APP下载

血管内超声在左主干病变介入治疗中的应用

2016-03-09柯永胜

国际心血管病杂志 2016年3期

田 塬 柯永胜



血管内超声在左主干病变介入治疗中的应用

田塬柯永胜

241000安徽省皖南医学院第一附属医院弋矶山医院心内科

【摘要】冠状动脉造影只能提供血管腔的二维图像,对于左主干病变的诊断有局限性。血管内超声作为目前应用最广泛、最成熟的血管内成像技术,可提供血管壁、内径、斑块负荷等信息,有助于术者判断临界病变,并选择最佳的治疗策略及手术器械,从而优化左主干病变的介入治疗,预防和减少并发症。

【关键词】左主干;血管内超声;经皮冠状动脉介入治疗;药物洗脱支架

冠状动脉(冠脉)造影(CAG)一直被认为是诊断冠状动脉粥样硬化性心脏病(冠心病)的“金标准”,然而CAG只能提供管腔的二维图像,造影结果常受到左主干长度、直径变异大、无参照血管、三分叉掩盖左主干远端开口等的限制,而无法精确地评价冠脉管腔真实直径、斑块负荷、血管钙化及成角等解剖特点,对于左主干病变的诊断具有局限性。左主干为前降支(LAD)和回旋支(LCX)供血,是最重要的冠脉血管段,因此左主干病变预后最差。随着经皮冠脉介入治疗(PCI)和药物洗脱支架(DES)的发展,无保护左主干(unprotect left main coronary artery,ULMCA)病变PCI手术量快速增加[1]。2009年美国心脏病学会/美国心脏协会(ACC/AHA)指南指出,在预测接受外科手术预后差和PCI相关并发症发生率较低的解剖学情况下,PCI由原本的Ⅲ类适应证升级为Ⅱb类[2],因此左主干的PCI治疗有广阔的前景,如何优化ULMCA病变的PCI策略尤为重要。血管内超声(IVUS)作为目前应用最广泛、最成熟的血管内成像技术,可提供包括血管壁、内径、斑块负荷及其形态和组成等信息,尤其可以直观而精确地呈现左主干及其分支的斑块分布及性质,有助于术者选择最佳治疗策略及手术器械,尤其适用于复杂左主干病变的诊治[3]。

1判断临界病变

如何判断临界病变一直是冠心病诊治的困境,由于CAG很难判断相对正常的血管,尤其难以区分40%~70%的狭窄在血流动力学方面究竟是临界病变还是中度病变[4-5]。左主干较短,病变弥漫性时CAG无法判断血管真实直径,此时IVUS的高分辨率图像就显得尤其重要[6-7]。最小管腔面积(minimal luminal area,MLA)是最常用的左主干病变狭窄严重程度的替代指标,也是左主干病变晚期主要心血管不良事件(MACE)的重要预测指标[8],临床上可以参考MLA来决定是否对左主干病变进行干预或者延期治疗。

IVUS结合冠脉血流储备分数(franctional flow reserve,FFR)的功能学评价对临界病变的判断更为精确。研究发现FFR>0.75时推迟介入是合理的,而且FFR值与MLA具有高度的相关性[9-11]。

一项针对55例稳定的左主干狭窄患者的单中心研究发现,与FFR<0.75相关性最好的MLA临界值是5.9 mm2[11];之后的前瞻性多中心LITRO研究入选了345例左主干临界病变的患者,其中MLA≥6 mm2的患者推迟血运重建,MLA<6 mm2的患者则接受血运重建。结果显示,未接受血运重建组的2年无事件生存率是97.7%,而血运重建组是94.5%(P=0.5),因此认为MLA>6.0 mm2的患者延期血运重建的风险较低[12]。近期的一项单中心研究将112例ULMCA病变的患者随机分为两组,以FFR=0.80作为判断MLA的临界值,结果显示对于左主干口部和体部的狭窄,MLA≤ 4.5 mm2是 FFR≤0.80的独立影响因素(敏感度77%,特异度82%,OR=0.83, 95%CI: 0.759~0.960,P<0.001),故建议MLA=4.5 mm2作为临界病变是否需要即刻或延迟血运重建的新标准[13]。然而左主干直径变异大,该临界值显然不能完全适用于所有患者,且根据该试验提供的数据也不难看出,当MLA调整至6 mm2时可以得到更高的FFR值。2015年一项评估MLA精确性的meta分析入选了2项针对左主干病变的研究(n=110),结果显示MLA临界值为5.4 mm2(5.1~5.6 mm2)[14]。另一项荟萃分析同样入选了这两个研究,结果发现,相比FFR,IVUS对左主干复杂病变的预测更精确[15]。虽然MLA的临界值一直没有定论,但根据各项研究结果,目前的美国专家共识仍建议决策左主干病变血运重建策略为MLA<6.0 mm2[16]。

IVUS对于左主干临界病变的评判标准仍需更多大样本临床数据来说明。需要指出的是,并不能完全依赖IVUS显示的管腔面积大小来评估心肌是否缺血,因为除管腔面积外,心肌缺血还受病变长短、侧支循环以及远端微血管损伤等因素的影响。因此McDaniel等[17]提议,对于经IVUS测得MLA<6 mm2的左主干病变患者,应通过FFR或其他无创检查评估心肌是否缺血,而MLA>6 mm2者应推迟血运重建。

2指导PCI过程

PCI术前,IVUS可以测量管腔直径及病变长度以指导支架的选择;PCI术后,IVUS可评估PCI并发症及支架置入效果,对于左主干病变尤其具有不可替代的参考价值。2011年美国心脏病学会/美国心脏协会/美国心血管造影和介入学会(ACC/AHA/SCAI)PCI指南指出,左主干PCI中使用IVUS是Ⅱb类适应证[18], 2014年新指南更加强调了其必要性[19]。

左主干病变分为口部、体部及末端分叉病变,其中分叉病变约占60%,非分叉病变约40%。左主干开口病变支架置入后需要IVUS来判断支架膨胀状态和有无夹层,并确定开口是否被完全覆盖。左主干末端分叉病变的介入治疗是技术难点,可先行IVUS进行预判,如发现钙化程度较重,可先采用旋磨术旋切钙化斑块,帮助支架通过;当判断一侧血管闭塞可能性较小时,多采用单支架术式。研究表明,LCX开口病变不明显时,单支架技术的远期效果优于双支架技术,但如果LCX开口病变明显,单支架会对预后产生不利影响,因为单支架从LAD跨越至左主干,尤其当LAD、LCX分叉角度较小时,有使LCX开口发生几何形态改变的风险,主要与隆脊移位(carina shift)、MLA缩小等有关,而非斑块移位(plaque shift)所致[20-23]。当单支架跨越LAD和左主干时,如造影提示累及LCX开口>50%,则必须行IVUS或FFR对分支血管口部结构及功能学进行评估,帮助术者决定是否需要干预边支[24]。如需干预边支但不置入支架,当行最终对吻扩张(final kissing inflation)以保证边支安全。双支架术式主要包括Crush、Cullotte、T支架术式,当一侧血管闭塞率较高时使用。需强调的是,无论采用何种双支架术式,最后都必须使用高压球囊进行对吻扩张,并用IVUS来判断支架膨胀状况。

Kang等[25]对左主干单支架和双支架(Crush和T支架技术)术后患者(n=403)随访9个月发现,IVUS测定的最小支架面积(MSA)可预测支架内再狭窄,临界值分别为 5.0 mm2(LCX开口处)、6.3 mm2(LAD开口处)、7.2 mm2(分支汇合处)和8.2 mm2(分支汇合处以上临近部位的左主干)。CROSS研究和PERFECT研究的亚组分析显示,最终对吻扩张是预测边支无狭窄(<50%)的单支架术后患者支架内再狭窄的独立影响因素[26],而IVUS是唯一能够提高最终对吻扩张质量的方法。

IVUS指导DES置入的优势在于减少围手术期并发症,如边支闭塞、支架边缘夹层及血肿、支架膨胀不全、支架不完全重叠等。通过IVUS评价支架膨胀不全、异位、不完全覆盖病变以及斑块的残留可以预测DES置入后支架血栓的形成[27-30]。

对2 193例DES置入患者的荟萃分析显示,与冠脉造影指导下相比,IVUS预先指导下支架置入患者的MLA更大,支架内再狭窄概率更小(OR= 0.64, 95% CI:0.42 ~0.96,P=0.02),再次血运重建减少(OR=0.66,95% CI: 0.48~0.91,P=0.004)。但相对于降低再狭窄或再次血运重建,IVUS指导DES置入似乎与减少心肌梗死的发生和降低死亡风险的相关度更高[31]。

另一项荟萃分析总结了近年来的3项大型临床随机研究及14项观察性研究(包含2项左主干病变研究),总计26 503例DES置入患者,其中14 004例在IVUS指导下置入支架,12 499例在冠脉造影指导下置入支架,主要的临床终点是死亡率、心肌梗死、支架内血栓以及靶病变血运重建(target lesion revascularization,TLR)。结果显示,IVUS指导的PCI置入的支架更多、更长、内径更大,TLR风险显著降低(OR=0.81,95%CI:0.66~1.00,P=0.046),死亡率(OR=0.61,95%CI:0.48~0.79,P<0.001)、心肌梗死(OR=0.57,95%CI:0.44~0.75,P<0.001)以及支架内血栓形成(OR=0.59,95%CI:0.47~0.75,P<0.001)均显著降低[32]。另一项荟萃分析(n=24 849)得出了类似的结论,即IVUS指导的DES置入较造影指导不仅减少了21%的MACE事件和36%的死亡风险,也减少了心肌梗死和TLR等并发症的发生[33]。

IVUS指导下的ULMCA患者行PCI是否能长期获益目前仍没有定论。MAIN-COMPARE研究入选了相互匹配的201对ULMCA的患者,与单纯造影组相比,IVUS指导组3年的死亡率有降低的趋势(6.0%对13.6%,P=0.063),尤其是对置入DES的患者,IVUS指导组相比造影组3年死亡率显著降低(4.7%对16.0%,P=0.048)。而对于置入金属裸支架的患者,IVUS组与造影组的死亡率无明显差异(8.6%对10.8%,P=0.35)[34]。

最近一项针对ULMCA的荟萃分析入选了4项注册试验,共1 670例ULMCA病变并接受DES置入的患者。对比分析后认为,IVUS组术后3年内未发生死亡、心肌梗死和TLR的患者占88.7%,非IVUS组为83.6%(P=0.04);在左主干远端病变亚组中,IVUS术后3年内未发生死亡、心肌梗死、TLR的患者比例占90.0%,非IVUS组为80.7%(P=0.03),且IVUS组支架内血栓发生率明显较低(0.6%对2.2%,P= 0.04)。IVUS指导的血运重建是预测术后主要不良事件的独立影响因素(HR=0.70, 95%CI: 0.52~0.99,P=0.04)。该研究还发现,IVUS并没有减少TLR的发生,仅在置入双支架的患者中,TLR的发生率有降低的趋势[35]。

3展望

IVUS可通过预先评估病变指导PCI策略,通过优化DES的置入来保证PCI的成功,从而改善患者预后。然而,对于功能学的评估仍是FFR更有优势,故目前更主张结合IVUS、FFR共同优化左主干的PCI策略,而IVUS是否可使ULMCA患者长期获益则有待进一步的随机对照研究来证实。

参考文献

[1]Farooq V, Serruys PW, Stone GW, et al. Left Main Coronary Artery Disease. Percutaneous Interventional Cardiovascular Medicine[EB/OL]. The PCR-EAPCI Textbook. Toulouse, France. Europa Edition:www.pcrtextbook.com.2012,Chapter 3.12.

[2]Kushner FG, Hand M, Smith SC Jr et al. 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update): a report of the American College of Cardiology Foundation/ American Heart Association Task Force on Practice Guidelines [J]. J Am Coll Cardiol, 2009,54(25):2205-2241.

[3]Leesar MA, Masden R, Jasti V, et al. Physiological and intravascular ultrasound assessment of an ambiguous left main coronary artery stenosis [J]. Catheter Cardiovasc Interv, 2004,62(3):349-357.

[4]Fischer JJ, Samady H, McPherson JA, et al. Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity [J]. Am J Cardiol, 2002, 90(3):210-215.

[5]Tobis J, Azarbal B, Slavin L, et al. Assessment of intermediate severity coronary lesions in the catheterization laboratory [J]. J Am Coll Cardiol, 2007, 49(8):839-848.

[6]Mintz GS, Pichard AD, Kovach JA, et al. Impact of preintervention intravascular ultrasound imaging on transcatheter treatment strategies in coronary artery disease [J]. Am J Cardiol, 1994, 73(7):423-430.

[7]Abizaid AS, Mintz GS, Abizaid A, et al. One-year follow-up after intravascular ultrasound assessment of moderate left main coronary artery disease in patients with ambiguous angiograms [J]. J Am Coll Cardiol, 1999, 34(3):707-715.

[8]Okabe T, Mintz GS, Lee B, et al. Five-year outcomes of moderate or ambiguous left main coronary artery disease and the intravascular ultrasound predictors of events [J].J Invasive Cardiol, 2008,20(12):635-639.

[9]Lindstaedt M, Yazar A, Germing A, et al. Clinical outcome in patients with intermediate or equivocal left main coronary artery disease after deferral of surgical revascularization on the basis of fractional flow reserve measurements [J]. Am Heart J, 2006, 152(1):156.e1-9.

[10]Courtis J, Rodés-Cabau J, Larose E, et al. Usefulness of coronary fractional flow reserve measurements in guiding clinical decisions in intermediate or equivocal left main coronary stenoses [J]. Am J Cardiol, 2009, 103(7):943-949.

[11]Jasti V,Ivan E,Yalamanchili V, et al. Correlation between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis [J].Circulation, 2004, 110(18):2831-2836.

[12]de la Torre Hernandez JM, Hernández Hernandez F, Alfonso F, et al. Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions results from the multicenter LITRO study [J]. J Am Coll Cardiol, 2011, 58(4):351-358.

[13]Park SJ, Ahn JM, Kang SJ, et al. Intravascular ultrasound-derived minimal lumen area criteria for functionally significant left main coronary artery stenosis [J]. JACC Cardiovasc Interv, 2014, 7(8):868-874.

[14]D'Ascenzo F, Barbero U, Cerrato E, et al. Accuracy of intravascular ultrasound and optical coherence tomography in identifying functionally significant coronary stenosis according to vessel diameter: A meta-analysis of 2,581 patients and 2,807 lesions [J]. Am Heart J, 2015 , 169(5):663-673.

[15]Nascimento BR, de Sousa MR, Koo BK, et al. Diagnostic accuracy of intravascular utrasound-drived minimal lumen area compared with fractional flow reserve—meta-analysis: pooled accuracy of IVUS luminal area versus FFR [J]. Catheter Cardiovas Interv, 2014, 84(3):377-385.

[16]Lofti A, Jeremias A, Fearon WF, et al. Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography: a consensus statement of the Society of Cardiovascular Angiography and Interventions [J]. Catheter Cardiovasc Interv, 2014, 83(4):509-518.

[17]McDaniel MC, Eshtehardi P, Sawaya FJ, et al. Contemporary clinical applications of coronary intravascular ultrasound [J]. JACC Cardiovasc Interv, 2011, 4(11):1155-1167.

[18]Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions [J]. J Am Coll Cardiol, 2011, 79(3):453-495.

[19]Dehmer GJ, Blankenship JC, Cilingiroglu M, et al. SCAI/ACC/AHA expert consensus document: 2014 update on percutaneous coronary intervention without on-site surgical backup [J]. Catheter Cardiovasc Interv, 2014,84(2):169-187.

[20]Kim YH, Park SW, Hong MK, et al. Comparison of simple and complex stenting techniques in the treatment of unprotected left main coronary artery bifurcation stenosis [J]. Am J Cardiol, 2006, 97(11):1597-1601.

[21]Iakouvo I, Ge L, Colombo A, et al. Contemporary stent treatment of coronary bifurcations [J]. J Am Coll Cardiol, 2005, 46(8):1446-1455.

[22]Dzavik V, Kharbanda R, Ivanov J, et al. Predictors of long-term outcome after crush stenting of coronary bifurcation lesions: importance of the bifurcation angle [J]. Am Heart J, 2006, 152(4):762-769.

[23]Kang SJ,Mintz GS, Kim WJ, et al. Changes in left main bifurcation geometry after a single-stent crossover technique (An intravascular ultrasound study using direct imaging of both the left anterior descending and the left circumflex coronary arteries before and after intervention) [J]. Circ Cardiovasc Interv, 2011, 4(4):355-361.

[24]Park SJ, Ahn JM, Foin N, et al. When and how to perform the provisional approach for distal LM stenting [J]. EuroIntervention, 2015, 11 Suppl V:V120-V124.

[25]Kang SJ, Ahn JM, Song H, et al. Comprehensive intravascular ultrasound assessment of sent area and its impact on restenosis and adverse cardiac event in 403 patients with unprotected left main disease [J].J Circ Cardiovasc Interv,2011, 4( 6) : 562 -569.

[26]Roh JH, Lee JH, Kim YH, et al. Procedural predictors of angiographic restenosis after bifurcation coronary stenting (from the choice of optimal strategy for bifurcation lesions with normal side branch and optimal stenting strategy for true bifurcation lesions studies) [J]. Am J Cardiol, 2015, 116(7):1050-1056.

[27]Cook S, Wenaweser P, Togni M, et al. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation [J]. Circulation, 2007, 115(18):2426-2434.

[28]Costa RA, Mintz GS, Carlier SG, et al. Bifurcation coronary lesions treated with the “crush” technique: An intravascular ultrasound analysis [J]. J Am Coll Cardiol, 2005, 126(7):1247-1251.

[29]Fujii K, Carlier SG, Mintz GS, et al. Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: An intravascular ultrasound study [J]. J Am Coll Cardiol, 2005, 45(7):995-998.

[30]Sonoda S, Morino Y, Ako J, et al. Impact of final stent dimensions on long-term results following sirolimus-eluting stent implantation: Serial intravascular ultrasound analysis from the Sirius trial [J]. J Am Coll Cardiol, 2004, 43(11):1959-1963.

[31]Parise H, Maehara A, Stone GW, et al. Meta-analysis of randomized studies comparing intravascular ultrasound versus angiographic guidance of percutaneous coronary intervention in predrug-eluting stent era [J]. Am J Cardiol, 2011, 107(3):374-382.

[32]AhnJM, Kang SJ, Yoon SH, et al. Meta-analysis of outcomes after intravascular ultrasound-guided versus angiography-guided drug-eluting stent implantation in 26,503 patients enrolled in three randomized trials and 14 observational studies [J]. Am J Cardiol, 2014, 113(8):1338-1347.

[33]Jang JS, Song YJ, Kang W, et al. Intravascular ultrasound-guided implantation of drug-eluting stents to improve outcome: a meta-analysis [J]. JACC Cardiovasc Interv 2014, 7(3):233-243.

[34]Park SJ, Kim YH, Park DW, et al. Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis [J]. Circ Cardiovasc Interv, 2009, 2(3):167-177.

[35]de la Torre Hernandez JM, Baz Alonso JA, Gómez Hospital JA, et al. Clinical impact of intravascular ultrasound guidance in drug-eluting stent implantation for unprotected left main coronary disease: pooled analysis at the patient-level of 4 registries [J]. JACC Cardiovasc Interv 2014, 7(3):244-254.

(收稿:2015-12-07修回:2016-04-10)

(本文编辑:梁英超)

通信作者:柯永胜,Email:keyongsheng@163.com

doi:10.3969/j.issn.1673-6583.2016.03.004