APP下载

非酒精性脂肪性肝病的影像学检查进展

2016-03-14马大宝杨国旺王笑民唐武军

胃肠病学和肝病学杂志 2016年11期
关键词:脂肪性变性酒精性

马大宝, 杨国旺, 王笑民, 唐武军

首都医科大学附属北京中医医院肿瘤科,北京100010

非酒精性脂肪性肝病的影像学检查进展

马大宝, 杨国旺, 王笑民, 唐武军

首都医科大学附属北京中医医院肿瘤科,北京100010

肝活检是非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)诊断和分级的黄金标准,然而它具有创伤、出血等风险,同样也存在抽样误差。因此,各种非有创性检查包括超声、受控衰减参数、计算机断层扫描、核磁共振光谱和氙-133扫描广泛应用于临床。现对NAFLD的影像学检查进展作一概述。

非酒精性脂肪性肝病;肝脂肪变性;非有创性方法评估

非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)是一种与胰岛素抵抗、糖尿病、肥胖等代谢危险因素密切相关的应激性肝脏损伤,其疾病谱包括非酒精性单纯性脂肪肝(nonalcoholic simple fatty liver, NAFL)、非酒精性脂肪性肝炎(nonalcoholic steatohepatitis, NASH)及其相关肝硬化和肝细胞癌[1-3]。流行病学发现15%~21%的亚洲人(非肥胖)患有NAFLD[4],而在肥胖等危险因素影响下其患病率高达90%以上[5]。NAFLD不仅引起肝脏病变,更增加肝外疾病的风险,因此更需引起重视[6]。肝活检是NAFLD诊断的金标准。但肝活检会带来创伤、出血等并发症。此外肝活检取样只有1/50 000全肝组织[7-8],存在抽样误差。由于这些原因,各种非侵入性影像学检查方法不断提出,以诊断肝脂肪变性及对其严重程度分级,现将NAFLD的影像学检查进展概述如下。

1 超声检查

1.1 常规超声检查(Ultrasound, US) US具有价格低廉、无创伤、可重复及实用性特点,常作为筛查脂肪肝的首选手段[9-10]。在超声影像上,肝脏脂肪变性会使肝脏实质表面回声增强,使肝脏看起来比肾皮质更亮[11]。其特点:(1)肝区近场回声弥漫性增强,远场回声衰减,肝肾反差增大,近场增强程度和远场衰减程度与脂肪积累程度呈正比;(2)肝内管道结构显示不清;(3)肝脏轻度或中度增大,肝边界圆钝;(4)彩色多普勒超声显示肝内血流信号减少或不显示,但肝内血管走向正常;(5)肝右叶包膜及横膈回声显示不清或不完整。具备上述第1项和第2~4项之一者为轻度脂肪肝;具备第1项和第2~4项之二者为中度脂肪肝;具备第1项和第2~4项之二及第5项者为重度脂肪肝[12]。一项系统评价[13]通过对1976年-2010年共49项研究(4 720人参加)分析发现超声相对于组织学(黄金标准)而言,对中、重度脂肪肝诊断的敏感性、特异性分别为84.8%(95%CI: 79.5~88.9)和93.6%(95%CI: 87.2~97.0);阳性似然比及阴性似然比分别为13.3(6.4~27.6)和0.16(0.12~0.22)。在5组小的比较研究(n=215)中,US在检测脂肪变性方面与CT、MRI和MRS一样准确,其灵敏度和特异度分别为94%和80%。肝肾比(HRR)是US量化诊断肝脏脂肪变性的指标。一项以健康志愿者为观察对象的研究表明,HRR同肝活检相比,有92.7%的灵敏度和92.5%的特异性[14]。Marshall等[15]研究了101例接受肝活检并除外重大肝肾疾病的患者,观察发现HRR≥1.28具有100%的灵敏度和54%的特异度。US存在以下不足:(1)敏感度及特异度随着受试者的肥胖程度增加而降低,在病态肥胖人群中敏感度下降到86%,特异度下降到68%[16];(2)弥散的肝脏脂肪变性与肝纤维化在超声影像上具有相似性,有时难以区分[17],易造成误诊或漏诊;(3)与操作者关系密切,操作者的超声诊断经验、仪器的操作与各功能的熟练程度均可能影响诊断结果;(4)无法监测肝脏脂肪含量的细小变化[18]。

1.2 定量超声模型(Quantitative ultrasound, QUS) QUS是利用背向散射技术,因脂肪滴是良好的散射源,脂滴之间散射信号相互作用能使散射信号强度增加从而准确判断肝细胞内脂肪含量。最新一项以MRI-PDFF分析作为基准的截面研究[19],发现QUS可准确诊断和定量肝脏脂肪变性,其背向散射系数(BSC)(0.00005~0.251/CM-SR)与MRI-PDFF具有相关性(Spearmanp=0.80,P<0.0001)。在试验组中,BSC分析诊断NAFLD患者的ROC曲线下面积(AUC)是0.98(95%CI: 0.95~1.00,P<0.0001)。最佳BSC截止值在实验和对照组诊断NAFLD患者的敏感度分别是93%和87%,特异度分别是97%和91%,阴性预测值分别是86%和76%,阳性预测值分别是99%和95%。Zhang等[20]纳入170例受试者,所有受试者在同一天接受UC和1H-MRS检查,结果发现定量UC模型诊断脂肪肝的灵敏度和特异度分别为94.7%和100%。但相关研究仍不完善,还需进一步研究。

1.3 受控衰减参数(Controlled attenuation parameter, CAP) 瞬时弹性记录仪(FibroScan)是基于超声的振动控制瞬时弹性成像(VCTE)的仪器,可用于检测肝脏硬度值(LSM)及脂肪含量,其用于定量检测肝脏脂肪含量的指标称为受控衰减参数(CAP)。CAP是FibroScan上通过超声衰减原理重新定义的一个新参数,基于FibroScan捕获反向射频信号的超声特性,测量使用频率为3.5 MHz的超声波,测量结果以dB/m为单位。CAP的测量区域与LSM相同,只有当LSM测量有效时才会评价此次测量的CAP值。因此,CAP通过VCTE确保了测量时能够自动获取肝脏超声衰减数,实现了脂肪肝的无创定量诊断[21]。CAP除具有无创、定量、快速等优点外,还具有可重复性,与操作员与机器无相关性的特点[21]。一项以超重和肥胖的慢性肝病患者为研究对象的前瞻性研究表明CAP283 dB/m截止值检测脂肪变性具有76%的灵敏度和79%的特异度[22],257 dB/m的截止值可以从S0中区分显著脂肪变性(S2~S3)(Sn 89%,SP 83%,阳性似然比5.33,阴性似然比0.13,AUROC=0.93)[23]。Maev等[24]研究发现CAP诊断轻度(1度)脂肪变性的敏感性81.0%,特异性100%,诊断中重度(2和3度)脂肪变性的敏感度和特异度均高达100%。有不同研究通过受试者工作特征曲线(ROC)计算S1(≥5%)、S2(≥34%)、S3(≥67%)的曲线下面积(AUC)分别是0.92~0.97、0.86~0.94、0.75~0.88[25-27],同样证明CAP对脂肪变性有较高的诊断价值。但是CAP仍存在不足,研究[27]发现在肥胖患者中CAP诊断脂肪变性S1(≥5%)、S2(≥34%)、S3(≥67%)的AUC分别下降为0.92、0.64、0.58。同样Shen等[28]研究发现对于所有患者,当BMI<25 kg/m2,CAP诊断≥5%肝脂肪变性的AUROC为0.853,最佳截止值为244.5 dB/m;然而,当BMI≥25 kg/m2时,AUROC为0.835,最适截止值269.5 dB/m。2014年一项大样本调查中[29],共进行了5 323次检查,发现CAP有7.7%的失败率。通过多因素分析,与CAP测量失败高度相关的因素是BMI=25~30 kg/m2,BMI>30 kg/m2,代谢综合征和肝脏硬度>6 kPa等。随着患者BMI增加,CAP测量失败率也随之明显升高,BMI≤25 kg/m2、25~29.9 kg/m2、30~40 kg/m2和>40 kg/m2,CAP测量失败率分别为1.0%、5.6%、19.4%、58.4%。皮肤囊距离(SCD)<25 mm与SCD≥25 mm相比,其AUROC在脂肪变性≥5%(0.88与0.81),>33%(0.90与0.85)和>66%(0.84与0.72)均小幅增高[30],说明SCD同样影响CAP诊断的准确性。目前CAP的诊断价值及阈值还有待于进一步验证。开发可用于测量CAP的XL探头将改善肥胖人群测量成功率欠佳的现状。

2 计算机断层扫描(Computed tomography, CT)

CT通过提供精确可靠的肝脏可视化图像,可准确诊断弥散性或局灶性肝实质脂肪变性[31]。肝/脾CT比值(L/S)是CT用以检测甚至量化肝脏的脂肪含量的重要指标。中华医学会肝脏病学分会制定的《中国非酒精性脂肪性肝病诊疗指南》[32]规定L/S<1.0是诊断脂肪肝的重要影像学指标之一,其中,L/S<1.0但> 0.7者为轻度,≤0.7但> 0.5者为中度,≤0.5者为重度脂肪肝。最新研究发现L/S排除脂肪变性的最佳截止值为1.1,其ROC曲线下的面积为0.886,故认为L/S=1.1可排除临床上重要的肝脂肪变性[33]。在一项比较研究[34]中,CT诊断≥5%的脂肪变性的敏感性50%,特异度77.2%,低于UC。CT识别≥5%的脂肪变性的准确性低于梯度回波MRI和MRS(AUROC分别为0.65、0.88和0.85)。值得注意的是,诊断≥30%的脂肪变性,这3种方法的准确性相似(AUROC分别为0.92、0.99和0.91)。CT在NAFLD患者的的广泛应用受到限制,其原因是多方面的,如辐射暴露的风险,成本高,诊断轻度脂肪变性的准确性较低,使其很难后续用[31]。

3 磁共振检查(Magnetic resonance, MR)

磁共振成像(Magnetic resonance imaging, MRI)和磁共振波谱(Magnetic resonance spectroscopy, MRS)具有相同的物理原理,MRS可作为全身MRI的一个辅助手段,在肝脏脂肪含量与全身脂肪组织的分布作一对比[35]。脂肪肝的分级按肝细胞内脂肪含量,被分为0~3级:0级,脂肪含量<5%;1级,脂肪含量6%~33%;2级,脂肪含量34%~66%;3级,脂肪含量>66%[36-37]。

3.1 MRI MRI技术利用正反相位中水和脂肪信号不同的共振频率[38]。最广泛使用的方法是Dixon方法。许多研究人员改进原始Dixon方法以减少它的局限性。这些改进包括更好后处理算法,更快的扫描时间,提高了T2/T1补偿,减少场不均匀性的效果,并减少脂肪和水之间的模糊性[39]。如多点Dixon方法采用多脂肪峰和双指数T2模型可准确定量NAFLD,用于筛查高危人群及无创监测疾病进展[40]。MRI具有无辐射性,比CT和UC更能区分组织特点[41],与相关的组织学性联系紧密等优势,其检测轻度脂肪变性具有85%的灵敏度和100%的特异度,检测中-重度脂肪变性具有80%的灵敏度,95%的特异度[42]。研究发现梯度回波磁共振(DGE-MRI)检测中重度肝脂肪变性,其敏感度和特异度均>90%,在探测>5%的肝脂肪变性,DGE-MRI也具有76.7%的敏感性和87.1%的特异性[34]。一项前瞻性研究[43]证明MRI与微观脂肪含量的相关性比UC更好(r=0.77,P<0.001vsr=0.41,P<0.05)。但是MRI在诊断和监测肝脏脂肪变性患者中的应用受到限制,其原因主要是相对昂贵的花费,患者的依从性降低、成像时间过长等。

3.2 MRS 目前,用于脂肪肝定性及定量的主要为1H-MRS[44]。1H-MRS可用来检测脂质、胆碱等多种含氢化合物的代谢变化,对肝脏的脂质代谢变化在分子水平上进行定量分析,是评估肝脂肪变性的一个准确的方法[34,45-46]。1H-MRS的敏感度(80%)明显高于CT(50%)和US(53.3%)(P≤0.004)[34],因此常用于脂肪肝的研究。脂肪肝1H-MRS成像,主要采集的是水峰、脂质峰及其他少量化合物杂峰,通过软件校正和图像函数滤过,在特定化学位移点上得到水峰和脂质峰,因水峰相对稳定,测得水峰和脂质峰下面积的相对比值,即可得到脂质含量的量化值。最新研究发现31P-MRS可测定各种磷酸盐代谢物如无机磷、磷酸肌酸、三磷酸腺苷等,从而反映肝脏病变的能量和磷酸盐代谢,在不同的NAFLD阶段显示出不同生化改变而被提议作为慢性肝病潜在的标记。因此可作为未来研究的一个重要方向[47]。MRS同样存在不足包括有限的利用率、高成本[34,45-46]及结果误差。因MRS采用的是自由呼吸方法,其结果易受到呼吸运动影响[34]。

3.3 肝脏脂肪成分质子密度磁共振检查(Magnetic resonance imaging of liver proton density fat fraction,MRI-PDFF) MRI-PDFF是一个减少MRS的视觉偏倚并与MRS高度相关[48-49]的新方法,被认为可准确量化肝脏脂肪[48,50]。最近有临床研究发现,初始MRI-PDFF与肝活检在量化患者肝脏脂肪方面有高度关联性(r=0.758,P<0.001)[51]。Tang等[52]发现MRI-PDFF在6.4%阈值下诊断1级或更高的脂肪变性有86%的敏感度和83%的特异度,17.4%的阈值诊断2级或更高的脂肪变性有64%的敏感度和96%的特异度,22.1%的阈值来诊断3级脂肪变性有71%的敏感度和92%的特异度。与MRS相比,MRI-PDFF更易应用,所需时间更短,价格较便宜,且具有一定的商业价值[53]。

4 氙133肝扫描(Xenon-133 liver scan,Xe-133)

氙133肝扫描是利用Xe-133的高度脂溶性来诊断及量化脂肪肝的一种新方法。氙-133气体廉价、安全,具有非常低的辐射风险[54],5 min估计吸收的辐射剂量是155MBq(5mCi)。最近,在一项回顾性研究[54]中,AL-Busafi和他的同事发现,氙-133扫描检测NAFLD具有94.3%的灵敏度和87.5%的特异度,优于超声检查(US分别是62.9%和75%)。氙-133肝扫描安全、可靠、无创,是一种诊断及量化脂肪肝的有前途的工具。其主要限制是仅检测脂肪,不能区别单纯性脂肪肝和纤维化,易造成误诊或漏诊。氙133肝扫描在NAFLD的诊断和管理的效能还未得到很好的研究。

综上所述,在NAFLD的影像学诊断方面,US因其价格低廉及在检测中重度脂肪变性方面较高的准确性,常作为诊断肝脏脂肪变性的首选方法,但是其灵敏度及特异度同MRI、MRS相比较低,无法准确判断细小脂肪性变,且准确性易受到操作者影响。CT和MRI、MRS、MRI-PDFF虽然具有较高的准确性,但分别由于其射线的辐射及高额的费用并未广泛用于NAFLD的临床诊断及分级。Xe-133肝扫描作为新的定量工具并未充分研究。CAP因其简便,敏感度及特异度高于CT、MRI、US,且与肝活检相比,CAP更少受到抽样误差的干扰的优点而成为一种极具发展前景的工具,但仍需大量的临床试验。

[1]Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases,American College of Gastroenterology [J]. Gastroenterology,2012,142(7): 1592-1609.

[2]Dowman JK, Tomlinson JW, Newsome PN. Pathogenesis of non-alcoholic fatty liver disease [J]. QJM, 2010, 103(2): 71-83.

[3]Chang E, Park CY, Park SW. Role of thiazolidinediones, insulin sensitizers, in non-alcoholic fatty liver disease [J]. J Diabetes Investig, 2013, 4(6): 517-524.

[4]Liu CJ. Prevalence and risk factors for non-alcoholic fatty liver disease in Asian people who are not obese [J]. J Gastroenterol Hepatol, 2012, 27(10): 1555-1560.

[5]Gaggini M, Morelli M, Buzzigoli E, et al. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease [J]. Nutrients, 2013, 5(5): 1544-1560.

[6]Armstrong MJ, Adams LA, Canbay A, et al. Extrahepatic complications of nonalcoholic fatty liver disease [J]. Hepatology, 2014, 59(3): 1174-1197.

[7]Ratziu V, Charlotte F, Heurtier A, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease [J]. Gastroenterology, 2005, 128(7): 1898-906.

[8]Sumida Y, Nakajima A, Itoh Y. Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fattyliver disease/nonalcoholic steatohepatitis [J]. World J Gastroenterol, 2014, 20(2): 475-485.

[9]Palmentieri B, de Sio I, La Mura V, et al. The role of bright liver echo pattern on ultrasound B-mode examination in the diagnosis of liver steatosis [J]. Dig Liver Dis, 2006, 38(7): 485-489.

[10]Saverymuttu SH, Joseph AE, Maxwell JD. Ultrasound scanning in the detection of hepatic fibrosis and steatosis [J]. Br Med J(Clin Res Ed), 1986, 292(6512): 13-15.

[11]Quinn SF, Gosink BB. Characteristic sonographic signs of hepatic fatty infiltration [J]. AJR Am J Roentgenol, 1985, 145(4): 753-755.

[12]中华医学会肝脏病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南[J]. 中华肝脏病杂志, 2006, 14(3): 161-163. Fatty Liver and Alcoholic Liver Disease Study Group of the Chinese Liver Disease Association. Guidelines for diagnosis and treatment of nonalcoholic fatty liver diseases [J]. Chin J Hepatol, 2006, 14(3): 161-163.

[13]Hernaez R, Lazo M, Bonekamp S, et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis [J]. Hepatology, 2011, 54(3): 1082-1090.

[14]Borges VF, Diniz AL, Cotrim HP, et al. Sonographic hepatorenal ratio: a noninvasive method to diagnose nonalcoholic steatosis [J]. J Clin Ultrasound, 2013, 41(1): 18-25.

[15]Marshall RH, Eissa M, Bluth EI, et al. Hepatorenal index as an accurate,simple,and effective tool in screening for steatosis [J]. AJR Am J Roentgenol, 2012, 199(5): 997-1002.

[16]Wu J, You J, Yerian L, et al. Prevalence of liver steatosis and fibrosis and the diagnostic accuracy of ultrasound in bariatric surgery patients [J]. Obes Surg, 2012, 22(2): 240-247.

[17]Joseph AE, Saverymuttu SH, al-Sam S, et al. Comparison of liver histology with ultrasonography in assessing diffuse parenchymal liver disease [J]. Clin Radiol, 1991, 43(1): 26-31.

[18]Mehta SR, Thomas EL, Bell JD, et al. Non-invasive means of measuring hepatic fat content [J]. World J Gastroenterol, 2008, 14(22): 3476-3483.

[19]Lin SC, Heba E, Wolfson T, et al. Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat using a new quantitative ultrasound technique [J]. Clin Gastroenterol Hepatol, 2015, 13(7): 1337-1345.

[20]Zhang B, Ding F, Chen T, et al. Ultrasound hepatic/renal ratio and hepatic attenuation rate for quantifying liver fat content [J]. World J Gastroenterol, 2014, 20(47): 17985-17992.

[21]Sasso M, Beaugrand M, de Ledinghen V, et al. Controlled attenuation parameter (CAP):a novel VCTETMguided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes [J]. Ultrasound Med Biol, 2010, 36(11): 1825-1835.

[22]Myers RP, Pollett A, Kirsch R, et al. Controlled Attenuation Parameter (CAP): a noninvasive method for the detection of hepatic steatosis based on transient elastography [J]. Liver Int, 2012, 32(6): 902-910.

[23]Yilmaz Y, Yesil A, Gerin F, et al. Detection of hepatic steatosis using the controlled attenuation parameter:a comparative study with liver biopsy [J]. Scand J Gastroenterol, 2014, 49(5): 611-616.

[24]Maev IV, Kaziulin AN, Babina SM, et al. Possibilities of using the noninvasive methods of investigating the morphofunctional changes in the liver in patients with non alcoholic steatohepatitis and type 2 diabetes mellitus [J]. Eksp Klin Gastroenterol, 2014, (3): 38-45.

[25]Shen F, Zheng RD, Mi YQ, et al. Controlled attenuation parameter for non-invasive assessment of hepatic steatosis in Chinese patients [J]. World J Gastroenterol, 2014, 20(16): 4702-4711.

[26]Karlas T, Petroff D, Garnov N, et al. Non-invasive assessment of hepatic steatosis in patients with NAFLD using controlled attenuation parameter and 1H-MR spectroscopy [J].PLoS One, 2014, 9(3): e91987.

[27]Chan WK, Nik Mustapha NR, Mahadeva S. Controlled attenuation parameter for the detection and quantification of hepatic steatosis in nonalcoholic fatty liver disease [J]. J Gastroenterol Hepatol, 2014, 29(7): 1470-1476.

[28]Shen F, Zheng R, Mi Y, et al. A multi-center clinical study of a novel controlled attenuation parameter for assessment of fatty liver [J]. Zhonghua Gan Zang Bing Za Zhi, 2014, 22(12): 926-931.

[29]de Lédinghen V, Vergniol J, Capdepont M, et al. Controlled attenuation parameter (CAP)for the diagnosis of steatosis:a prospective study of 5323 examinations [J]. J Hepatol, 2014, 60(5): 1026-1031.

[30]Shen F, Zheng RD, Shi JP, et al. Impact of skin capsular distance on the performance of controlled attenuation parameter in patients with chronic liver disease [J]. Liver Int, 2015, 35(11): 2392-2400.

[31]Fierbinteanu-Braticevici C, Dina I, Petrisor A, et al. Noninvasive investigations for non alcoholic fatty liver disease and liver fibrosis [J]. World J Gastroenterol, 2010, 16(38): 4784-4791.

[32]The Chinese National Workshop on Fatty Liver and Alcoholic Liver Disease for the Chinese Liver Disease Association. Guidelines for management of nonalcoholic fatty liver disease: an updated and revised edition[J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version), 2012, 4(7): 4-10. 中华医学会肝病学分会脂肪肝和酒精性肝病学组. 中国非酒精性脂肪性肝病诊疗指南(2010年修订版)[J].中国医学前沿杂志(电子版), 2012, 4(7): 4-10.

[33]Kan H, Kimura Y, Hyogo H, et al. Non-invasive assessment of liver steatosis in non-alcoholic fatty liver disease [J]. Hepatol Res, 2014, 44(14): E420-E427.

[34]Lee SS, Park SH, Kim HJ, et al. Non-invasive assessment of hepatic steatosis:prospective comparison of the accuracy of imaging examinations [J]. J Hepatol, 2010, 52(4): 579-585.

[35]Mehta SR, Thomas EL, Bell JD, et al. Non-invasive means of measuring hepatic fat content [J]. World J Gastroenterol, 2008, 14(22): 3476-3483.

[36]Bedossa P, Poitou C, Veyrie N, et al. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients [J]. Hepatology, 2012, 56(5): 1751-1759.

[37]Dyson JK, McPherson S, Anstee QM. Republished: Non-alcoholic fatty liver disease: non-invasive investigation and risk stratification [J]. Postgrad Med J, 2014, 90(1063): 254-266.

[38]Schwenzer NF, Springer F, Schraml C, et al. Non-invasive assessment and quantification of liver steatosis by ultrasound,computed tomography and magnetic resonance [J]. J Hepatol, 2009, 51(3): 433-445.

[39]Outwater EK, Blasbalg R, Siegelman ES, et al. Detection of lipidin abdominal tissues with opposed-phase gradient-echo images at 1.5 T:Techniques and diagnostic importance [J]. Radiographics, 1998, 18(6): 1465-1480.

[40]Deng J, Fishbein MH, Rigsby CK, et al. Quantitative MRI for hepatic fat fraction and T2*measurement in pediatric patients with non-alcoholic fatty liver disease [J]. Pediatr Radiol, 2014, 44(11): 1379-1387.

[41]Hatta T, Fujinaga Y, Kadoya M, et al. Accurate and simple method for quantification of hepatic fat content using magnetic resonance imaging: A prospective study in biopsy-proven nonalcoholic fatty liver disease [J]. J Gastroenterol, 2010, 45(12): 1263-1271.

[42]Mazhar SM, Shiehmorteza M, Sirlin CB. Noninvasive assessment of hepatic steatosis [J]. Clin Gastroenterol Hepatol, 2009, 7(2): 135-140.

[43]Fishbein M, Castro F, Cheruku S, et al. Hepatic MRI for fat quantitation:Its relationship to fat morphology, diagnosis, and ultrasound [J]. J Clin Gastroenterol, 2005, 39(7): 619-625.

[44]Zhong L, Chen JJ, Chen J, et al. Nonalcoholic fatty liver disease:quantitative assessment of liver fat content by computed tomography, magnetic resonance imaging and proton magnetic resonance spectroscopy [J]. J Dig Dis, 2009, 10(4): 315-320.

[45]Roldan-Valadez E, Favila R, Martínez-López M, et al. In vivo 3T spectroscopic quantification of liver fat content in nonalcoholic fatty liver disease:Correlation with biochemical method and morphometry [J]. J Hepatol, 2010, 53(4): 732-737.

[46]Karlas T, Petroff D, Garnov N, et al. Non-invasive assessment of hepatic steatosis in patients with NAFLD using controlled attenuation parameter and 1H-MR spectroscopy [J]. PLoS One, 2014, 9(3): e91987.

[47]Abrigo JM, Shen J, Wong VW, et al. Non-alcoholic fatty liver disease:Spectral patterns observed from an in vivo phosphorus magnetic resonance spectroscopy study [J]. J Hepatol, 2014, 60(4): 809-815.

[48]Noureddin M, Lam J, Peterson MR, et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials [J]. Hepatology, 2013, 58(6): 1930-1940.

[49]Tang A, Tan J, Sun M, et al. Nonalcoholic fatty liver disease:MR imaging of liver proton density fat fraction to assess hepatic steatosis [J]. Radiology, 2013, 267(2): 422-431.

[50]Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction:a standardized MR based biomarker of tissue fat concentration [J]. J Magn Reson Imaging, 2012, 36(5): 1011-1014.

[51]Idilman IS, Keskin O, Elhan AH, et al. Impact of sequential proton density fat fraction for quantification of hepatic steatosis in nonalcoholic fatty liver disease [J]. Scand J Gastroenterol, 2014, 49(5): 617-624.

[52]Tang A, Desai A, Hamilton G, et al. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease [J]. Radiology, 2015, 274(2): 416-425.

[53]Reeder SB. Emerging quantitative magnetic resonance imaging biomarkers of hepatic steatosis [J]. Hepatology, 2013, 58(6): 1877-1880.

[54]Al-Busafi SA, Ghali P, Wong P, et al. The utility of Xenon-133 liver scan in the diagnosis and management of nonalcoholic fatty liver disease [J]. Can J Gastroenterol, 2012, 26(3): 155-159.

(责任编辑:王全楚)

Progress of imaging examination of nonalcoholic fatty liver disease

MA Dabao, YANG Guowang, WANG Xiaomin, TANG Wujun

Department of Oncology, Beijing TCM Hospital Affiliated to Capital Medical University, Beijing 100010, China

Liver biopsy remains the gold standard to diagnose and stage nonalcoholic fatty liver disease(NAFLD). However, it comes with the risk of complications ranging from simple pain to life-threatening bleeding. It is also associated with sampling error.For these reasons, a variety of noninvasive radiological markers,including ultrasound, controlled attenuation parameter, computed tomography, magnetic resonance spectroscopy and Xenon-133 scan have been widely used in clinic. The progress of imaging examination of NAFLD was reviewed in this paper.

Nonalcoholic fatty liver disease; Hepatic steatosis; Noninvasive methods assessment

10.3969/j.issn.1006-5709.2016.11.030

北京市科委首都市民健康项目培育(Z151100003915128)

马大宝,在读硕士研究生,住院医师,研究方向:中西医结合肿瘤学。 E-mail:18810956959@163.com

唐武军,博士,主任医师,研究方向:中西医结合肿瘤学。 E-mail:tangwujun@bjzhongyi.com

R575.5

A

1006-5709(2016)11-1321-05

2015-12-29

猜你喜欢

脂肪性变性酒精性
非酒精性脂肪性肝病,需要治疗吗?
晋州市大成变性淀粉有限公司
非酒精性脂肪性肝病的中医治疗
成军:非酒精性脂肪性肝病新药的研发
征兵“惊艳”
清肝二十七味丸对酒精性肝损伤小鼠的保护作用
大黄蛰虫丸对小鼠酒精性肝纤维化损伤的保护作用
当变性女遇见变性男 一种奇妙的感觉产生了
变性淀粉在酸奶中的应用
非酒精性脂肪肝的诊疗体会