Lidong, Liu Mingyu, Gu Xiji, et al. Environmental implication of the color index of the plinthitic Red earth in Jinhua-Quzhou Basin[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 133-141.]
26戴霜,刘俊伟,张明震,等. 兰州—民和盆地八盘峡剖面河口群沉积物色度纪录的140.66~124.19 Ma间气候变化[J]. 地质学报,2011,85(6):1058-1067. [Dai Shuang, Liu Junwei, Zhang Mingzhen, et al. Climate change during 140.66-124.19 Ma recorded by the color of the sediments of the Hekou Group from Lanzhou-Minhe Basin[J]. Acta Geologica Sinica, 2011, 85(6): 1058-1067.]
27苗运法,杨胜利,卓世新,等. 我国西北干旱区现代地表沉积物颜色指标与降水关系[J]. 海洋地质与第四纪地质,2013,33(4):77-85. [Miao Yunfa, Yang Shengli, Zhuo Shixin, et al. Relationship between the color of surface sediments and precipitation in arid Northwest China[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 77-85.]
28董光荣. 中国沙漠形成演化气候变化与沙漠化研究[M]. 北京:海洋出版社,2002:3-362. [Dong Guangrong. Climate and Environmental Changes in Deserts of China[M]. Beijing: China Ocean Press, 2002: 3-362.]
29Lu H Y, Yi S W, Xu Z W, et al. Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum[J]. Chinese Science Bulletin, 2013, 58(23): 2775-2783.
30Li Q, Wu H, Yu Y, et al. Reconstructed moisture evolution of the deserts in northern China since the Last Glacial Maximum and its implications for the East Asian Summer Monsoon[J]. Global and Planetary Change, 2014, 121: 101-112.
31Li S H, Sun J M. Optical dating of Holocene dune sands from the Hulun Buir Deser, northeastern China[J]. The Holocene, 2006, 16(3): 457-462.
32Yang L H, Wang T, Zhou J, et al. OSL chronology and possible forcing mechanisms of dune evolution in the Horqin dunefield in northern China since the Last Glacial Maximum[J]. Quaternary Research, 2012, 78(2): 185-196.
33Gong Z, Li S H, Sun J,et al. Environmental changes in Hunshandake (Otindag) sandy land revealed by optical dating and multi-proxy study of dune sands[J]. Journal of Asian Earth Sciences, 2013, 76: 30-36.
34He Zhong, Zhou Jie, Lai Zhongping, et al. Quartz OSL dating of sand dunes of Late Pleistocene in the Mu Us Desert in northern China[J]. Quaternary Geochronology, 2010, 5(2/3): 102-106.
35朱震达,吴正,刘恕,等. 中国沙漠概论[M]. 北京:科学出版社,1980. [Zhu Zhenda, Wu Zheng, Liu Shu, et al. An Outline of Chinese Deserts[M]. Beijing: Science Press, 1980.]
36李森,孙武,李孝泽,等. 浑善达克沙地全新世沉积特征与环境演变[J]. 中国沙漠,1995,15(4):323-331. [Li Sen, Sun Wu, Li Xiaoze, et al. Sedimentary characteristics and environmental evolution of Otindag sandy land in Holocene[J]. Journal of Desert Research, 1995, 15(4): 323-331.]
37Zhou Y L, Lu H Y, Joseph M, et al. Optically stimulated luminescence dating of aeolian sand in the Otindag dune field and Holocene climate change[J]. Science in China Series D: Earth Sciences, 2008, 51(6): 837-847.
38周亚利,鹿化煜,张小艳,等. 末次盛冰期和全新世大暖期浑善达克沙地边界的变化[J]. 第四纪研究,2013,33(2):228-242. [Zhou Yali, Lu Huayu, Zhang Xiaoyan, et al. Changes of the border of Otindag sand field (northern China) during the last glacial maximum and Holocene optimum[J]. Quaternary Sciences, 2013, 33(2): 228-242.]
39Xiao J L, Porter S C, An Z S, et al. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of Central China during the last 13000 yr[J]. Quaternary Research, 1995, 43(1): 22-29.
40刘光崧. 土壤理化分析与剖面描述[M]. 北京:中国标准出版社,1996. [Liu Guangsong. Analysis of Soil Physical and Chemical Properties and Description of Soil Profiles[M]. Beijing: China Standard Press, 1996.]
41程瑜,乔彦松,刘宗秀,等. 甘肃灵台邵寨红粘土的磁性地层及其色度记录[J]. 第四纪研究,2014,34(2):391-398. [Chen Yu, Qiao Yansong, Liu Zongxiu, et al. Magnetostratigraphy and chorma records of a red clay formation near Lingtai county of Gansu province[J]. Quaternary Sciences, 2014, 34(2): 391-398.]
42Viscarra Rossel R A, Minasny B, Roudier P, et al. Colour space models for soil science[J]. Geoderma, 2006, 133(3/4): 320-337.
43Torrent J, Barrón V, Liu Qingsong. Magnetic enhancement is linked to and precedes hematite formation in aerobic soil[J]. Geophysical Research Letters, 2006, 33(2): L02401.
44Torrent J, Schwertmann U, Schulze D G. Iron oxide mineralogy of some soils of two river terrace sequences in Spain[J]. Geoderma, 1980, 23(3): 191-208.
45Torrent J, Schwertmann U, Fechter H, et al. Quantitative relationships between soil color and hematite content[J]. Soil Science, 1983, 136(6): 354-358.
46Schwertmann U. Transformation of hematite to goethite in soils[J]. Nature, 1971, 232(5313): 624-625.
47Xie J, Ding Z L. Compositions of heavy minerals in Northeastern China sandlands and provenance analysis[J]. Science in China Series D: Earth Sciences, 2007, 50(11): 1715-1723.
48谢静,吴福元,丁仲礼. 浑善达克沙地的碎屑锆石U-Pb年龄和Hf同位素组成及其源区意义[J]. 岩石学报,2007,23(2):523-528. [Xie Jing, Wu Fuyuan, Ding Zhongli. Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance[J]. Acta Petrologica Sinica, 2007, 23(2): 523-528.]
49李春雨,徐兆良,孔昭宸. 浑善达克沙地高西马格剖面孢粉分析及植被演化的初步探讨[J]. 植物生态学报,2003,27(6):797-803. [Li Chunyu, Xu Zhaoliang, Kong Zhaochen. A preliminary investigation on the Holocene vegetation changes from pollen analysis in the Gaoximage Section, Hunshandak sandy land[J]. Acta Phytoecologica Sinica, 2003, 27(6): 797-803.]
50Huang F, Kealhofer L, Xiong S, et al. Holocene grassland vegetation, climate and human impact in central eastern Inner Mongolia[J]. Science in China Series D: Earth Sciences, 2005, 48(7): 1025-1039.
51Knapp A K, Fay P A, Blair J M, et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland[J]. Science, 2002, 298(5601): 2202-2205.
52Bai Y F, Wu J G, Xing Q, et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau[J]. Ecology, 2008, 89(8): 2140-2153.
53Goudie A S. The history and evolution of desert hydrology and landforms: the role of climate change[M]//D’Odorico P, Porporato A. Dryland Ecohydrology. New York: Springer, 2006: 129-140.
54D’Odorico P, Bhattachan A, Davis K F, et al. Global desertification: Drivers and feedbacks[J]. Advances in Water Resources, 2013, 51: 326-344.
55Domrös M, Peng G. The Climate of China[M]. Berlin: Springer-Verlag, 1988
56An Zhisheng. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 2000, 19(1/2/3/4/5): 171-187.
57Xiao J L, Si B, Zhai D Y, et al. Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability[J]. Journal of Paleolimnology, 2008, 40(1): 519-528.
Color Variations of Paleosol-Sand Profiles across Otindag Sandy Land and Its Paleoclimatic Implications
FU XuDong1,2ZHOU GuangSheng2ZHANG XinShi2
(1. College of Environment and Planning, Henan University, Kaifeng, Henan 475004, China;2. State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China)
Abstract:The alternating units of dune sands and paleosols are widely distributed acorss arid and semi-arid region of Northern China. To study the possible relationship between sand-paleosol sequences color and paleoclimate, three color parameters, lightness (L*), redness (a*) and yellowness (b*), of seven relict sand-paleosol profiles across Otindag sandy land were measured with a colorimeter. The results show thevalues of L*, a*, b*are 32.41~65.89, 2.73~7.52 and -1.68~17.16, respectively. Three color parameters have significantly positive relationship, correlation between L*and b*is strongly significant (R2= 0.90), but that of L*and a*is quite low (R2=0.26). Although lightness, redness and yellowness have similar trend curves along sand-paleosol profiles, their variations are distinctly different. The changes of L*value are significantly larger than that of both a*and b*values. Nonparametric tests of lightness, redness and yellowness on sand-paleosol profiles indicate that lightness and yellowness are significantly different between sand and paleosols layers, with relatively low lightness and yellowness values in the paleosols layers. By contrast, the redness could hardly indicate their differences between sand and paleosols layers. Variations of the lightness are strongly related to the contents of organic matter, clay and silt. Relative effects of these factors on the lightness decrease gradually from organic matter and clay to silt. These changes are founded to be due to variations in the regional patterns of precipitation, which is possibly attributed to cyclic oscillations of East Asian summer monsoon precipitation. Therefore, the lightness (L*) could be used as a proxy indices to reconstruct past summer monsoon variability. Low values of L*possibly indicate a relatively high organic matter and a strengthening signal of East Asian summer monsoon, and vice versa. These results suggest that quantitative color determination of sand-paleosol sequences using a colorimeter could provide a new clue to understand the East Asian summer monsoon changes.
Key words:Otindag sandy land; sand-paleosol; Lightness (L*); organic matter; East Asian summer monsoon
中图分类号P539.3
文献标识码A
作者简介第一付旭东男1976年出生博士第四纪地质学与全球变化E-mail:xdhz_fu@163.com
基金项目:国家自然科学基金项目(41101089,51309093);河南大学重点基金项目(2012ZRZD07);河南大学科研启动项目(A28106)[Foundation: National Natural Science Foundation of China, No.41101089, 51309093; The Key Natural Science Foundation of Henan University, NO. 2012ZRZD07; The Scientific Research Initiation Foundation of Henan University, NO.A28106]
收稿日期:2015-01-14; 收修改稿日期: 2015-03-18
doi:10.14027/j.cnki.cjxb.2016.01.006
文章编号:1000-0550(2016)01-0070-09