APP下载

大气生成宇宙成因核素10Be在中国黄土中的应用研究进展

2016-03-21孔祥辉周卫健武振坤杜雅娟赵国庆谢兴俊

地球环境学报 2016年3期
关键词:磁化率黄土降水

孔祥辉,周卫健,,武振坤,杜雅娟,赵国庆,谢兴俊

(1. 中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,陕西省加速器质谱技术及应用重点实验室,西安710061;2. 西安加速器质谱中心,西安710061;3. 北京师范大学,北京100875;4. 西安交通大学 人居环境与建筑工程学院,西安 710049)

大气生成宇宙成因核素10Be在中国黄土中的应用研究进展

孔祥辉1,2,周卫健1,2,3,4,武振坤1,2,杜雅娟1,2,赵国庆1,2,谢兴俊1,2

(1. 中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,陕西省加速器质谱技术及应用重点实验室,西安710061;2. 西安加速器质谱中心,西安710061;3. 北京师范大学,北京100875;4. 西安交通大学 人居环境与建筑工程学院,西安 710049)

中国黄土10Be研究大体上经历了三个阶段:(1)地球化学行为研究:10Be主要吸附于细颗粒及粘土颗粒,在黄土中保存性好,不会发生明显的化学迁移过程;(2)古气候代用指标应用:10Be在黄土和古土壤层中的浓度变化与代表气候变化的深海氧同位素曲线变化一致,且可借此进行黄土年代标尺的建立;(3)地球环境示踪研究:示踪地磁场倒转及漂移事件,恢复古地磁场相对强度变化,以及定量重建黄土高原地区古降水变化历史等。由于近年来黄土10Be环境示踪研究取得了可喜的成果,笔者认为有必要从以上三个方面对中国黄土10Be研究历史进行较为系统的梳理回顾,总结当前最新研究进展,展望未来黄土10Be在环境示踪中的研究方向,希望能使读者在短时间内了解中国黄土10Be研究的发展脉络。

大气生成宇宙成因核素10Be;地球化学行为;黄土高原;古地磁场强度;古地磁极性倒转与漂移;古降水

宇宙成因核素(宇成核素)是指入射地球的宇宙射线粒子轰击大气或地表物质发生核裂变所生成的一类核素的总称,如14C、10Be、26Al、36Cl等。其中,14C最早被应用于地学研究中(Libby et al,1949),10Be是仅次于14C而被广泛应用的宇成核素(孔屏,2002)。10Be包括就地生成和大气生成两种来源,前者是地表岩石圈物质受宇宙射线粒子照射所生成,主要用于年代学研究;后者由大气中的N、O元素受宇宙射线粒子(中子或质子)轰击,发生核反应所产生,其产率较就地成因10Be高2 — 3个数量级,主要用于示踪地球环境变化研究。大气生成10Be有2/3形成于上空大气平流层中,剩余部分形成自对流层,其滞留时间分别为1年和1 — 3周。10Be在大气中生成之后,易于被气溶胶所吸附,再随降水过程被携带至地表沉积物中,也有部分10Be通过粉尘干沉降方式进入地表,参与地球化学循环过程。10Be半衰期为1.39 Ma(Korschinek et al,2010),能够进行百年 — 千万年尺度的地球环境示踪研究;10Be对地表固体物质的亲和性极高,极易吸附在沉积物颗粒表面。有研究指出,10Be在土壤及地下水中的分配比例可达到105(Brown et al,1992),使得它能够很好地在地表沉积物中保存(孔屏,2002)。此外,大气中10Be的生成速率受初始宇宙射线通量、太阳活动、地球磁场强度及纬度效应等影响(Lal and Peter,1967;Frank et al,1997;Masarik and Beer,1999;Frank,2000;Wagner et al,2000),而其沉降过程又与降水、大气环流、粉尘通量等气候因素直接相关,因此,地表沉积物中广泛分布的大气生成10Be浓度变化能够有效地指示地球环境事件,成为地球环境示踪研究中一种重要的示踪物。

10Be在地学研究中的迅速发展得益于加速器质谱(AMS)技术的诞生,国际上应用10Be开展了系列环境示踪研究工作,如计算深海沉积速率,建立年代标尺(Inoue and Tanaka,1979;Ku et al,1984);示踪古地磁场倒转和漂移事件,重建地磁场相对强度变化(Robinson et al,1995;Wagner et al,2000;Christl et al,2003;Raisbeck et al,2006;Suganuma et al,2010,2011);指示降水率或冰川积累率变化的指标(Finkel and Nishiizumi,1997;Yiou et al,1997);以及示踪太阳活动等(Beer et al,1990;Geel et al,1999)。相比而言,中国黄土10Be的地球环境示踪工作起步较晚, 且由于国内缺乏专用的AMS设备,发展较缓慢。

黄土是典型的风成沉积物,主要分布在北美、南欧、乌克兰、中亚、阿根廷以及中国。中国黄土由于其沉积区面积辽阔、堆积厚度大、沉积连续性好等特点,成为研究第四纪乃至中新世以来地球环境演化过程绝佳的陆相沉积体系,与深海沉积、极地冰芯构成古气候研究三大支柱。刘东生(1985)最早将黄土-古土壤沉积旋回与深海氧同位素阶段联系在一起,从而明确了中国黄土沉积记录了全球古气候变化的信息。随后,An et al(1990,1991a,1991b)创新性地发现,中国黄土-古土壤序列沉积过程与亚洲季风变迁具有直接联系,不仅阐明了中国黄土与古土壤形成的机制,也为研究亚洲古季风演化与变迁规律提供了新的途径。为深入探讨中国黄土-古土壤序列与古气候之间的关系,针对黄土磁化率、粒度、CaCO3含量、孢粉、同位素含量或比值等代用指标开展了广泛的研究工作。由于科研条件限制,中国黄土10Be的相关研究于20世纪80年代末90年代初才得以开展(沈承德等,1989;Shen et al,1990,1992;Beer et al,1993;Heller et al,1993;Gu et al,1996),早期研究的主要内容集中在黄土10Be的地球化学行为及古气候意义等方面。尽管研究早已指出,中国黄土高原所处的中低纬度地区是开展古地磁场强度变化研究的理想区域(Lal and Peter,1967;Masarik and Beer,1999;Wagner et al,2000),但未见有利用黄土10Be示踪古地磁场变化的尝试成功的报导。直至近10年来,得益于西安 3 MV AMS的建立和运行, 我国学者经过不断的思考与长期的努力,在黄土10Be重建地磁场相对强度变化、示踪古地磁场倒转与漂移事件及定量重建高分辨率古降水变化等方面的研究取得了重大进展(Zhou et al,2007b,2010,2014a,2014b,2015;周卫健等,2010;鲜锋等,2012a,2012b),使得黄土10Be的地球环境示踪研究得到了迅速的发展,也引起了广泛关注。

1 黄土10Be的地球化学行为研究

Be为碱土金属元素,其化学性质活泼,既能溶于酸,也能溶于碱,是典型的两性元素,与Al的性质相似。黄土中大气沉降的10Be倾向于吸附在土壤颗粒表面,极少部分进入矿物晶格,因此,黄土中10Be含量与粒度大小必然存在一定的关系。Shen et al(1990)和沈承德等(1989)最早对此进行了探讨,他们将黄土分离为6种粒径的样品,即<0.2 μm,0.2 — 1 μm,1 — 2 μm,2 — 4 μm,4 — 10 μm及>10 μm,分别测量其中的10Be浓度,发现除<0.2 μm和4 — 10 μm样品出现异常之外,黄土中的10Be含量整体是随着黄土粒度的减小而增加的,这与细颗粒物质比表面积较大,吸附力较强有关;随后,Gu et al(1996)对黄土和红粘土不同粒径样品的10Be浓度再次进行了更为细致的测量工作,结果毫无例外地,所有样品中的10Be含量均单一地呈现为随粒度减小而增加的趋势,且绝大部分吸附于<4 μm的黄土土壤颗粒及粘土颗粒上,该组分的10Be含量在黄土层中占到58% — 74%,在古土壤层中可达到74% — 92%。

尽管中国黄土为风成沉积物,但由于受亚洲夏季风降水的影响,会经受不同程度的风化成壤作用,形成黄土-古土壤交替的沉积序列,而最典型的成壤作用导致的现象是在古土壤底部因降水淋滤而造成的CaCO3结核层。如果某一环境代用指标或其载体在黄土中因成壤作用发生了迁移或变化,该指标所代表的环境信息在时间上就会存在“错位”,无法反映其沉积时期的沉积环境特征。因此,黄土中10Be的地球化学行为特别是成壤作用是否会造成黄土10Be的迁移聚集,成为早期开展黄土10Be环境示踪研究必须考虑的又一问题。黄土中的10Be迁移包括两种方式:一是上述受成壤作用影响在酸性条件下发生向下淋滤而发生的化学性迁移;二是其所吸附的土壤颗粒受生物活动等因素影响而发生的物理性迁移。通常情况下,黄土中元素的迁移主要是化学迁移行为,后者的迁移距离相对而言极其有限,因此,针对黄土10Be保存稳定性的研究主要针对黄土中的降水淋滤作用展开讨论。

由于降水呈弱酸性或近中性,因此沈承德等(1989)对黄土和古土壤样品分别采用不同pH值的酸进行浸析,结果表明,使用pH>1的酸溶解黄土样品后,其浸析液中的10Be浓度是黄土样品本身10Be浓度的1‰ — 1%,即使是pH = 1的酸浸析液10Be浓度也比样品本身低70%以上。此外,他们还对由降水淋滤所形成的古土壤底部钙结核进行了10Be浓度测定,其值为黄土样品10Be浓度的1% — 5%,进一步说明降水对黄土中的10Be淋溶迁移作用极其有限(Shen et al,1990,1992)。Gu et al(1996)的研究也发现黄土中降水淋滤造成的10Be迁移极小,约为3% ± 3%;顾兆炎等(2000)通过对比不同粒径黄土样品中10Be的同位素9Be含量与Al及地球化学行为活泼的Ba、Sr等元素含量的相关性,得到如下两个重要结论:一是9Be浓度随颗粒减小而增加,与Al元素变化具有一致性,两个元素均富集于风化作用最终形成的粘土矿物中;二是9Be / Al比值随粒级减小而增加,而易于风化流失的Sr、Ba与Al比值随粒级减小则显著降低,说明Be元素在表生风化过程中不会像Ba、Sr元素那样发生较大的化学淋滤,而是和Al一样具有较高的抵御风化淋滤的能力。这些研究均表明,呈弱碱性的中国黄土-古土壤沉积物中的10Be不会随降水淋滤而发生显著迁移,这些研究表明利用中国黄土10Be开展地球环境示踪研究的可靠性。

2 黄土10Be的古气候意义及其在建立黄土年代标尺研究中的应用

早期研究发现,黄土与古土壤中的10Be浓度与磁化率变化具有高度的一致性(沈承德等,1989,1995;Shen et al,1992),进而与深海氧同位素的变化能够良好地对比。此外,黄土中的10Be浓度变化与具有气候指示意义的化学成分指标也具有协同变化的特征(Gu et al,1996;顾兆炎等,2000),也表明原始测量的黄土10Be浓度主要反映的是古气候变化的信息。利用黄土-古土壤10Be浓度变化与深海氧同位素阶段的对比匹配,沈承德等(1989,1994a,1995)及Shen et al(1992)先后对不同剖面及不同时间跨度的黄土-古土壤序列建立了年代标尺,同时利用所建年代标尺计算了不同时段黄土的沉积速率及其10Be通量,指出在温暖间冰期,古土壤中的10Be主要来自于就地上空降水携带;而在寒冷的冰期,粉尘的大量搬运导致黄土10Be通量增高。由于10Be是放射性核素,具有对地质样品进行绝对测年的能力,但前提是必须知道黄土中10Be的初始沉积浓度。顾兆炎等(2006)探讨了黄土10Be绝对定年的方法。他们对80个黄土和红粘土全岩样品的10Be和其他化学元素进行了分析,结果表明黄土高原约6 Ma以来年代校正后的10Be浓度与沉积物粒度和风化程度的化学指标之间存在显著相关性,根据这一关系,通过建立10Be浓度与化学指标的经验回归线性模型,可以估计红粘土和黄土形成时的10Be浓度,再利用放射性核素衰变方程获得其绝对年代。尽管黄土10Be能够用于建立年代标尺,对于前一种方法,由于其样品制备流程周期长,测量昂贵,需要数据量大,而磁化率、粒度等易测量、成本低的常规指标已足够开展相同的工作;而对于后一种绝对定年手段,则缺乏可靠性的验证,文章中也指出其定年精度太低,并无后续研究报导,因此,笔者认为两种方法似都难以广泛用于建立黄土-古土壤序列年代标尺的实际工作当中。而采用粒度年代模型、OSL、14C测年、磁性地层年代学等常规测年手段可能更具有可行性。

3 黄土10Be的地球环境示踪研究进展

3.1 黄土10Be重建古地磁场强度变化及示踪古地磁场倒转/漂移事件研究

中国黄土沉积除了能够反映丰富的古气候变化历史外,也记录了古地磁场极性转换的信息(如安芷生等,1977;Kuklaet al,1988;Liu et al,1988;Zhu et al,1998)。古地磁研究报导了第四纪以来的Matuyama / Gauss、Brunhes / Matuyama极性倒转事件,以及Jaramillo、Olduvai极性亚时事件和Lashcamp、Blake漂移事件在黄土中的记录(Heslop et al,2000)。尽管如此,利用古地磁方法测得的各种地磁极性转换事件与全球记录之间存在着不一致的现象,其中争议最多、研究最广的莫过于Brunhes / Matuyama极性倒转事件。该转换界线在黄土中记录于冰期,而在全球记录中却发生在间冰期,成为古地磁研究中一个瓶颈问题(如Tauxe et al,1996;Zhu et al,1998;Zhou and Shackleton,1999;Raisbeck et al,2006;Kong et al,2014)。同时,由于沉积物性质及沉积环境等的影响,利用类似于深海沉积物中古地磁方法重建古地磁场强度的尝试并不成功(Pan et al,2001),亟需探索一种新的手段对黄土古地磁学开展研究,而中国黄土中的宇宙成因核素10Be是解决这些问题的最佳对象。10Be之所以能够示踪古地磁场强度,是因为地球磁场对来自外太空的宇宙射线粒子具有屏蔽作用,通过反射、折射等阻止宇宙射线粒子入射地球表面,这一过程导致大气中生成的10Be产率与地磁场强度形成反相关的关系,即地磁场强度减弱时大气10Be产率即会升高,反之亦然(如Lal and Peter,1967;Masarick et al,1999;Frank,2000;Wagner et al,2000;Muscheler et al,2005)。因此,通过提取沉积物中大气沉降10Be变化可识别古地磁场强度变化信号,示踪古地磁场倒转、漂移事件的存在。这一类工作在深海沉积物和冰芯中早已广泛报导(Robinson et al,1995;Frank et al,1997;Wagner et al,2000;Christl et al,2003;Muscheler et al,2005;Raisbeck et al,2006),而中国黄土10Be示踪古地磁场事件、重建古地磁场强度研究工作大大落后于深海和冰芯研究。究其原因在于中国黄土10Be来源复杂。黄土中的10Be既包含来自粉尘源区,随粉尘被风力搬运至黄土高原的降尘10Be组分,又包含来自就地上空受地磁场调制产生的、直接通过季风降水沉降到黄土高原后受到粉尘稀释影响的10Be组分。由于季风降水和粉尘通量具有不均匀性,掩盖了10Be记录中包含的地磁场变化信息(Zhou et al,2007b,2010)。因此,即便是将黄土10Be浓度转化为通量以消除沉积速率的影响也难以直接显示出地磁场的影响,使得长期以来都未见有黄土10Be示踪地磁场变化的成果报导。与海洋沉积和冰芯中10Be记录能直接指示地磁场漂移事件不同,黄土10Be示踪地磁场信号必须首先将其中受地磁场调制的10Be组分与受气候因素(季风降水和粉尘通量)影响的10Be组分分离开来(Zhou et al,2007a,2007b,2010)。

研究表明,黄土磁化率由两部分组成,一是继承自粉尘源区,被风力搬运到黄土高原的沉降磁化率,还有一部分是黄土成壤过程中形成的成壤磁化率,而这部分与黄土高原降水相关(Zhou et al,1990;Beer et al,1993;Heller et al,1993;沈承德等,1994b)。由于黄土10Be和磁化率均含有继承自粉尘源区和降水作用形成的组分,因而导致它们在黄土和古土壤中的变化趋势高度一致。Zhou etal(2007a,2007b)根据测得的过去130 ka 洛川和西峰黄土10Be曲线与磁化率曲线的高度相似性(r= 0.95), 首次提出了分离中国黄土10Be中代表地磁场强度变化信号与代表气候因素变化信号的“气磁分离思路”。即将受降尘与降水成壤共同作用(气候因素)所形成的磁化率视作分离黄土10Be浓度中降尘与降水组分的气候影响因子,通过两者的线性回归,并结合他们所创建的多变量地学系统中线性回归的“平均值概念”(Zhou et al,2007a),得到反映气候因素变化的10Be浓度序列的回归估计值,其与10Be浓度测量值之间的残差即代表地磁场强度变化引起的降水10Be浓度变化,再通过归一化计算,达到示踪古地磁场变化的目的(Zhou et al,2007a,2007b,2010;周卫健等,2010)。利用上述与传统示踪方法完全不同的“残差示踪法”(Zhou et al,2015),周卫健等首次用中国黄土10Be记录重建了80 ka及130 ka以来来自黄土中的古地磁场强度变化曲线,曲线明确显示了Laschamp(~43 ka)、Blake(122 ka)地磁场漂移事件在洛川和西峰两个典型黄土剖面中记录的位置(Zhou et al,2007b,2010;周卫健等,2010;鲜锋等,2012a,2012b)。特别要提到的是Zhou et al(2014a)利用“残差示踪法”成功地由西峰和洛川黄土10Be确定了Brunhes/Matuyama(B-M)地磁极性倒转事件的位置,结果表明B-M界线在这两个剖面中均记录于古土壤S7中,年代约780 ka,对应于深海氧同位素阶段19(图1),证明中国黄土中记录的B-M事件的发生与全球记录是一致的,为中国黄土年代标尺的建立提供了可靠的年代参考点,也为中国黄土与全球古气候记录对比争议问题提供了依据。

图1 西峰和洛川黄土10Be示踪的Brunhes-Matuyama(B-M)地磁极性倒转事件记录蓝色实线为磁化率,粉红色实线为10Be浓度,黑色实线为分离得到的10Be相对产率曲线,红色实线为深海氧同位素曲线;灰色阴影代表B-M倒转发生的位置,红色虚线是传统古地磁方法测得的B-M界线在两个剖面中记录的位置(改绘自Zhou et al,2014a)。Fig.1 The records of Brunhes-Matuyama (B-M) geomagnetic reversal traced by loess10Be from Xifeng and Luochuan sections The curves are: magnetic susceptibility (blue),10Be concentration (pink),10Be relative production rate (black) and marine isotope stage (red). The grey shadow represents the B-M reversal interval and the dashed red line is the B-M boundary determined by paleogeomagnetic measurements (Modifi ed from Zhou et al, 2014a).

3.2 黄土10Be重建古降水变化研究进展

黄土高原位于中国内陆干旱-半干旱区域,面积60余万平方公里,属大陆性季风气候,现代观测年降水量在200 — 600 mm,且主要集中在夏季。黄土高原同时也是典型的生态脆弱区,水土流失严重,易发生灾害性地质事件,且人口众多,因此黄土高原植被恢复及生态环境保护工作一直以来都被我国政府及科学工作者关注。除地质地貌与人类活动因素外,对黄土高原生态环境具有重要影响的指标当是降水量。黄土高原降水与亚洲夏季风强弱具有密切联系,如果能够定量重建地质历史时期降水变化过程,将有助于理解亚洲季风发展变迁规律及其动力学机制,为预测黄土高原地区降水发展趋势、制定黄土高原生态环境治理政策提供背景数据。

基于气候代用指标与降水之间的关系,不同学者先后利用磁化率(吕厚远等,1994;Maher et al,1994;Liu et al,1995;Maher and Thompson,1995;Han et al,1996;Porter et al,2001)、地球化学参数(孙继敏等,1999)、有机碳同位素δ13C(Hatte et al,2001;王丽霞等,2005;Liu et al,2005;Ning et al,2008)等尝试定性或定量重建黄土高原降水变化历史。这些传统的方法都是基于测量表层土壤气候代用指标与该地区降水量现代观测记录,通过建立两者的经验方程,将其拓展应用于更早的地质时期来进行古降水重建。但基于现代观测数据所建立的经验方程在拓展至过长的时间序列时,其边界条件(如粉尘通量)等与现代相比会发生变化,有可能影响其定量重建结果的准确性和可信性(Yu et al,2011)。另外,在利用磁化率进行降水重建时(吕厚远等,1994;Maher et al,1994;Liu et al,1995;Maher and Thompson,1995;Han et al,1996;Porter et al,2001),未考虑粉尘通量的稀释作用,也使得所获得的经验方程存在不确定性。除上述指标外,间接利用10Be重建降水的工作也陆续开展(Beer et al,1993;Heller et al,1993;沈承德等,1994b;Shen et al,2000),这些研究实际上采用的仍是磁化率与降水之间的关系,不同的是他们将10Be分为大气圈降水10Be通量和降尘携带10Be通量两部分,利用后者剔除黄土磁化率中粉尘通量的影响,进而重建了130 ka以来冰期-间冰期阶段的平均降水量。尽管这一系列的工作并未直接利用10Be进行降水重建,且在处理过程中未考虑降水形成的10Be记录中还包含有地磁场强度调制的影响和粉尘通量的稀释影响,但却是一种有益的尝试,为进一步开展黄土10Be示踪降水变化的研究提供了思路。

近年来,随着黄土10Be示踪地磁场变化研究的成功开展,作为副产物,利用黄土10Be定量重建古降水变化的研究工作也取得了重大进展。Zhou et al(2007b)最早利用现代降水中7Be含量与观测降水量之间的相关关系,以及降水中10Be /7Be比值,建立了现代降水10Be与降水量的线性回归方程,定量重建了80 ka以来洛川地区降水变化,该结果与代表季风强度的石笋δ18O曲线对比良好。随后,由于不满意于通过现代观测数据建立的回归方程的拓展应用可能存在的问题,Zhou et al(2014b,2015)又运用“残差示踪法”定量重建了黄土高原地区的古降水变化史。该方法基于对黄土10Be和磁化率来源的分析,即黄土10Be包含了降水、降尘及地磁场调制三个组分,磁化率包含降水和降尘两个组分,先将测量的10Be记录与粉尘通量和代表地磁场强度的10Be产率进行二元线性回归,或将磁化率与粉尘通量进行一元回归(Zhou et al,2015),再计算10Be浓度或磁化率的测量值与回归方程计算得到的10Be浓度或磁化率的估计值之间的残差,根据“平均值概念”,即能得到反映大气降水变化的信息。这一方法的优势在于既考虑了粉尘通量稀释作用(对10Be和磁化率)的影响,又考虑了地磁场调制(对10Be)作用,同时不需要拓展应用现代观测数据建立的经验方程,结果更具可靠性。

利用“残差示踪法”,Zhou et al(2014b,2015)定量重建了130 ka以来洛川地区古降水变化历史。由图2可以看出,130 ka以来降水量在典型温暖期(MIS 5, 3, 1)呈现增加态势,平均降雨量在650 — 750 mm;其整体变化特征与反映季风强度的石笋δ18O 记录可以很好地对比(Wang et al,2001,2008),且在温暖期MIS 5阶段重建的降水还反映了亚轨道尺度上的细节变化特征。研究还发现,黄土10Be重建的降水曲线在MIS 3和MIS 5阶段具有相似的降水量,即MIS 3阶段降水异常高。通过将重建的降水曲线与北半球30度夏季太阳辐射及南北半球30度太阳辐射梯度曲线进行对比(Berger and Loutre,1991),作者分析指出,在轨道尺度上高原降水变化整体上与北半球30度夏季太阳辐射变化同步,即亚洲季风强度变化主要受控于北半球夏季太阳辐射(Kutzbach,1981);而MIS 3阶段降水增强则反映的是南北纬30度太阳辐射梯度与气压梯度耦合作用的影响,这一过程加强了低纬度水汽向黄土高原的输送量,造成比MIS 5时期冰量大的MIS 3阶段降水的增加。该结论为理解全球季风动力学和气候变化历史提供了帮助。

图2 洛川黄土10Be重建的130 ka以来古降水变化(红色实线)与葫芦-三宝石笋δ18O 记录(蓝色实线)(Wang et al,2001,2008)、北纬30度夏季太阳辐射强度(紫色虚线)及南北纬30度夏季太阳辐射梯度(绿色实线)(Berger and Loutre, 1991) 的对比(改绘自Zhou et al,2014b)Fig.2 The paleorainfall variation reconstructed by Luochuan loess10Be compared with speleothemδ18O of Hulu / Sanbao caves (Wang et al, 2001, 2008) and the solar insolation cycles (Berger and Loutre, 1991) (Modifi ed from Zhou et al, 2014b)

4 结论与展望

中国黄土10Be研究大体上经历了地球化学行为研究、古气候代用指标应用、地球环境示踪(古地磁场强度和古降水重建)研究三个阶段。尽管早期研究认为利用黄土10Be示踪古地磁场变化不具可行性,但近些年来的研究成果有力地证明黄土

10Be不但能够示踪古地磁场倒转、漂移事件,恢复古地磁场强度,还可有效地定量重建黄土高原古降水变化历史,为黄土磁性地层学及古降水重建研究提供了新的途径。黄土古地磁测量法的研究发现,第四纪以来除B-M倒转事件外,黄土中记录的多个古地磁场转换界线与全球记录存在不一致性(Heslop et al,2000;Zhou and Shackleton,1999),因此,未来的工作是利用10Be将整个第四纪以来的黄土中记录的古地磁极性倒转及漂移事件进行示踪,重建黄土2.6 Ma以来可与深海沉积物记录相媲美的古地磁场强度变化序列。同时,将定量重建黄土高原古降水的研究向更早的地史时期拓展,为认识第四纪以来亚洲季风变迁规律及其动力学机制研究提供可靠的依据。

安芷生, 王俊达,李华梅. 1977. 洛川黄土剖面的古地磁研究 [J].地球化学, (4): 239 – 249. [An Z S, Wang J D, Li H M. 1977. Paleomagnetic research of the Luochuan loess section [J].Geohimica, (4): 239 – 249.]

顾兆炎, Lal D, 郭正堂, 等. 2000. 黄土高原黄土和红粘土10Be地球化学特征 [J].第四纪研究, 20(5): 409 – 422. [Gu Z Y, Lal D, Guo Z T, et al. 2000. Geochemistry of cosmogenic10Be in loess-paleosol sequences and red clay in the Loess Plateau [J].Quaternary Sciences, 20(5): 409 – 422.]

顾兆炎, 郭正堂, Lal D,等. 2006.黄土和红粘土中宇宙成因核素定年的潜力:10Be浓度与化学成分的关系 [J].第四纪研究, 26(2): 244 – 249. [Gu Z Y, Guo Z T, Lal D, et al. 2006.10Be concentration relation to chemical compositions of Chinese loess and red clay as a potential dating method [J].Quaternary Sciences, 26(2): 244 – 249.]

孔 屏. 2002. 宇宙成因核素在地球科学中的应用 [J].地学前缘, 9(3): 41 – 48. [Kong P. 2002. Applicationsofcosmogenic nuclidesin the earth sciences [J].Earth Science Frontiers, 9(3): 41 – 48.]

刘东生. 1985.黄土与环境[M]. 北京: 科学出版社. [Liu T S. 1985. Loess and environment [M]. Bejing: Science Press.]

吕厚远, 韩家懋, 吴乃琴, 等. 1994. 中国现代土壤磁化率分析及其古气候意义 [J].中国科学B辑, 24(12): 1290 – 1297. [Lü H Y, Han J M, Wu N Q, et al. 1994. Analysis of modern soil magnetic susceptibility in China and its paleoclimatic implications [J].Science in China (Series B), 24(12): 1290 – 1297.]

沈承德, 刘东生, Beer J, 等. 1989.10Be与黄土的堆积演化 [J].中国科学B辑, (7): 744 – 751. [Shen C D, Liu T S, Beer J,et al. 1989.10Be and the loess accumulation evolution [J].Science in China (Series B), (7): 744 – 751.]

沈承德, 易惟熙,刘东生. 1994a. 高分辨率10Be记录与黄土地层定年 [J].第四纪研究, (3): 203 – 212. [Shen C D, Yi W X, Liu T S. 1994a.10Be records in loess with high resolution and the dating of loess strata [J].Quaternary Sciences, (3): 203 – 212.]

沈承德, 易惟熙,刘东生. 1995. 中国黄土10Be研究进展 [J].地球科学进展, 10(6): 590 – 596. [Shen C D, Yi W X, Liu T S. 1995. Advance in10Be study in Chinese loess [J].Advance in Earth Sciences, 10(6): 590 – 596.]

沈承德, 易惟熙, 刘东生, 等. 1994b.10Be-磁化率模型及黄土中成壤磁性物质能量估算 [J].第四纪研究, (1): 75 – 86. [Shen C D, Yi W X, Liu T S, et al. 1994b.10Besusceptibility model and the quantitative estimates of pedogenic ferromagnetic material fl ux in Chinese loess [J].Quaternary Sciences, (1): 75 – 86.]

孙继敏, 刁桂仪, 文启忠, 等. 1999. 用黄土地球化学参数进行古气候定量估算的初步尝试 [J].地球化学, 28(3): 265 – 272. [Sun J M, Dian G Y, Wen Q Z, et al. 1999. A preliminary study on quantitative estimate of Palaeoclimateby using geochemical transfer function in the Loess Plateau [J].Geohimica, 28(3): 265 – 272.]

王丽霞, 汪卫国, 李心清, 等. 2005. 中国北方干旱半干旱区表土的有机质碳同位素、磁化率与年降水量的关系 [J].干旱区地理, 28(3): 311 – 318. [Wang L X, Wang W G, Li X Q, et al. 2005. Correlation between the carbon isotope of organic matter and magneticsusceptibility in topsoil and the annual precipitation in aridandsemiarid regions in North China [J].Arid Land Geography, 28(3): 311 – 318.]

鲜 锋, 周卫健,武振坤, 等. 2012a. 中国黄土中Blake地磁极性漂移事件记录的空间对比 [J].地球环境学报, 3(2): 770 – 780. [Xian F, Zhou W J, Wu Z K, et al. 2012a. Spatial comparison study on the records of Blake geomagnetic excursion event in Chinese loess [J].Journal of Earth Environment, 3(2): 770 – 780.]

鲜 锋, 周卫健,武振坤, 等. 2012b.马兰黄土中Laschamp地磁漂移的10Be记录与古地磁测试结果的初步对比 [J].地球环境学报, 3(1): 729 – 734. [Xian F, Zhou W J, Wu Z K, et al. 2012b.10Be evidence for the Laschamp excursion in Malan loess and its preliminary comparison with that of paleogeomagnetic study [J].Journal of Earth Environment, 3(1): 729 – 734.]

周卫健, 孔祥辉, 鲜 锋, 等. 2010. 中国黄土10Be重建古地磁场变化史的初步研究 [J].地球环境学报, 1(1): 20 – 27. [Zhou W J, Kong X H, Xian F, et al. Preliminary study on the reconstruction of the plaeogeomagneticintensities by10Be in Chinese loess [J].Journal of Earth Environment, 1(1): 20 – 27.]

An Z S, Kukla G, Porter S C, et al. 1991a. Late quaternary dust fl ow on the Chinese Loess Plateau [J].Catena, 18(2): 125 – 132.

An Z S, Kukla G J, Porter S C, et al. 1991b. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years [J].Quaternary Research, 36(1): 29 – 36.

An Z S, Liu T S, Lu Y C, et al. 1990. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China [J].Quaternary International, 7 / 8: 91 – 95.

Beer J, Blinov A, Bonani G, et al. 1990. Use of10Be in polar ice to trace the 11-year cycle of solar activity [J].Nature, 347: 164 – 166.

Berger A, Loutre M F. 1991. Insolation values for the climate of the last 10 million years [J].Quaternary Science Reviews, 10(4): 297 – 317.

Beer J, Shen C D, Heller F, et al. 1993.10Be and magnetic susceptibility in Chinese Loess [J].Geophysical Research Letters, 20(1): 57 – 60.

Brown L, Klein J, Middleton R. 1982.10Be in island arcvolcanoesand implic at ions for subduction [J].Nature, 299: 718 – 720.

Christl M, Strobl C, Mangini A. 2003. Beryllium-10 in deepsea sediments: a tracer for the Earth's magnetic field intensity during the last 200,000 years [J].Quaternary Science Reviews, 22: 725 – 739.

Finkel R C, Nishiizumi K. 1997. Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3 — 40 ka [J].Jounal of Geophysical Research, 102(12): 16699 – 26706.

Frank M, Schwarz B, Baumann S, et al. 1997. A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic fi eld intensity from10Be in globally stacked deep-sea sediments [J].Earth and Planetary Science Letters, 149(1 / 2 / 3 / 4): 121 – 129.

Frank M. 2000. Comparison of cosmogenic radionuclide production and geomagnetic field intensity over the last 200 000 years [J].Philosophical Transactions of the Royal Society A, 358: 1089 – 1107.

Geel B V, Raspopov O M, Renssen H, et al. 1999. The role of solar forcing upon climate change [J].Quaternary Science Reviews, 18: 331 – 338.

Gu Z Y, Lal D, Liu T S, et al. 1996. Five million year10Be record in Chinese loess and red-clay: climate and weathering relationships [J].Earth and Planetary Science Letters, 144: 273 – 287.

Han J M, Lü H Y, Wu N Q, et al. 1996. The magnetic susceptibility of modern soils in China and its use for paleoclimate reconstruction [J].Studia Geophysica et Geodaetica, 40(3): 262 – 275.

Hatte C, Antoine P, Fontugne M, et al. 2001.δ13C of loess organic matter as a potential proxy for paleoprecipitation [J].Quaternary Research, 55(1): 33 – 38.

Heller F, Shen C D, Beer J, et al. 1993. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications [J].Earth and Planetary Science Letters, 114(2 / 3): 385 – 390.

Heslop D, Langereis C G, Dekkers M J. 2000. A new astronomical timescale for the loess deposits of Northern China [J].Earth and Planetary Science Letters, 184: 125 – 139.

Inoue T, Tanaka S. 1979.10Be in marine sediments, Earth's environment and cosmic rays [J].Nature, 277: 209 – 210.

Kong X H, Zhou W J, Beck J W, et al. 2014. Asynchronous records of Brunhes / Matuyama reversal in marine sediments and Chinese loess: Review and discussion [J].Quaternary International, 319: 137 – 142.

Korschinek G, Bergmaier A, Faestermann T, et al. 2010. A new value for the half-life of10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting [J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(2): 187 – 191.

Ku T L, Southon J R, Vogel J S, et al. 1984.10Be distributions in deep sea drilling project site 576 and site 578 sediments studied by accelerator mass spectrometry [J].Deep Sea Drilling Project Initial Reports, 86: 539 – 546.

Kukla G, Heller F, Liu X M, et al. 1988. Pleistocene climates in China dated by magnetic susceptibility [J].Geology, 16: 811 – 814.

Kutzbach J E. 1981. Monsoon climate of the Early Holocene: Climate experiment with the Earth's orbital parameters for 9000 years ago [J].Science, 214: 59 – 61.

Lal D, Peters B. 1967. Cosmic ray produced radioactivity on the Earth [J].Handbuch der Physik, 46(2): 551 – 612.

Libby W F, Anderson E C, Arnold J R. 1949. Age determination by radiocarbon content: world-wide assay of natural radiocarbon [J].Science, 109(2827): 227 – 228.

Liu W G, Fang X H, Ning Y F, et al. 2005.δ13C variation of C3and C4plants across an Asian Monsoon rainfallgradient in arid northwestern China [J].Global Change Bioligy, 11: 1094 – 1100.

Liu X M, Liu T S, Xu T C, et al. 1988. The Chinese loess in Xifeng, I. The primary study on magnetostratigraphy of a loess profile in Xifeng area, Gansu province [J].Geophysical Journal, 92: 345 – 348.

Liu X, Rolph T, Bloemendal J, et al. 1995. Quantitative estimates of palaeoprecipitation at Xifeng, in the Loess Plateau of China [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 113(2 / 3 /4): 243 – 248.

Maher B A, Thompson R, Zhou L P. 1994. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: A new mineral magnetic approach [J].Earth and Planetary Science Letters, 125(1 / 2 / 3 / 4): 461 – 471.

Maher B A, Thompson R. 1995. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols [J].Quaternary Research, 44(3): 383 – 391.

Masarik J, Beer J. 1999. Simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere [J].Jounal of Geophysical Research, 104(D10): 12099 – 12111.

Muscheler R, Beer J, Kubik P W, et al. 2005. Geomagnetic fi eld intensity during the last 60,000 years based on10Be and36Cl from the Summit ice cores and14C [J].Quaternary Science Reviews, 24: 1849 – 1860.

Ning Y F, Liu W G, An Z S. 2008. A 130-ka reconstruction of precipitation on the Chinese Loess Plateau from organic carbon isotopes [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 270(1 / 2): 59 – 63.

Pan Y, Zhu R, Shaw J, et al. 2001. Can relative paleointensities be determined from the normalized magnetization of the wind-blown loess of China [J].Jounal of Geophysical Research, 106(B9): 19221 – 19232.

Porter S C, Hallet B, Wu X H, et al. 2001. Dependence of nearsurface magnetic susceptibility on dust accumulation rate and precipitation on the Chinese Loess Plateau [J].Quaternary Research, 55(3): 271 – 283.

Raisbeck G M, Yiou F, Cattani O, et al. 2006.10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core [J].Nature, 444: 82 – 84.

Robinson C, Raisbeck G M, Yiou F, et al. 1995. The relationship between10Be and geomagnetic fi eld strength records in central North Atlantic sediments during the last 80 ka [J].Earth and Planetary Science Letters, 136(3 / 4): 551 – 557.

Shen C D, Beer J, Heller F, et al. 2000.10Be-susceptibility model and quantitative estimates of pedogenic ferromagnetic material fl ux in Chinese loess [J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 172(1 / 2 / 3 / 4): 551 – 554.

Shen C D, Liu D S, Beer J, et al. 1990.10Be and the accumulation evolution of loess [J].Science in China Series B, 33(5): 613 – 622.

Shen C D, Beer J, Liu T S, et al. 1992.10Be in Chinese loess [J].Earth and Planetary Science Letters, 109(1 / 2): 169 – 177.

Suganuma Y, Okuno J I, Heslop D, et al. 2011. Postdepositional remanent magnetization lock-in for marine sediments deduced from10Be and paleomagnetic records through the Matuyama-Brunhes boundary [J].Earth and Planetary Science Letters, 311(1 / 2): 39 – 52.

Suganuma Y, Yokoyama Y, Yamazaki T, et al. 2010.10Be evidence for delayed acquisition of remanent magnetization in marine sediments: Implication for a new age for the Matuyama-Brunhes boundary [J].Earth and Planetary Science Letters, 296(3 / 4): 443 – 450.

Tauxe L, Herbert T, Shackleton N J, et al. 1996. Astronomical calibration of the Matuyama-Brunhes boundary: Consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences [J].Earth and Planetary Science Letters, 140(1 / 2 / 3 / 4): 133 – 146.

Wagner G, Masarik J, Beer J, et al. 2000. Reconstruction of the geomagnetic field between 20 and 60 kyr BP from cosmogenic radionuclides in the GRIP ice core [J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 172: 597 – 604.

Wang Y J, Cheng H, Edwards R L, et al. 2001. A highresolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J].Science, 294: 2345 – 2349.

Wang Y J, Cheng H, Edwards R L, et al. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years [J].Nature, 451: 1090 – 1093.

Yiou F, Raisbeck G M, Baumgartner S, et al. 1997. Beryllium 10 in the Greenland Ice Core Project ice core at Summit, Greenland [J].Jounal of Geophysical Research, 102(C12): 26783 – 26794.

Yu S Y, Kang Z H, Zhou W J. 2011. Quantitative palaeoclimate reconstruction as an inverse problem: A Bayesian inference of late-Holocene climate on the eastern Tibetan Plateau from a peat celluloseδ18O record [J].The Holocene, 22: 405 – 412.

Zhou L P, Oldfi eld F, Wintle A G, et al. 1990. Partly pedogenic origin of magnetic variations in Chinese loess [J].Nature, 346: 737 – 739.

Zhou L P, Shackleton N J. 1999. Misleading positions of geomagnetic reversal boundaries in Eurasian loess and implications for correlation between continental and marine sedimentary sequences [J].Earth and Planetary Science Letters, 168: 117 – 130.

Zhou W J, Beck W, Kong X H, et al. 2014a. Timing of the Brunhes-Matuyama magnetic polarity reversal in Chinese loess using10Be [J].Geology, 42(6): 467 – 470.

Zhou W J, Chen M B, Kong X H, et al. 2015. “Mean Value Concept” based Residual Trace Approach-application to paleoprecipitation reconstruction over the Chinese Loess Plateau [J].Journal of Earth Envrionment, 6(6): 382 – 392.

Zhou W J, Chen M B, Xian F, et al. 2007a. The mean value concept in mono-linear regression of multi-varaibles and its application to trace studies in geosciences [J].Science in China Series D: Earth Sciences, 50(12): 1828 – 1834.

Zhou W J, Priller A, Beck J W, et al. 2007b. Disentangling geomagnetic and precipitation signals in an 80-kyr Chinese loess record of10Be [J].Radiocarbon, 49(1): 139 – 160.

Zhou W J, Xian F, Beck J W, et al. 2010. Reconstruction of 130-kyr relative geomagnetic intensities from10Be in two Chinese loess sections [J].Radiocarbon, 52(1): 129 – 147.

Zhou W J, Xian F, Du Y J, et al. 2014b. The last 130 ka precipitation reconstruction from Chinese loess10Be [J].Journal of Geophysical Research: Solid Earth, 119(1): 191 – 197.

Zhu R, Pan Y, Guo B, et al. 1998. A recording phase lag between ocean and continent climate changes: constrained by the Matuyama/Brunhes Polarity boundary [J].Chinese Science Bulletin, 43(19): 1593 – 1599.

Review on the application of the atmospheric produced10Be in Chinese loess

KONG Xianghui1,2, ZHOU Weijian1,2,3,4, WU Zhenkun1,2, DU Yajuan1,2, ZHAO Guoqing1,2, XIE Xingjun1,2
(1. State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 2. Xi'an Accelerator Mass Spectrometry Center, Xi'an 710061, China; 3. Beijing Normal University, Beijing 100875, China; 4. School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China)

Background, aim, and scopeThe history of Chinese loess10Be studies can be recognized as three stages. (1) The geochemical behavior of10Be in Chinese loess: it is preferred to be absorbed on the small size particles and the clay minerals, it can be preserved well after it deposited and would not be leached by the raillfall; (2) as a paleoclimatic proxy: the variation of10Be concentration in the loess and paleosol correlated well with the marine isotope stages and with the correlation between these two proxies, it can be used to establish the chronology of Chinese loess-paleosol sequences; (3) tracing earth's environmental changes: recovering the variations of geomagnetic fi eld intensity, tracing the geomagneticpolarity reversals/excursions and reconstructing the paleorainfall over the Chinese Loess Plateau. Since very signifi cant progress has been made about the third one recently, it is necessary to make a comprehensive review on the application of cosmogenic10Be in Chinese loess, and by doing this to discuss the future work about the Chinese loess10Be.Materials and MethodsThe publications of loess10Be studies are reviewed here. Among them, the papers published between 1980's and 2006 are used to discuss the sources, formation, chemical behavior and its climatic implications in Chinese loess, the others published after 2006 are used to show that the loess10Be are good proxy for paleogeomagnetic variations tracing and paleorainfall reconstruction.ResultsThe10Be in Chinese loess is mainly from atmosphere where it is produced via cosmic-ray spallation. The chemical leaching experiments with acid solutions showed that the10Be in loess and paleosols is strongly bound to soil particles and the mobility due to dissolution is very little. The measurements of10Be concentrations in loess as a function of grain size indicated that the10Be is preferred to be adsorbed on small size mineral grains due to larger surface areas. The variation of loess10Be record is similar to the magnetic susceptibility which is well correlated with marineδ18O, so it can be used to reconstruct the climatic variations. In addition, the10Be was also exploited to establish the chronology of loess-paleosol sequences based on the correlation between10Be andδ18O. Because the production rate of10Be in atmosphere is regulated by the Earth's magnetic fi eld intensity, i.e., when the geomagnetic fi eld intensity is strong, the fl ux of galactic cosmic rays penetrating into the Earth's atmosphere is signifi cantly attenuated by scattering off the magnetic fi eld, resulting in decreased10Be production rate, and vice versa,10Be is a useful tool for the geomagnetic variations tracing studies. However, the efforts of using10Be to extract the geomagnetic fi eld signal from Chinese loess was much more diffi cult than that in marine sediments. In Chinese loess, there are two sources of loess10Be: some10Be comes from remobilized dust that fell to Earth at some time in the past, whereas a second component derives from atmospheric fallout of new10Be recently generated by cosmicray interactions in the atmosphere. In order to extract a geomagnetic strength signal from Chinese loess10Be, fi rst, a correction must be made for10Be associated with recycled dust that fell to the earth some time in the past, but has since been remobilized by wind, and secondly, in addition to magnetic fi eld strength, climate infl uencing the local fl ux of10Be needs to be eliminated. Zhou et al (2007a, 2007b) fi rst proposed an idea of using striking correlation between measured10Be and magnetic susceptibility in Chinese loess to separate the climate signal (dust fl ux and precipitation) from the total10Be concentration. Based on this idea which named“Mean Value Concept”, a series methods have been established for tracing geomagnetic fi eld variation and reconstructing paleo-rainfall by using loess10Be.DiscussionApplying these methods, two different loess sections from Xifeng and Luochuan to produce paleomagnetic records for the last 130 ka, two geomagnetic excursions-i.e. short-lived decrease infi eld intensity-known as the Laschamp and Blake events, are clearly seen by the increased geomagnetic modulated10Be signals in both Luochuan and Xifeng sections. Our reconstructed paleointensity record using this10Be signal can be well correlated to those from North Pacifi c, PISO-1500, and SINT 800. Using loess10Be, the Brunhes-Matuyama (B-M) reversal event was investigated because this reversal occurred much earlier in Chinese loess than that of marine sediments according to the paleomagnetic measurements. The10Be results from Xifeng and Luochuan sections show that the timing of B-M reversal is actually synchronous with that seen in marine records, verifying the standard loess time scale as correct. Except for the geomagnetic fi eld tracing studies, a 130 ka paleorainfall record is also obtained using loess10Be. This record can be well correlated with the records of speleothemδ18O which is regarded as monsoon a reliable record of Asian Monsoon intensity.ConclusionsThe reviews of previous work show that the loess10Be is a good tool for studies of geomagnetic fi eld variations and paleorainfall reconstructions. These methods proposed by Zhou et al can not only be used in Chinese loess10Be but also suitable to the trace research for a multivariable geosystem where all variables are changeable and their distribution havebeen known except the one to be reconstructed.Recommendations and perspectivesBased on the recent studies, it is recommended that the geomagnetic fi eld intensity and paleorainfall of the whole Quaternary (~2.6 Ma) would be reconstructed by using loess10Be.

atmospheric produced10Be; geochemical behavior; Chinese Loess Plateau; geomagnetic fi led intensity; geomagnetic polarity reversal/excursions; paleorainfall

KONG Xianghui, E-mail: kxh@ieecas.cn

10.7515/JEE201603002

2016-01-11;录用日期:2016-04-06

Received Date:2016-01-11;Accepted Date:2016-04-06

国家自然科学基金项目(41230525);科技部国家重大科学研究计划(2013CB955904)

Foundation Item:National Natural Science Foundation of China (41230525), National Basic Research Program of China (2013CB955904) from Ministry of Science and Technology of China

孔祥辉,E-mail: kxh@ieecas.cn

猜你喜欢

磁化率黄土降水
电场背景下手征相变的临界线
定量磁化率成像在孤独症儿童脑铁含量的应用研究
成都市夏季早高峰时段降水天气短信指引
黑龙江省玉米生长季自然降水与有效降水对比分析
各路创新人才涌向“黄土高坡”
黄土成金
只要有信心 黄土变成金
《刘文西:绘不尽是黄土情》
为什么南极降水很少却有很厚的冰层?
地震孕育过程中地下磁化率结构的变化分析