APP下载

神经病理性痛的发病机制及治疗研究*

2016-03-10欧阳娟

赣南医学院学报 2016年4期
关键词:神经病电针异位

江 茜,欧阳娟,黄 诚

(赣南医学院 1.2014级硕士研究生;2.基础医学院,江西 赣州 341000)



神经病理性痛的发病机制及治疗研究*

江茜1,欧阳娟2,黄诚2

(赣南医学院1.2014级硕士研究生;2.基础医学院,江西赣州341000)

神经病理性痛是由于躯体感觉系统的损伤或疾病所引起的疼痛,是临床上的常见病和慢性病,严重影响患者的生活质量。作为一种全球负担性疾病,神经病理性痛的高发病率和低治愈率受到国内外研究学者的密切关注。有研究证实外周和中枢机制共同参与了神经病理性痛的发生发展过程。目前针对神经病理性痛的治疗主要有药物治疗、电针治疗、微创技术治疗等。传统中草药因其不良反应小的优点成为近年来研究热点。现对近年来该病的发病机制及治疗进展作一综述。

神经病理性痛;发病机制;治疗

神经病理性痛是世界公认的难题,它由一系列不同疾病或损伤所引起,临床表现各异,直接或间接造成神经系统损害[1-3]。2011年国际疼痛研究学会(IASP)对神经病理性痛(neuropathic pain,NP)提出新定义:神经病理性痛是由于躯体感觉系统的损伤或疾病所引起的疼痛[4]。NP的特点是伤害性刺激消失后仍出现疼痛,主要表现为痛觉过敏(hyperalgesia)、痛觉超敏(allodynia)、炎症区域持续性的自发痛(spontaneous pain)[5]。

据调查显示,NP的发病率世界各异,英国约1%[6],美国约1.5%[7],加拿大17.9%[8],在我国发生率约为7%,有超过2/3的患者治疗不能有效的缓解疼痛[9],这不仅严重影响患者的生活质量[10],还增加了社会负担[10-11]。近年来,研究人员根据该病不同的疼痛特点建立起多种NP动物模型,对NP的认识和理解有了进一步发展。本文就近年NP发病机制及治疗方面研究进展进行综述。

1 神经病理性痛的发病机制

NP发病机制极其复杂,尽管有些进展,但仍有许多目前还不甚清楚。而且有多种模型来研究NP发病机制,其结果也不一致。越来越多的学者认为外周和中枢机制共同参与了NP的发生发展过程[12-17]。下面就NP的外周及中枢机制作一阐述。

1.1神经病理性痛的外周机制神经病理性痛外周机制主要包括:

1.1.1受损神经产生的异位放电(Ectopic discharges) 异位放电是指在一些本不该产生自发电活动的部位产生的自发放电,比如背根神经节、外周神经的轴突等[18]。最早证明异位放电参与NP的证据来自于Chung的研究[19-20],在造模前或造模后,他们把受损神经的背根剪断,动物的自发痛以及触诱发痛和痛超敏均明显减轻,这说明异位放电在NP的发生和发展过程中起着重要作用;Ossipov M. H.等[21]用辣椒素破坏细纤维之后不能消除SNL模型大鼠的触诱发痛行为,这提示触诱发痛主要由粗纤维介导,因异位放电主要来自于大中神经元,因此,人们推测异位放电可能是触诱发痛的凶手。此外,有研究[22-24]发现神经损伤后异位放电出现的时间与机械痛敏出现的时间相当,且神经损伤后异位放电的频率以及放电纤维的比例均随着时间的延长逐渐降低,这与动物痛行为的变化相一致;同时还发现越痛敏的大鼠异位放电越强。以上研究均表明异位放电与神经病理性痛的相关性。但是也有研究[25-26]认为损伤神经的异位放电不是脊神经选择结扎模型 (spinal nerve ligation,SNL)大鼠痛行为的必要条件。孙钱等认为异位电活动确实参与慢性神经病理性痛的产生、发展和维持,但对神经病理痛的后期维持作用有限[18]。异位电活动参与形成NP主要与离子通道相关。有研究者认为电压依赖性钠离子通道的Nav1.3通道在异位放电中起着主导作用[27];抑制钾通道可使异位放电频率增加,提示钾通道参与异位放电的形成[28];背根神经节(dorsal root ganglion,DRG)神经元传入末梢中枢端电压门控Ca2+通道在神经病理性痛状态下表达上调,引起Ca2+依赖的兴奋性神经递质释放增加[29],从而参与NP的形成和发展。

1.1.2炎性细胞与细胞因子的作用炎性细胞在周围神经损伤引起的NP中起着重要的作用[30]。化学介质5-HT、缓激肽、SP、组胺等的释放可致炎性细胞的激活、血管舒张以及血浆蛋白的渗出,最终使伤害性感受器敏感化,进而传导低强度的痛觉刺激,引起NP。有研究发现,细胞因子中IL-6、IL-1β、TNF-α可能是与疼痛作用关系最为密切的细胞因子[31],其中TNF-α 起关键作用[32]。

Deleo等[33]在NP动物模型中发现大鼠脊髓腰段的IL-1β含量增高;Gao YJ 等[34]认为IL-1β能增强兴奋性突触传递和减少异质性突触传递,产生神经病理性疼痛;Laughlin等[35]研究发现鞘内应用IL-1β拮抗剂可有效缓解痛敏症状。有研究显示硬膜外注射TNF-α可使正常大鼠产生急性机械性痛觉过敏[36];刘先国等[37]结果表明神经损伤可能通过上调TNF-α导致Nav1.3和Nav1.8过表达,从而引起NP。Arruda等[38]发现外周神经损伤大鼠脊髓前后角的IL-6 mRNA升高,认为细胞因子包括IL-6是向高级中枢提供伤害信息的神经递质;Orellana DI等认为IL-6通过JAKs/STATs信号通路调节(N-甲基-D-门冬氨酸,NMDA)受体的Ca2+内流,从而引起神经退行性病变[39]。邹晓琴等[40]通过酶联免疫吸附法对SNI模型大鼠研究发现TNF-α、 IL-1β、IL-6的表达均显著上调,亦证实以上细胞因子参与NP的形成和维持。

1.1.3交感神经的参与众所周知,在正常的DRG内,没有或仅有少量交感神经节后纤维的出现。但在外周神经损伤的腰部DRG内,发现有交感神经节后纤维芽生,出现交感-感觉耦联现象,这被认为是神经病理性痛的特征之一[41]。动物模型证实这种病理交互作用是通过交感神经末梢释放的去甲肾上腺素选择性作用于肾上腺素能α2受体实现的[42-44]。肾上腺素能受体拮抗剂以及化学交感神经阻滞剂均能有效减轻外周神经损伤后引起的异常疼痛,这说明交感神经在外周痛觉敏化机制中发挥一定的作用。

1.2神经病理性痛的中枢机制

1.2.1脊髓结构重塑 有研究认为,中枢突触功能的重塑是引发慢性疼痛的重要机制[45]。正常情况下,低阈值的Aβ纤维存在于脊髓胶质区的第Ⅲ和Ⅳ层,高阈值的C纤维存在于脊髓背角的Ⅱ板层,神经损伤后,Aβ 纤维末梢异常芽生进入脊髓背角的第Ⅱ板层[46-48], 并且Aβ纤维的细胞表型发生改变,合成兴奋性的神经递质SP、VIP和EAAs[49]。因某些标记技术缺乏特异性,这些发现尚未定论,且在某些物种中未损伤的Aβ 纤维也可在Ⅱ层表达[50],但这些结构的改变确实存在,提示外周神经损伤后低阈值的Aβ纤维可能是NP发生的解剖学基础之一。

1.2.2中枢敏化作用中枢敏化是指脊髓及脊髓以上痛觉相关神经元兴奋性异常升高或突触传递增强,从而放大疼痛信号传递。LaMotte等[51]通过实验发现皮内注射TRPV1受体激动剂引起次级皮肤痛觉过敏,首次在人体上验证了中枢敏化现象。Yan[52]和Ho等[53]证实脊髓背角NMDA受体的激活或磷酸化参与中枢敏化的发生和维持。有研究表明,外周神经损伤后,突触前神经细胞释放谷氨酸,作用于突触后神经细胞上NMDA受体,使细胞内的Ca2+水平升高,促进iNOS、nNOS、NO和COX-2的释放,进而作用于周围细胞并激活第二信使系统,通过激活细胞内不同信号分子来调节递质和炎症介质的表达,参与NP的形成和发展[54-59]。

尽管首次描述中枢敏化是发生在脊髓背角,但有研究发现杏仁核、前脑回和前额皮质区等结构同样可发生类似的突触改变[60-62]。这仍有待进一步的研究。

1.2.3胶质细胞的激活以往认为胶质细胞只具有支持、保护和营养功能,但近年来大量研究证明胶质细胞(主要是星形胶质细胞和小胶质细胞)通过影响神经递质、神经调质或细胞因子的释放而诱发NP[63]。神经损伤后可激活星形胶质细胞,产生和释放某些促炎细胞因子(如TNF-α、IL-1、IL-6等)、炎性介质和神经活性物质参与NP的产生和维持,而这些物质的过量表达又能诱导中枢敏化,使NP进一步发展和持续[64];此外,Marco等[65]发现胶质细胞在慢性疼痛患者的丘脑部位亦有高表达。动物实验研究证实鞘内注射胶质细胞激动剂可诱发触诱发痛[66];而注射胶质细胞抑制剂却能缓解疼痛[67-68]。星形胶质细胞参与NP的另一种说法和谷氨酸转运体-1(glutamate transporter-1,GLT-1)及谷氨酸/天冬氨酸转运体(glutamate/aspanate transporter,GLAST)有关。星形胶质细胞上大量表达GLT-1和GLAST,当外周神经炎症或损伤时,先诱导GLT-1和GLAST短暂增多,随后便持续性地抑制其表达,导致谷氨酸摄取减少,促进谷氨酸能的突触传递和谷氨酸浓度增加,进而促进NP的产生及发展[69-70]。

2 神经病理性痛的治疗

NP的病因、发病机制以及症状之间关系复杂,其治疗效果不尽如人意,多数患者需长期用药。这种不良的治疗效果很可能与我们没有找到针对每个患者具体的疼痛机制的靶点有关。但随着近年来研究的进一步深入,NP的治疗取得了很大的进展。

2.1药物治疗药物疗法仍是目前临床上治疗NP的主要方法,其目的是抑制痛觉传导通路神经元的异位放电和对伤害性刺激的超强反应。用于治疗NP的药物主要有加巴喷丁、5%利多卡因贴剂、阿片类镇痛剂、盐酸曲马多和三环类抗抑郁剂[71]、抗癫痫药物[72]、NMDA受体阻断剂等[73]。其中阿片类药物、NMDA受体拮抗剂等还可通过鞘内注射的方式进行给药[74-75]。尽管多项研究发现鞘内使用药物种类较多,但有关药物疗效、安全、稳定性的数据有限,仍需进一步研究证实。有证据表明,NMDA受体阻断剂氯胺酮虽可有效地治疗NP,但同时也会引起食欲减退和致幻[73,76];阿片类镇痛药虽然治疗NP效果显著,但因其耐受性和成瘾性,临床使用受到极大限制。因此,越来越多的研究者将目光转向不良反应更小的祖国传统中药。

有研究表明臭牡丹根提取液具有较强的镇痛作用,且通过非阿片受体发挥镇痛效应[77-78];同时我们前期实验还发现臭牡丹对NP所致的热痛敏和机械痛敏有明显的缓解作用,并可显著降低SNI模型大鼠脊髓中TNF-α、IL-1β、IL-6和谷氨酸的表达水平[40,79-80];雷公藤甲素和三七皂甙混合给药对SNI模型大鼠所致的热痛觉过敏有一定的镇痛作用,对机械痛觉过敏有缓解作用[81];Jun Tang等同样发现雷公藤甲素可通过抑制脊髓背角神经炎症缓解NP,其抗炎效应可能与抑制JAK-STAT3有关[82];胡珊通过鞘内给予黄芩素发现其可通过抑制骨癌痛大鼠脊髓神经炎症、相关信号通路激活和脂氧合酶表达来缓解疼痛[83];Yan Zhang等研究者提取延胡索的成分——去氢紫堇鳞茎碱(dehydrocorybulbine,DHCB),发现DHCB可缓解SNL大鼠痛模型所致的疼痛,且不引起耐受,其镇痛机制可能与抑制多巴胺受体拮抗剂的活性相关[84];白菖蒲、银杏等所含的有效成分,为研究新型镇痛药物提供新的思路[85]。

2.2神经调制治疗近年来,随着医学科学和生物技术的不断发展,一些新的治疗NP手段也在逐渐被开发出来,且广泛应用于临床。

神经电刺激技术临床常用的是韩氏穴位神经电刺激(HANS)。在我国,传统针灸用于治疗疾病距今已有几千年的历史。电针(Electroacupuncture,EA)是在传统针刺的基础上,应用电针仪输出脉冲电流,用以加强刺激、增强疗效的现代针灸疗法[86]。动物和临床试验均已证实电针对急、慢性痛有治疗作用[87-90]。研究发现电针可以减轻大鼠机械性痛觉过敏[91-93]和触诱发痛现象[94-95],且不能被纳洛酮阻断[96]。电针镇痛的神经生理机制比较复杂,有研究认为是通过对穴位区域进行电刺激,激发脊髓去甲肾上腺素能受体、5-HT以及阿片肽来抑制NMDA受体激活,从而缓解疼痛[97],也有人认为是抑制P2X受体相关表达[98-101];最新研究显示电针可通过促进神经营养因子-3(NT-3)的释放并抑制IL-1β及脊髓胶质细胞的表达从而达到镇痛目的[102]。另有研究表明,某些药物与电针合用可以加强电针的镇痛作用,比如NMDA受体阻断剂氯胺酮可加强电针对神经病理性痛机械痛敏的缓解作用[103];小剂量曲马多与电针合用,对CFA致关节炎大鼠有更强的镇痛作用[104]。

临床上还可根据不同病情酌情选择其他神经调制治疗方法,如经皮神经电刺激(TENS)、脊髓电刺激(SCS)、神经丛或神经干刺激、脑深部电刺激(DBS)、运动皮质刺激和经颅磁刺激(TMS)等。

2.3微创技术治疗微创技术被认为是挑战NP治疗难题的希望。它包括射频神经调控术、神经阻滞、神经损毁、臭氧疗法和保护神经的其他各种新介入方法[105-107]。需注意神经毁损治疗为不可逆的治疗,应严格掌握适应证,并取得患者的知情同意。

3 小 结

NP作为人类疾病中的难题,其主要特点表现为痛觉过敏、痛觉超敏和炎症区域持续性的自发痛,NP的产生是多个因素相互级联的复杂过程,经过不懈努力,各种相关的发病机制已经逐渐显出真面目,学者普遍认为外周和中枢机制共同参与了NP的发生发展过程,且外周机制发生在先,中枢机制发生在后[108]。外周神经损伤后,早期的异位放电不仅导致早期急性痛,而且这些异位冲动不断轰击脊髓背角等中枢部位,诱发产生脊髓背角长时程增强(long term potentiation,LTP)等中枢敏化现象[109]。在中枢敏化过程中,脊髓胶质细胞活性的增强(细胞激活)、背角抑制性中间神经元活性降低、下行痛抑制系统的削弱以及下行易化系统的增强等均在神经病理性痛发生和后期维持中发挥重要作用。

尽管NP的治疗已取得了一定进展,但多数患者不能治愈,需长期用药,经济负担沉重。目前NP的治疗仍以药物治疗为主。随着人们对NP发病机制的深入研究,人们将有可能发现更多的潜在药物靶点,比如针对神经胶质细胞,新开发的SLC 022处在Ⅱa期试验阶段,纽拉司汀(neublastin)处于Ⅰ期试验[110]。大多数药物因其有一定的不良反应而限制了临床应用。已有研究报道三七皂甙、大黄素、葛根素、灯盏细辛、川芎嗪和丹参酮等中药有抑制TNF-α或IL-1β等炎性细胞因子的作用,从而减轻细胞因子所介导的NP[111]。笔者认为,传统中药对NP具有一定的治疗作用,且不良反应小,其可能是今后的一个研究方向。

[1]Bouhassira D,Lantéri-Minet M,Attal N,et al.Prevalence of chronic pain with neuropathic characteristics in the general population[J].Pain,2008,136(3):380-387.

[2]Dworkin RH,Malone DC,Panarites CJ,et al.Impact of postherpetic neuralgia and painful diabetic peripheral neuropathy on healthcare costs [J]. J Pain,2010,11(4):360-368.

[3]Jeon Y,Kim CE,Jung D,et al.Curcumin could prevent the development of chronic neuropathic pain in rats with peripheral nerve injury[J].Curr Ther Res Clin Exp,2013,74:1-4.

[4]邢国刚.神经病理性痛的新定义[J].中国疼痛医学杂志,2011,17(10):595-596.

[5]Vinik A.The approach to the management of the patient with neuropathic pain [J]. J Clin Endocrinol Metab,2010,95(11):4802-4811.

[6]Bowsher D.Neurogenic pain syndromes and their management [J]. Br Med Bull,1991,47(3):644-666.

[7]Cartier GT,Galer BS.Advances in the management of neuropathic pain [J]. Phys Med Rehabil Clin N Am,2001,12(2):447-459.

[8]Toth C,Lander J,Wiebe S.The prevalence and impact of chronic pain with neuropathic pain symptoms in the general population [J]. Pain Med,2009,10(5):918-929.

[9]韩济生.神经病理性疼痛热点谈[J].医学研究杂志,2011,40(11):1-2.

[10]McDermott AM,Toelle TR,Rowbotham DJ,et al.The burden of neuropathic pain:results from a cross-sectional survey [J]. Eur J Pain,2006,10(2):127-135.

[11]O'Connor AB.Neuropathic pain:quality-of-life impact, costs and cost effectiveness of therapy [J].Pharmacoeconomics,2009,27(2):95-112.

[12]White FA,Feldman P,Miller RJ.Chemokine signaling and themanagement of neuropathic pain [J]. Mol Interv,2009,9(4):188-195.

[13]Lu Y,Dong H,Gao Y,et al.A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia [J].J Clin Invest,2013,123(9):4050-4062.

[14]Fukuda K,Ichinohe T,Kaneko Y.Pain Management for Nerve Injury following Dental Implant Surgery at Tokyo Dental College Hospital [J].Int J Dent,2012,2012:209474.

[15]Lunn MP,Hughes RA,Wiffen PJ.Duloxetine for treating painful neuropathy,chronic pain or fibromyalgia [J]. Cochrane DatabaseSyst Rev,2014,1:CD007115.

[16]Basbaum AI,Bautista DM,Scherrer G,et al.Cellular and molecular mechanisms of pain [J].Cell,2009,139(2):267-284.

[17]黄露露,于世英.神经病理性疼痛的中枢敏化发病机制[J].中国疼痛医学杂志,2011,17:463-465.

[18]Sun Q,Tu H,Xing G G,et al.Ectopic discharges from injured nerve fibers are highly correlated with tactile allodynia only in early,but not late, stage in rats with spinal nerve ligation [J]. Exp Neurol,2005,191(1):128-136.

[19]Sheen K,Chung J M.Signs of neuropathic pain depend on signals from injured nerve fibers in a rat model [J].Brain Res,1993,610(1):62-68.

[20]Yoon Y W,Na H S,Chung J M.Contributions of injured and intact afferents to neuropathic pain in experimental rat model [J].Pain,1996,64(1):27-36.

[21]Ossipov M H,Bian D,Malan T P Jr,et al.Lack of involvement of capsaicin-sensitive primary afferents in nerve ligation injury induced tactile allodynia in rats [J].Pain,1999,79(2-3):127-133.

[22]Liu C N,Wall P D,Ben-Dor E,et al.Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury [J].Pain,2000,85(3):503-521.

[23]Liu X,Eschenfelder S,Bleak K H,et al.Spontaneous activity of axotomized afferent neurons after L5 spinal nerve injury in rats [J].Pain,2000,84(2-3):309-318.

[24]Han HC, Lee DH, Chung JM.Characteristics of ectopic discharges in a rat neuropathic pain model [J].Pain,2000,84(2-3):253-261.

[25]Li Y,Dorsi MJ,Meyer RA,et al.Mechanical hyperalgesia after an L5 spinal nerve lesion in the rat is not dependent on input from injured nerve fibers [J].Pain,2000,85(3):493-502.

[26]Esehenfelder S,Habler HJ,Janig W.Dorsal root section elicits signs of neuropathic pain rather than reversing them in rats with L5 spinal nerve injury[J].Pain,2000,87(2):213-219.

[27]Dib-Hajj SD,Black JA,Waxman SG.Voltage-Gated sodium channels:therapeutic targets for pain[J].Pain Med,2009,10(7):1260-1269.

[28]Liu X,Zhou J L,Chung K,et al.Ion channels associated with the ectopie discharges generated after segmental spinal nerve injury in the rat[J].Brain Res,2001,900(1):119-127.

[29]Field MJ, Hughes J, Singh L. Further evidence for the role of the alpha(2)delta subunit of voltage dependent calcium channels in models of neuropathic pain[J].Br J Pharmacol,2000,131(2):282-286.

[30]黄乔东,高崇荣.神经疼痛的病理机制与治疗进展[J].中华医学杂志,2003,89(22):89-91.

[31]林健清,张志坚,林财珠,等.神经病理性疼痛与细胞因子IL、TNF-α、NGF的研究进展[J].临床麻醉学杂志,2009,25(4):363-365.

[32]Moalem-Taylor G,Li M,Allbutt HN,et al.A preconditioning nerve lesion inhibits mechanical pain hypersensitivity following subsequent neuropathic injury[J].Mol Pain,2011,7:1.

[33]Deleo JA,Colburn RW,Rickman AJ.Cytokine and growth factor immunohisto chemical spinal profiles in two animal models of mononeuropathy [J].Brain Res,1997,759(1):50-57.

[34]Gao YJ,Ji RR.Chemokines, neuronal-glial interactions,and central processing of neuropathic pain[J].Pharmacol Ther,2010,126(1):56-68.

[35]Laughlin TM,Bethea JR,Yezierski RP,et al.Cytokine involvement in dynorphin-induced allodynia [J].Pain,2000,84(2-3):159-167.

[36]Schäfers M,Brinkhoff J,Neukirchen S,et al.Combined epineurial therapy with neutralizing antibodies to tumor necrosis factor-alpha and interleukin-1 receptor has an additive effect in reducing neuropathic pain in mice [J].Neurosci Lett,2001,10(2-3):113-116.

[37]刘先国.外周神经损伤引起病理性疼痛的机制[J].中山大学学报(医学科学版),2009,30(6):641-644.

[38]Arruda JL,Sweitzer S,Rutkowski MD,et al.Intrathecal anti-IL-6 antibody and IgG attenuates peripheral nerve injury-induced mechanical allodynia in the rat:possible immune modulation in neuropathic pain[J].Brain Res,2000,879(1-2):216-225.

[39]Orellana DI,Quintanilla RA,Gonzalez-Billault C,et al.Role of the JAKs/STATs pathway in the intracellular calcium changes induced by interleukin-6 in hippocampal neurons[J].Neurotox Res,2005,8(3-4):295-304.

[40]邹晓琴,欧阳娟,黄诚.臭牡丹根提取物对神经病理性痛的镇痛作用[J].时珍国医国药,2013,24(1):12-14.

[41]韩济生,樊碧发.疼痛学[M].北京:北京大学医学出版社,2012:473-480.

[42]Baron R.Neuropathic pain.The long path from mechanism to mechanism-based treatment[J].Anaesthesist,2000,49(5):373-386.

[43]Baron R.Peripheral neuropathic pain:from mechanism to symptoms[J].Clin J Pain,2000,16(2 suppl):12-20.

[44]Sato J,perl ER.Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury[J].Science,1991,251(5001):1608-1610.

[45]Latremoliere A,Woolf CJ.Central sensitization: a generator of pain hypersensitivity by central neural plasticity[J].J Pain,2009,10(9):895-926.

[46]Soares S,Barnat M,Salim C,et al.Extensive structural remodeling of the injured spinal cord revealed by phosphorylated MAP1B in sprouting axons and degenerating neurons[J].Eur J Neurosci,2007,26(6):1446-1461.

[47]Watanabe K,Konno S,Sekiguchi M,et al.Increase of 200-kDa neurofilament-immunoreactive afferents in the substantia gelatinosa in allodynic rats induced by compression of the dorsal root ganglion[J].Spine,2007,32(12):1265-1271.

[48]Shortland P,Kinman E,Molander C.Sprouting of A-fibre primary afferents into lamina II in two rat models of neuropathic pain[J].Eur J Pain,1997,1(3):215-227.

[49]Woolf CJ,Shortland P,Coggeshall RE.Peripheral nerve injury triggers central sprouting of myelinated afferents[J].Nature,1992,355(6355):75-78.

[50]Woodbury CJ,Kullmann FA,McIlwrath SL,et al.Identity of myelinated cutaneous sensory neurons projecting to nocireceptive laminae following nerve injury in adult mice[J].J Comp Neurol,2008,508(3):500-509.

[51]LaMotte RH,Shain CN,Simone DA,et al.Neurogenic hyperalgesia:psychophysical studies of underlying mechanisms[J].Neurophysiol,1991,66(1):190-211.

[52]Yan X,Jiang E,Gao M,et al.Endogenous activation of presynaptic NMDA receptors enhances glutamate release from the primary afferents in the spinal dorsal horn in a rat model of neuropathic pain[J].J physiol,2013,591(7):2001-2019.

[53]Ho YC,Cheng JK,Chiou LC.Hypofunction of glutamatergic neurotransmission in the periaqueductal gray contributes to nerve injury induced neuropathic pain[J].J Neurosci,2013,33(18):7825-7836.

[54]Ossipov MH, Lai J, Malan TP Jr,et al.Spinal and Supraspinal mechanisms of neuropathic pain[J].Ann N Y Acad Sci,2000,909:12-24.

[55]Moalem G,Tracey DJ.Immune and inflammatory mechanisms in neuropathic pain[J].Brain Res Rev,2006,51(2):240-264.

[56]Cheng HY,Penninger JM.Transcriptional mechanisms underlying neuropathic pain:DREAM, transcription factors and future pain management? [J].Expert Rev Neurother,2002,2(5):677-689.

[57]Hama A, Sagen J.Antinociceptive effect of Riluzole in rats with neuropathic spinal cord injury pain[J].J Neurotrauma,2011,28(1):127-134.

[58]Quintão NL, Balz D, Santos AR,et al. Long-lasting neuropathic pain induced by brachial plexus injury in mice: Role triggered by the pro-inflammatory cytokine,tumour necrosis factor alpha[J].Neuropharmacology,2006,50(5):614-620.

[59]St-Jacques B,Ma W.Role of prostaglandin E2 in the synthesis of the pro-inflammatory cytokine interleukin-6 in dorsal root ganglion neurons: an in vivo and in vitro study[J].J Neurochem,2011,118(5):841-854.

[60]Fu Y,Han J,Ishola T,et al.PKA and ERK,but not PKC, in the amygdale contribute to pain-related synaptic plasticity and behavior [J]. Mol Pain,2008,4:26.

[61]Scholz J,Broom DC,Youn DH,et al.Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury [J].J Neurosci,2005,25(32):7317-7323.

[62]Vera-Portocarrero LP,Zhang ET,Ossipov MH,et al.Descending facilitation from the rostral ventromedial medulla maintains nerve injury-induced central sensitization [J].Neuroscience,2006,140(4):1311-1320.

[63]叶明翔,刘婧雅,李金莲,等.神经元、胶质细胞与细胞因子在神经病理性痛中的作用研究进展[J].神经解剖学杂志,2010,26(1):98-102.

[64]Kawasaki Y,Zhang L,Cheng JK,et al.Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta,interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord[J].J Neurosci,2008,28(20):5189-94.

[65]Loggia ML,Chonde DB,Akeju O,et al.Evidence for brain glial activation in chronic pain patients [J]. Brain,2015,138(Pt3):604-615.

[66]Tsuda M, Shigemoto-Mogami Y, Koizumi S, et al. P2X4 receptors induced in spinal microglia gatetactile allodynia after nerve injury[J].Nature,2003,424(6950):778-783.

[67]Guo W,Wang H,Watanabe M,et al.Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain[J].J Neurosci,2007,27(22):6006-6018.

[68]Okada-Ogawa A,Suzuki I,Sessle BJ,et al.Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms[J].J Neurosci,2009,29(36):11161-1171.

[69]Xin WJ,Weng HR,Dougherty PM.Plasticity inexpression of the glutamate transporters GLT-1 and GLAST in spinal dorsal horn glial cells following partial sciatic nerve ligation[J].MoI Pain,2009,5:15.

[70]王佳,梁宜,杜俊英,等.星形胶质细胞与神经病理性痛的相关性研究进展[J].中国疼痛医学杂志,2013,19(3):177-179.

[71]Sindrup SH,Otto M,Finnerup NB,et al. Antidepressants in the treatment of neuropathic pain [J]. Basic Clin Pharmacol Toxicol,2005,96(6):399-409.

[72]Hagen EM, Rekand T.Management of Neuropathic Pain Associated with Spinal Cord Injury [J].Pain Ther,2015,4(1):51-65.

[73]Little JW,Ford A,Symons-Liguori AM, et al. Endogenous adenosine A3 receptor activation selectively alleviates persistent pain states[J].Brain,2015,138(Pt 1):28-35.

[74]O’Connor AB,Dworkin RH.Treatment of neuropathic pain: an overview of recent guidelines [J]. Am J Med,2009,122(10 Suppl):S22-32.

[75]Farrow-Gillespie A,Kaplan KM.Intrathecal analgesic drug therapy [J].Curr Pain Headache Rep,2006,10(1):26-33.

[76]Hama A, Sagen J.Antinociceptive effect of Riluzole in rats with neuropathic spinal cord injury pain[J].J Neurotrauma,2011,28(1):127-134.

[77]Liu Jianxin,Xie Shuixiang,Zhou Li,et al.Analgesic effect of extract of clerodendron bungei steud roots in mice [J]. Clin Rehabi,2005,9(21):250-251.

[78]刘建新,周俐,周青.臭牡丹根正丁醇提取物镇痛作用的研究[J].中国疼痛医学杂志,2007,13(6):349-352.

[79]Huang C,Zou XQ.Clerodendron bungei steud relieves pain hypersensitivity and its possible mechanisms in rats with neuropathic pain[J]. Acta Pharmacol. Sinic,2013,34:105-106.

[80]邹晓琴, 刘立, 黄诚,等.臭牡丹对神经病理性痛机械痛敏和脊髓背角谷氨酸的作用[J].赣南医学院学报,2014,34(6):825-828.

[81]李珍.雷公藤甲素和三七皂甙对神经病理性疼痛的影响[D].广州:中山大学,2008.

[82]Tang J, Li ZH, Ge SN,et al.The Inhibition of Spinal Astrocytic JAK2-STAT3 Pathway Activation Correlates with the Analgesic Effects of Triptolide in the Rat Neuropathic Pain Model [J]. Evid Based Complement Alternat Med,2012,2012:185167.

[83]胡珊.脂氧素在大鼠胫骨癌痛中的作用及黄芩素镇痛机制研究[D].上海:复旦大学,2013.

[84]Zhang Y, Wang C, Wang L,et al.A Novel Analgesic Isolated from a Traditional Chinese Medicine [J]. Curr Biol,2014,24(2):117-123.

[85]Garg G,Adams JD.Treatment of neuropathic pain with plant medicines [J]. Chin J Integr Med,2012,18(8):565-570.

[86]程瑞动,屠文展,蒋松鹤,等.电针镇痛效应中嘌呤类物质及其受体的作用研究进展[J].中国疼痛医学杂志,2012,18(1):53-56.

[87]J.S. Han.The Neurochemical Basis of Pain Relief by Acupuncture[M].Beijing:Chinese Medical Science and Technology Press,1987.

[88]Baek YH, Choi DY, Yang HI,et al.Analgesic effect of electroacupuncture on inflammatory pain in the rat model of collagen-induced arthritis: mediation by cholinergic and serotonergic receptors[J].Brain Res,2005,1057(1-2):181-185.

[89]Li A, Wang Y, Xin J, et al.Electroacupuncture suppresses hyperalgesia and spinal Fos expression by activating the descending inhibitory system [J]. Brain Res,2007,1186:171-179.

[90]曲梅,丁晓宁,刘红兵,等.韩氏穴位神经刺激仪2/100Hz疏密波治疗慢性疼痛疗效观察[J].中国疼痛医学杂志,2010,16(3): 152-154.

[91]Dai Y, Kondo E, Fukuoka T,et al.The effect of electroacupuncture on pain behaviors and noxious stimulus-evoked fos expression in a rat model of neuropathic pain[J]. J Pain,2001,2(3):151-159.

[92]Dong ZQ,Ma F,Xie H, et al.Down-regulation of GFRalpha-1 expression by antisense oligodeoxynucleotide attenuates electroacupuncture analgesia on heat hyperalgesia in a rat model of neuropathic pain[J].Brain Res Bull,2006,69(1):30-36.

[93]孙瑞卿,王贺春,景峥,等.2Hz电针减轻神经源性痛大鼠的痛觉超敏和冷诱发的持续性疼痛[J].中国疼痛医学杂志,2003,9(4):220-224.

[94]Huang C,Li HT,Shi YS,et al.Ketamine potentiates the effect of electroacupuncture on mechanical allodynia in a rat model of neuropathic pain[J].Neurosci Lett,2004,368(3):327-331.

[95]Kim JH, Min BI, Na HS,et al.Relieving effects of electroacupuncture on mechanical allodynia in neuropathic pain model of inferior caudal trunk injury in rat: mediation by spinal opioid receptors[J].Brain Res,2004,998(2):230-236.

[96]Han JS.Acupuncture and endorphins [J]. Neurosci Lett,2004,361(1-3):258-261.

[97]Zhang R,Lao L,Ren K.Mechanisms of acupuncture-electroacupuncture on persistent pain [J]. Anesthesiology,2014,120(2):482-503.

[98]Tu WZ,Cheng RD,Cheng B,et al.Analgesic effect of electroacupuncture on chronic neuropathic pain mediated by P2X3 receptors in rat dorsal root ganglion neurons [J]. Neurochem Int,2012,60(4):379-386.

[99]Wang WS,Tu WZ,Cheng RD,et al.Electroacupuncture and A-317491 depress the transmission of pain on primary afferent mediated by the P2X3 receptor in rats with chronic neuropathic pain states [J]. J Neurosci Res,2014,92(12):1703-1713.

[100]Weng ZJ,Wu LY,Zhou CL,et al.Effect of electroacupuncture on P2X3 receptor regulation in the peripheral and central nervous systems of rats with visceral pain caused by irritable bowel syndrome [J]. Purinergic Signal,2015,11(3):321-329.

[101]Xu J,Chen XM,Zheng BJ,et al.Electroacupuncture Relieves Nerve Injury-Induced Pain Hypersensitivity via the Inhibition of Spinal P2X7 Receptor-Positive Microglia [J].Anesth Analg,2016,122(3):882-892.

[102]Tu W,Wang W,Xi H,et,al.Regulation of Neurotrophin-3 and Interleukin-1β and Inhibition of Spinal Glial Activation Contribute to the Analgesic Effect of Electroacupuncture in Chronic Neuropathic Pain States of Rats [J]. Evid Based Complement Alternat Med,2015,2015: 642081.

[103]Huang C,Li HT,Shi YS,et al.Ketamine potentiates the effect of electroacupuncture on mechanical allodynia in a rat model of neuropathic pain[J]. Neurosci Lett,2004,368(3):327-331.

[104]谢虹.曲马多与电针合用治疗慢性炎症痛的神经生物学机制研究[D].上海:复旦大学,2003.

[105]Ke M,Yinghui F,Xeuhua H,et al.Efficacy of pulsed radiofrequency in the treatment of thoracic postherpetic neuralgia from the annulus costae: a randomized, doubleblinded, controlled trial [J]. Pain Physician,2013,16(1):15-25.

[106]Baron R,Binder A,Wasner G.Neuropathic pain: diagnosis,pathophysiological mechanisms, and treatment [J].Lancet Neurol,2010,9(8):807-819.

[107]于晓彤,樊碧发.脉冲射频在神经病理性疼痛治疗中的作用[J].中国康复理论与实践,2011,17:1001-1002.

[108]Devor M.Eclopic discharge in Aβ afferents as a source of neuropathic pain [J].Exp Brain Res,2009,196(1):115-128.

[109]Sandkuhler J.Undersanding LTP in pain pathways [J]. Mol pain,2007,3:9.

[110]马培奇.疼痛治疗药物发展动态及市场趋势[J].上海医药,2011,32(2):96-98.

[111]范媛媛.三七皂甙等缓解慢性疼痛[D].广州:中山大学,2007.

国家自然科学基金项目(No:31160213)

黄诚,男,教授,博士,硕士生导师。研究方向:电针镇痛及慢性痛研究。E-mail:huangc6a2013@163.com

R741.02

A

1001-5779(2016)04-0500-07

10.3969/j.issn.1001-5779.2016.04.001

2016-01-14)(责任编辑:敖慧斌)

猜你喜欢

神经病电针异位
老年人防跌倒要当心周围神经病
《神经病学》课程教、学、评一体化改革的探索与实践
糖尿病人应重视神经病变
自发型宫内妊娠合并异位妊娠1 例报道
越测越开心
米非司酮结合MTX用于异位妊娠治疗效果观察
电针改善脑卒中患者膝过伸的效果
中西医联合保守治疗异位妊娠80例临床观察
中西医结合保守治疗异位妊娠46例
低频电针治疗多囊卵巢综合征30例