生物力刺激和促丝裂原激活蛋白激酶对骨改建的影响
2016-03-11耿远明申晓青徐平平
耿远明 申晓青 徐平平
1.南方医科大学珠江医院口腔科 广州 510282;2.广东省口腔医院•南方医科大学附属口腔医院口腔颌面外科 广州 510280
生物力刺激和促丝裂原激活蛋白激酶对骨改建的影响
耿远明1申晓青1徐平平2
1.南方医科大学珠江医院口腔科 广州 510282;2.广东省口腔医院•南方医科大学附属口腔医院口腔颌面外科 广州 510280
生物力信号转导是骨生物学研究的热点之一。通过研究流体剪切力、细胞外基质形变等生物力刺激下成骨细胞系的应答发现,生物力信号转导涉及促丝裂原激活蛋白激酶(MAPK)信号转导通路在内的多种信号系统。生物力刺激作用于整联蛋白、钙离子通道和脂筏等感受器,激活MAPK信号转导通路并通过级联反应调节下游分子的活性,如核心结合因子-α1和激活蛋白1等转录因子,进而调控成骨细胞的功能。同时生物力刺激诱导的MAPK信号转导通路与雌激素受体、甲状旁腺素受体和1,25-二羟胆骨化醇受体等信号转导通路存在交联作用,是生物力信号转导的重要途径。
成骨细胞系; 生物力信号转导; 促丝裂原激活蛋白激酶
生物力刺激是调节骨组织改建的关键因素之一,利用生物力刺激调节骨组织改建被广泛运用于口腔科和骨科等临床实践中。例如在正畸治疗时,牙体移动前方的骨受到压力,造成骨吸收;牙体移动后方的骨则受到牵张力,刺激骨形成,占据牙体前移后遗留的空间。细胞将生物力刺激转化为调控细胞活动的生物学信号的过程,即生物力信号转导,是骨生物学的研究热点。成骨细胞系在骨改建中发挥着关键性的作用,是目前研究骨组织生物力信号转导的主要对象。Klein-Nulend等[1]在研究中发现,生物力刺激可影响成骨细胞系的各个分化阶段:从前体干细胞到骨细胞。生物力刺激信号转导涉及多种信号系统,其中促丝裂原激活蛋白激酶(mitogen-activated protein kinase,MAPK)信号转导通路研究较为广泛。本文就MAPK在成骨细胞系生物力刺激信号转导中的作用及其上下游信号转导通路等研究进展作一综述。
1 成骨细胞系的生物力刺激
一种假说认为,骨基质受力使骨陷窝小管系统(lacunar canalicular system,LCS)内产生液体流动,流体剪切力(fluid shear stress,FSS)作用于骨细胞以调节成骨细胞和破骨细胞的功能[2]。此假说得到了一些体外试验的支持,但目前的问题在于:1)FSS多作用于二维培养的细胞,与生理条件的三维环境差异巨大,基本无法描述假说中的受力条件[3];2)体外条件下能够引起应答的刺激强度远远高于生理条件[4];3)骨细胞在LCS中的细胞突相互连接并处于动态变化中,这使得FSS在解释骨改建现象时变得极为复杂[5]。
另一种假说为常用的受力模型为细胞外基质(extracellular matrix,ECM)形变。ECM形变直观上可以模拟细胞在骨基质中的状态,但其效应与FSS并非完全相同,提示其仍然具有一定的局限性[6]。从更广泛意义的上看,ECM形变和FSS以及静水压和离心力等其他形式的生物力刺激的共同效应是使细胞形变,产生细胞膜与基质结合处应力或细胞膜张力的变化,诱导刺激整联蛋白(旧称整合素)、生物力敏感离子通道和脂筏等感受器产生生物学信号[7]。在尚无研究说明这些细胞形变方式的生物学意义的前提下,为讨论方便,本文将其描述为生物力刺激。
2 MAPK在成骨细胞系生物力信号转导中的作用
在MAPK信号转导通路中至少有细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)1/2、P38MAPK和c-Jun N-末端激酶(c-Jun N-terminal kinase,JNK)参与了成骨细胞系的生物力学信号转导,诱导成骨细胞分化及程序性死亡,调节破骨细胞的分化诱导。生物力刺激可通过激活ERK1/2诱导成骨分化。此过程中核心结合因子-α1(core binding factor α1,CBFA1)等成骨特异性转录因子表达及活性增加,伴随碱性磷酸酶(alkaline phosphatase,AKP)、1型胶原和骨钙蛋白等多种成骨分化标志物的表达上调[8]。P38MAPK在成骨细胞受到生物力刺激时磷酸化增加[9],然而并不诱导成骨分化[10]。过强的生物力刺激可诱导成骨细胞程序性死亡。生物力刺激诱导钙流形成,产生活性氧族,激活JNK并诱导细胞表达肿瘤坏死因子受体超家族成员成纤维细胞生长因子诱导早期反应蛋白14(fibroblast growth factor-inducible-14,Fn14),Fn14的配体具有程序性细胞死亡诱导活性[11]。
成骨细胞通过产生骨保护蛋白(osteoprotegerin,OPG)和核因子-κB受体活化因子配体(receptor activator of nuclear factor-κB ligand,RANKL)调节破骨细胞的分化。生物力刺激通过激活P38MAPK调控成骨细胞中RANKL和OPG的表达[12]。生物力刺激诱导的P38MAPK激活与单核细胞趋化蛋白(monocyte chemoattractant protein,MCP)3表达相关,MCP3可促进破骨前体细胞的趋化[11]。
3 MAPK在成骨细胞系生物力信号转导中的激活
3.1整联蛋白
整联蛋白是一种异二聚体跨膜蛋白,胞外部分与ECM中特定的氨基酸序列结合致其发生构象变化,将外界信息导入细胞内[13]。MAPK信号转导通路可接受来自整联蛋白的信号整合。整联蛋白通过α-辅肌动蛋白或黏着斑蛋白与MAPK信号转导通路产生相互作用[14]。整联蛋白β1亚基敲除可抑制生物力刺激诱导的ERK上调,而β5亚基敲除可增强ERK的上调[15]。
整联蛋白属于无酶活性受体,通过其他激酶激活MAPK信号转导通路,例如局部黏着斑激酶(focal adhesion kinase,FAK)、Src家族激酶(Src family kinase,SFK)、Rho鸟苷三磷酸(guanosine triphosphate,GTP)等。FAK通过桩蛋白(paxillin)和踝蛋白(talin)与整联蛋白结合,导致FAK酪氨酸(tyrosine,Tyr)397自磷酸化并激活;FAK Tyr397磷酸化后与SFK等结合,诱导其他位点的磷酸化;FAK Tyr863的磷酸化使FAK与P130Cas和Grb2的结合性增强;FAK Tyr925的磷酸化促进FAK与Grb2的结合[16]。Grb2与FAKSOS(son of sevenless)形成聚合体,是生物力刺激诱导ERK1/2和JNK激活的关键步骤[17]。
激活状态的SFK向细胞附着位点转位,通过肉豆蔻酰化域与胞膜结合,与整联蛋白β3的C端序列结合,调节细胞黏附及迁移[18]。受到生物力刺激后,骨细胞核内的SFK活性增加,Src与富脯氨酸的酪氨酸激酶2形成复合体并进入细胞核与甲基结合结构域蛋白2结合,调控环加氧酶(cyclooxygenase,COX)2和骨桥蛋白的表达[19]。尽管生物力刺激可以激活Src,但抑制Src并不能影响生物力刺激诱导的ERK1/2磷酸化[20]。整联蛋白介导的生物力刺激信号转导也受到Rho GTP酶的调控。ECM的生物力学性可通过RhoA及下游的Rho相关卷曲蛋白激酶(Rho-associated coiled-coil protein kinase,ROCK)调控MAPK的活性,从而影响成骨细胞的分化[21]。成骨细胞受到生物力刺激时,通过RhoA/ROCK依赖的ERK1/2激活,可诱导骨桥蛋白和COX2的表达[9]。
3.2钙离子通道
当成骨细胞受到生物力刺激之时,可以发生钙闪烁现象[22]。阻断生物力敏感钙离子通道(biological force sensitive calcium channel,BSCC)或电压力敏感钙离子通道(voltage force sensitive calcium channel,VSCC)可降低生物力刺激诱导的骨形成[7]。一种假说认为,生物力刺激使胞膜表面产生牵张应力,相应的锚绳作用于与之密切联系的BSCC并致其开放[23];当BSCC介导的膜电位去极化达到一定阈值时,VSCC开放,从而形成钙内流[2]。生物力刺激诱导的钙闪烁依赖外源性钙流,也须要内源性钙离子的释放[24]。细胞质钙离子浓度的变化,促进腺苷三磷酸的释放,通过旁分泌激活细胞嘌呤能受体P2X7,激活磷酸酯酶C(phospholipase C,PLC)分解4,5-二磷酸脂酰肌醇(phosphatidylinositol 4,5-bisphosphate,PIP2)为1,4,5-三磷酸肌醇(inositol 1,4,5-triphosphate,IP3)和1,2-二酯酰甘油(1,2-diacylglycerol,DAG),IP3通过IP3受体激活内源性钙离子的释放,同时激活蛋白激酶C(protein kinase C,PKC),从而激活ERK1/2及P38MAPK信号转导通路的信号转导[25]。
钙离子与钙调蛋白(calmodulin,CaM)结合,从而激活钙调蛋白依赖性激酶(CaM kinase,CaMK)[26]。在成骨细胞中,生物力刺激诱导的钙流激活CaMK,进而激活促丝裂原激活蛋白激酶激酶激酶(mitogen-activated protein kinase kinase kinase,MAPKKK)转化生长因子活化激酶(transforming growth factor-β-activated kinase,TAK) 1,TAK1激活JNK和P38MAPK信号通路,上调白细胞介素-6的表达[27]。
3.3脂筏
脂筏是细胞膜上由胆固醇与鞘磷脂类物质结合而成的动态微结构域。在成骨细胞中,脂筏与生物力刺激诱导的MAPK激活相关。H-Ras的激活依赖于脂筏结构的存在;清除脂筏胆固醇,可抑制生物力刺激对Ras/ERK的激活,从而削弱对RANKL的表达抑制[28]。窖蛋白(caveolin)通过与整联蛋白的作用激活ERK并与无翅型小鼠乳房肿瘤病毒整合位点家族(wingless-type mice mammary tumour virus integration site family,WNT)/ β-连环蛋白信号转导通路交联[29]。窖蛋白通过内吞作用调控P2X7受体在成骨细胞内的时空分布,从而调控生物力刺激诱导的钙流[30]。
4 MAPK在成骨细胞系生物力信号转导中的作用底物
MAPK激活后,其构象发生变化,磷酸化底物并调节其功能。在成骨细胞系生物力信号转导中,MAPK磷酸化的底物包括转录因子CBFA1和激活蛋白(activator protein,AP)1。
4.1CBFA1
CBFA1在软骨内成骨和膜内成骨的成骨细胞分化中必不可少,是成骨细胞分化的重要标志物。在生物力信号转导中,CBFA1是ERK1/2的作用底物。生物力刺激骨细胞后,ERK1/2激活,导致其入核增加,磷酸化CBFA1的丝氨酸(serine,Ser)301和Ser309位点,提高CBFA1的活性[31]。其他一些与成骨分化相关的转录因子,如远端较小同源异形盒(distal-less homeobox,DLX)5和成骨细胞特异性转录因子(osterix,Osx)等,也受到MAPK的磷酸化调节。DLX5的Ser34和Ser217被P38MAPK磷酸化而激活,上调Osx的表达[32];Osx的Ser73和Ser77可被P38MAPK磷酸化,促进纤维调节蛋白和骨涎蛋白等的转录[33]。目前,尚无确切的证据表明,生物力刺激诱导的P38-MAPK激活与DLX5及Osx的转录活性相关。
4.2AP1
AP1是由FOS/FRA(c-Fos、c-FosB、FRA1/ 2)、c-Jun(c-Jun、c-JunD、c-JunB)、活化转录因子/环腺苷酸反应元件结合蛋白和巨噬细胞活化因子等转录因子亚家族成员形成的均异质二聚体,调控细胞的增殖、分化和程序性细胞死亡。AP1并非Osx,但却在成骨细胞分化的早期基因表达中起重要的作用,调控多种标志基因的表达,如骨钙蛋白、骨桥蛋白和骨粘连蛋白等[34]。MAPK依赖的AP1激活主要发生在成骨细胞受生物力刺激的早期。在细胞受到生物力刺激的极早期(3~6 h),ERK1/2和JNK的活性增加,激活c- Jun,使其核转移增加,与DNA的结合力上升,上调1型胶原和基质金属蛋白酶1的表达[35]。
5 通过MAPK调节生物力信号转导的相关通路
生物力刺激信号转导是一个涉及多种信号转导的复杂过程,MAPK信号转导通路与其他信号转导通路存在着交联作用。
5.1雌激素
雌激素既是一种重要的性激素,也是一种骨改建的重要调节因子。生物力刺激可以通过激活ERK1/2提高雌激素受体的磷酸化水平,产生和雌激素类似的效应[36]。在成骨细胞中,雌激素与生物力刺激对MAPK的激活具有协同作用,双因素刺激明显较单因素增加了ERK1/2和P38MAPK的激活以及c-FOS和COX-2基因的表达[37]。雌激素可提高骨细胞连接蛋白(connexin,CX)43的表达水平,增加细胞间的通信效率,提高细胞对生物力刺激的敏感,增加ERK1/2的激活水平[38]。
5.2甲状旁腺素
甲状旁腺素(parathyroid hormone,PTH)是钙稳态的主要调节激素。PTH结合G蛋白偶联受体后激活环腺苷酸/蛋白激酶(protein kinase,PK)A和PKC/Ca2+信号转导通路,通过激活PKA及促丝裂原激活蛋白激酶1抑制ERK1/2和JNK的活性,从而抑制细胞外刺激对ERK1/2和JNK的激活[39];但这一机制是否存在于生物力刺激的转导,尚无文献明确说明。PTH可以降低维持骨稳态所必须的生物力刺激强度,其机制可能为通过增加解聚细胞骨架蛋白,提高BSCC的开放率(而非VSCC)来提高成骨细胞对生物力刺激的敏感性,增加刺激后胞内钙离子浓度[40]。
5.31,25-二羟胆骨化醇
1,25-二羟胆骨化醇(1,25-dihydroxycholecalciferol,1,25-(OH)2D3)是一种调节骨代谢的脂溶性激素,可使钙磷从骨组织中释放,维持血浆钙磷的正常水平。1,25-(OH)2D3与其受体结合,诱导成骨细胞表达RANKL,促进破骨细胞的分化[41];敲除MAPK磷酸酶1可抑制1,25-(OH)2D3受体的激活,下调RANKL的表达[42]。1,25-(OH)2D3的功能受到细胞色素P(cytochrome P,CYP)24的调节,CYP24通过羟基化1,25-(OH)2D3使其失活,生物力刺激可以抑制成骨细胞CYP24的转录,抑制MPAK可以进一步增强生物力刺激的对CYP24的抑制。
6 小结
MAPK信号转导通路接受了来自刺激感受器的信号整合,并将信号转导给下游的效应分子,使细胞作出应答,在成骨细胞系生物力信号转导中扮演了重要的角色。目前,生物力信号转导研究的体外模型多样,不同的MAPK在不同的刺激中发挥不同甚至相矛盾的作用。解决这一问题,首先要明确细胞对生物力刺激的感受方式以及各个潜在感受器之间的相互作用。对骨组织超微结构研究的深入,将有助于体外模型的进一步优化。成骨细胞系的各个分化阶段均能对生物力刺激进行应答,可能也是造成MAPK激活方式不同的原因,但尚无研究说明不同分化阶段的细胞生物力信号转导存在怎样的差异,以及这些差异的生物学意义。这些问题仍须在今后的研究中进一步探讨。
生物力刺激作用于整联蛋白,诱导与整联蛋白关系密切的FAK、SFK和RhoA产生活性变化,从而激活ERK1/2和JNK;生物力刺激也可诱导外源性和内源性钙流,通过PKC和CaMK等激活MAPK;脂筏在细胞受到生物力刺激后,一方面影响钙通道的开放,另一方面可通过Ras等激活ERK1/2;转录因子AP1的活性受到MAPK的调节;ERK1/2的激活可以促进CBFA1的作用,可以调节细胞成骨分化。
[1] Klein-Nulend J, Bakker AD, Bacabac RG, et al. Mechanosensation and transduction in osteocytes[J]. Bone, 2013, 54(2):182-190.
[2] Price C, Zhou X, Li W, et al. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence forload-induced fluid flow[J]. J Bone Miner Res, 2011, 26(2):277-285.
[3] Joukar A, Niroomand-Oscuii H, Ghalichi F. Numerical simulation of osteocyte cell in response to directional mechanical loadings and mechanotransduction analysis: considering lacunar-canalicular interstitial fluid flow[J]. Comput Methods Programs Biomed, 2016, 133:133-141.
[4] Metzger TA, Schwaner SA, LaNeve AJ, et al. Pressure and shear stress in trabecular bone marrow during whole bone loading[J]. J Biomech, 2015, 48 (12):3035-3043.
[5] Temiyasathit S, Jacobs CR. Osteocyte primary cilium and its role in bone mechanotransduction[J]. Ann N Y Acad Sci, 2010, 1192:22-428.
[6] Gardinier JD, Majumdar S, Duncan RL, et al. Cyclic hydraulic pressure and fluid flow differentially modulate cytoskeleton re-organization in MC3T3 osteoblasts[J]. Cell Mol Bioeng, 2009, 2(1):133-143.
[7] Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone[J]. Gene, 2012, 503(2):179-193.
[8] Zhang P, Wu Y, Jiang Z, et al. Osteogenic response of mesenchymal stem cells to continuous mechanical strain is dependent on ERK1/2-Runx2 signaling[J]. Int J Mol Med, 2012, 29(6):1083-1089.
[9] Hamamura K, Swarnkar G, Tanjung N, et al. RhoA-mediated signaling in mechanotransduction of osteoblasts[J]. Connect Tissue Res, 2012, 53(5):398-406.
[10] Zhang P, Wu Y, Dai Q, et al. p38-MAPK signaling pathway is not involved in osteogenic differentiation during early response of mesenchymal stem cells to continuous mechanical strain[J]. Mol Cell Biochem, 2013, 378(1/2):19-28.
[11] Matsui H, Fukuno N, Kanda Y, et al. The expression of Fn14 via mechanical stress-activated JNK contributes to apoptosis induction in osteoblasts[J]. J Biol Chem, 2014, 289(10):6438-6450.
[12] Yamamoto K, Yamamoto T, Ichioka H, et al. Effects of mechanical stress on cytokine production in mandible-derived osteoblasts[J]. Oral Dis, 2011, 17 (7):712-719.
[13] Thi MM, Suadicani SO, Schaffler MB, et al. Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require αVβ3 integrin[J]. Proc Natl Acad Sci USA, 2013, 110(52):21012-21017.
[14] Boccafoschi F, Mosca C, Bosetti M, et al. The role of mechanical stretching in the activation and localization of adhesion proteins and related intracellular molecules[J]. J Cell Biochem, 2011, 112(5):1403-1409.
[15] Yan YX, Gong YW, Guo Y, et al. Mechanical strain regulates osteoblast proliferation through integrinmediated ERK activation[J]. PLoS ONE, 2012, 7(4): e35709.
[16] Papusheva E, Mello de Queiroz F, Dalous J, et al. Dynamic conformational changes in the FERM domain of FAK are involved in focal-adhesion behavior during cell spreading and motility[J]. J Cell Sci, 2009, 122(Pt 5):656-666.
[17] Wang B, Du T, Wang Y, et al. Focal adhesion kinase signaling pathway is involved in mechanotransduction in MG-63 cells[J]. Biochem Biophys Res Commun, 2011, 410(3):671-676.
[18] Roca-Cusachs P, Iskratsch T, Sheetz MP. Finding the weakest link: exploring integrin-mediated mechanical molecular pathways[J]. J Cell Sci, 2012, 125(Pt 13):3025-3038.
[19] Hum JM, Day RN, Bidwell JP, et al. Mechanical loading in osteocytes induces formation of a Src/ Pyk2/MBD2 complex that suppresses anabolic gene expression[J]. PLoS ONE, 2014, 9(5):e97942.
[20] Morgan JM, Wong A, Genetos DC, et al. Src is sufficient, but not necessary, for osteopontin induction in osteoblasts[J]. Biorheology, 2011, 48(1):65-74.
[21] Khatiwala CB, Kim PD, Peyton SR, et al. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK [J]. J Bone Miner Res, 2009, 24(5):886-898.
[22] Roy B, Das T, Mishra D, et al. Oscillatory shear stress induced calcium flickers in osteoblast cells[J]. Integr Biol, 2014, 6(3):289-299.
[23] Thompson WR, Modla S, Grindel BJ, et al. Perlecan/ Hspg2 deficiency alters the pericellular space of the lacunocanalicular system surrounding osteocytic processes in cortical bone[J]. J Bone Miner Res,2011, 26(3):618-629.
[24] Huo B, Lu XL, Guo XE. Intercellular calcium wave propagation in linear and circuit-like bone cell networks[J]. Philos Trans A Math Phys Eng Sci, 2010, 368(1912):617-633.
[25] Liu D, Genetos DC, Shao Y, et al. Activation of extracellular-signal regulated kinase(ERK1/2) by fluid shear is Ca(2+)- and ATP-dependent in MC3T3-E1 osteoblasts[J]. Bone, 2008, 42(4):644-652.
[26] Kim BJ, Lee YS, Lee SY, et al. Afamin stimulates osteoclastogenesis and bone resorption via Gicoupled receptor and Ca2+/calmodulin-dependent protein kinase(CaMK) pathways[J]. J Endocrinol Invest, 2013, 36(10):876-882.
[27] Fukuno N, Matsui H, Kanda Y, et al. TGF-β-activated kinase 1 mediates mechanical stress-induced IL-6 expression in osteoblasts[J]. Biochem Biophys Res Commun, 2011, 408(2):202-207.
[28] Rubin J, Murphy TC, Rahnert J, et al. Mechanical inhibition of RANKL expression is regulated by HRas-GTPase[J]. J Biol Chem, 2006, 281(3):1412-1418.
[29] Gortazar AR, Martin-Millan M, Bravo B, et al. Crosstalk between caveolin-1/extracellular signalregulated kinase(ERK) and β-catenin survival pathways in osteocyte mechanotransduction[J]. J Biol Chem, 2013, 288(12):8168-8175.
[30] Gangadharan V, Nohe A, Caplan J, et al. Caveolin-1 regulates P2X7 receptor signaling in osteoblasts[J]. Am J Physiol Cell Physiol, 2015, 308(1):C41-C50.
[31] Li Y, Ge C, Long JP, et al. Biomechanical stimulation of osteoblast gene expression requires phosphorylation of the RUNX2 transcription factor [J]. J Bone Miner Res, 2012, 27(6):1263-1274.
[32] Ulsamer A, Ortuño MJ, Ruiz S, et al. BMP-2 induces osterix expression through up-regulation of Dlx5 and its phosphorylation by p38[J]. J Biol Chem, 2008, 283(7):3816-3826.
[33] Ortuno M J, Ruiz-Gaspa S, Rodriguez-Carballo E, et al. p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix[J]. J Bio Chem, 2010, 285(42):31985-31994.
[34] Matsumoto T, Kuriwaka-Kido R, Kondo T, et al. Regulation of osteoblast differentiation by interleukin-11 via AP-1 and Smad signaling[J]. Endocr J, 2012, 59(2):91-101.
[35] Kook SH, Jang YS, Lee JC. Involvement of JNKAP-1 and ERK-NF-κB signaling in tension-stimulated expression of typeⅠcollagen and MMP-1 in human periodontal ligament fibroblasts[J]. J Appl Physiol, 2011, 111(6):1575-1583.
[36] Jessop HL, Sjoberg M, Cheng MZ, et al. Mechanical strain and estrogen activate estrogen receptor alpha in bone cells[J]. J Bone Miner Res, 2001, 16(6): 1045-1055.
[37] Yeh CR, Chiu JJ, Lee CI, et al. Estrogen augments shear stress-induced signaling and gene expression in osteoblast-like cells via estrogen receptor-mediated expression of beta1-integrin[J]. J Bone Miner Res, 2010, 25(3):627-639.
[38] Ren J, Wang XH, Wang GC, et al. 17β-estradiol regulation of connexin 43-based gap junction and mechanosensitivity through classical estrogen receptor pathway in osteocyte-like MLO-Y4 cells[J]. Bone, 2013, 53(2):587-596.
[39] Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton[J]. Curr Opin Pharmacol, 2015, 22:41-50.
[40] Zhang JS, D Ryder K, A Bethel J, et al. PTH-induced actin depolymerization increases mechanosensitive channel activity to enhance mechanically stimulated 2+ signaling in osteoblasts[J]. J Bone Miner Res, 2006(11):1729-1737.
[41] van der Meijden K, Bakker AD, van Essen HW, et al. Mechanical loading and the synthesis of 1,25 (OH)2D in primary human osteoblasts[J]. J Steroid Biochem Mol Biol, 2016, 156:32-39.
[42] Griffin AC 3rd, Kern MJ, Kirkwood KL. MKP-1 is essential for canonical Vitamin D-induced signaling through nuclear import and regulates RANKL expression and function[J]. Mol Endocrinol, 2012, 26 (10):1682-1693.
(本文采编 王晴)
Effects of biological stress and mitogen-activated protein kinase on bone remodeling
Geng Yuanming1, Shen Xiaoqing1, Xu Pingping2.
(1. Dept. of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; 2. Dept. of Oral and Maxillofacial Surgery, Guangdong Provincial Stomatological Hospital, Stomatological Hospital of Southern Medical University, Guangzhou 510280, China)
This study was supported by the National Natural Science Foundation of China(81271187) and Guangdong Provincial Science and Technology Plan Projects(2011B080701099, 2013B021800319).
Studies on mechanotransduction have focused on stomology-related bone biology. In in mechanotransduction, cellular responses to mechanical stress, such as fluid shear stress or matrix deformation in vitro, involve multiple signal pathways, including mitogen-activated protein kinase pathway. This pathway is activated through integrin, calcium channel, and lipid raft under mechanical stress and regulates downstream signal molecules, such as transcription factor core binding factors α1 and activator protein-1. Crosstalks are present between mechanical stress-induced mitogen-activated protein kinase pathway and other receptor pathways(such as estrogen, parathyroid hormone, and 1,25-dihydroxy-cholecalciferol receptor pathways). These crosstalks are important regulatory mechanisms of mechanotransduction.
osteoblast linage; biological force signal transduction; mitogen-activated protein kinase
Q 256
A [doi] 10.7518/gjkq.2016.06.018
2015-12-23;
2016-06-01
国家自然科学基金(81271187);广东省科技计划项目(2011B080701099,2013B021800319)
耿远明,博士,Email:150449101@qq.com
徐平平,教授,博士,Email:xupingping_gd@163.com