APP下载

华中地区某县农田土壤黑碳分布特征及来源解析

2016-03-06占长林万的军韩永明张家泉刘红霞肖文胜刘先利

地球环境学报 2016年1期
关键词:焦炭比值农田

占长林,万的军,王 平,韩永明,张家泉,刘红霞,肖文胜,刘先利

(1.湖北理工学院 环境科学与工程学院,矿区环境污染控制与修复湖北省重点实验室,黄石 435003;2.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061;3.中国地质科学院 水文地质环境地质研究所,石家庄 050061)

华中地区某县农田土壤黑碳分布特征及来源解析

占长林1,2,万的军3,王 平2,韩永明2,张家泉1,刘红霞1,肖文胜1,刘先利1

(1.湖北理工学院 环境科学与工程学院,矿区环境污染控制与修复湖北省重点实验室,黄石 435003;2.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061;3.中国地质科学院 水文地质环境地质研究所,石家庄 050061)

以华中地区阳新县农田土壤为研究对象,采用热光反射法研究了不同类型农田土壤(水稻土、红壤、潮土)中黑碳、焦炭、烟炱含量的变化特征,并探讨了影响黑碳、焦炭和烟炱分布的影响因素以及黑碳的可能来源。结果表明,农田土壤中黑碳、焦炭和烟炱含量变幅较大,分别为0.17—3.18 g·kg-1,0.03—2.37 g·kg-1和0.09—1.50 g·kg-1,平均值分别为0.85 g·kg-1,0.45 g·kg-1和0.40 g·kg-1。不同类型土壤中黑碳、焦炭、烟炱含量的大小顺序是:水稻土>红壤>潮土。黑碳占有机碳的比例变化范围在1.45%—26.43%,平均值为6.76%。相关分析结果表明土壤黑碳含量与有机碳、焦炭和烟炱含量之间都呈显著的正相关关系。根据焦炭/烟炱比值分析结果推测农田土壤中的黑碳主要来源于化石燃料燃烧,如工业燃煤及机动车尾气排放等。

农田土壤;黑碳;焦炭;烟炱;有机碳;来源

黑碳是化石燃料和生物质不完全燃烧的产物,是含碳物质的连续统一体,广泛存在于大气、土壤、水体(河流、湖泊、海洋)、沉积物及冰雪等地球环境系统中(Kuhlbusch et al,1998;Masiello,2004)。一般来说,燃烧生成的黑碳大部分就近沉降于地表,还有一部分微纳米级的黑碳细颗粒以气溶胶的形式进入大气循环,并对全球的气候产生重要的影响(Ramanathan and Carmichael,2008)。由于黑碳特殊的化学结构,具有较强的化学和生物惰性,因此被认为是全球缓慢碳循环中的重要碳库,对全球碳的生物地球化学循环起到极其重要的作用(Schmidt and Noack,2000)。作为土壤中有机碳的重要组成部分,黑碳在土壤有机碳中所占的比重可以达到45%(Schmidt et al,1999)。最新的一项研究发现,英国东北部工业城市地区土壤中黑碳占有机碳的比例甚至达到66.9%(Edmondson et al,2015)。因黑碳具有较高的比表面积和多种官能团,它具有较强的保肥能力和吸附性能,对土壤环境中污染物的迁移转化产生一定影响,而且能够提高土地生产力(Shrestha et al,2010)。此外,由于黑碳的稳定性和漫长的降解过程使得它可以将从生物-大气碳循环中捕获的碳贮存起来,起到了增汇减排的作用,而且能减缓温室效应(Lehmann,2007)。

根据黑碳的形成条件,一般将其分为两类:焦炭和烟炱。焦炭是植物组织不完全燃烧的残留物,保留了原始燃料的结构特征;而烟炱是高温燃烧条件下生成气体的浓缩产物。两者物理化学性质存在较大的差异,导致其迁移、传输、沉降模式和环境行为的不同。因此区分不同类型的黑碳对于研究土壤黑碳有十分重要的意义。然而,由于当前国际上还没有统一的标准黑碳测量分析方法,而且不同测量方法都只是对黑碳连续统一体中的某一个组分或者是全部组分进行测量(Schmidt et al,2001),无法将不同组分的黑碳进行区分,给黑碳的研究造成一定的困难。近年来,有研究报道热光反射法能够很好地对焦炭和烟炱组分进行区分(Han et al,2007a),而且被成功应用于土壤和沉积物黑碳的研究(Zhan et al,2013,2015;Han et al,2015)。

目前我国关于土壤黑碳的研究主要集中于城市土壤(He and Zhang,2009;Liu et al,2011;徐福银等,2014)和林地土壤(刘兆云和章明奎,2009;尹云峰等,2009;王曦,2012),而对于农田土壤的关注相对较少(戴婷等,2009)。绝大多数研究都只是将黑碳作为一个整体进行研究,而很少有研究对土壤中不同类型的黑碳进行区分,来探讨它们的环境行为及可能来源。本文以湖北省东南部某县农田土壤为研究对象,研究了不同类型农田土壤中黑碳、焦炭、烟炱含量的变化特征,并探讨了影响黑碳、焦炭和烟炱分布的影响因素以及黑碳的可能来源。

1 材料与方法

1.1 研究区地理概况

研究区域选择中国著名的“苎麻之乡”—阳新县。该县地处湖北省东南部,长江中游南岸,幕阜山北麓,隶属于黄石市。地理位置为东经114°43'—115°30′,北纬29°30′—30°09′,东西长76.5 km,南北距71.5 km。境内中小湖泊较多,被誉为“百湖之县”。阳新县地处中纬度,属亚热带季风性气候,年均气温16.8℃,年均降雨量1389.6 mm,年均日照时数1923 h。该县富藏金、银、铜、锌等金属矿藏,煤炭、石灰石、大理石、膨润土等外生矿储量亦丰,具有矿种多、分布广、储量大等特点。阳新县主要土壤类型有红壤土、石灰土、紫色土、潮土、沼泽土、水稻土6个土类。主要种植农作物有水稻、小麦、红薯、大豆、棉花、油菜、芝麻、花生、苎麻等。

1.2 样品的采集与处理

根据阳新县农田土壤类型分布及地形特点共采集46个土壤表层(0—20 cm)样品,其中红壤土、水稻土和潮土分别采集18个、23个和5个。采样时利用手持GPS定位系统记录每个采样点的经纬度坐标,并做好野外采样记录。采样点分布见图1。

每一样点的土壤样品采集时用四分法进行混合制样,保证每个样品采集1 kg左右,装入聚乙烯塑料袋密封保存,并贴好标签。同时用环刀法采集容重样品。采集好的土壤样品带回实验室后经自然风干,过2 mm尼龙筛去除植物根系和砾石等杂物,研磨并取适量风干后的土壤样品过0.15 mm筛后备用。

1.3 实验方法

土壤样品总有机碳含量测定采用《土壤有机碳的测定:重铬酸钾氧化—分光光度法》(HJ 615—2011)。

黑碳含量测定采用热光反射法(Han et al,2007b),具体操作步骤如下:(1)取经研磨过200目筛(<60 μm)的土壤样品约0.5 g样品,放入聚乙烯试管中,再加入15 mL 2 mol·L-1的盐酸溶液,以去除样品中的碳酸盐以及金属元素;(2)向试管中加入15 mL 6 mol·L-1的浓盐酸和48%的氢氟酸(VHCl:VHF= 1:2)混合溶液,以去除样品中的硅酸盐以及未溶解的金属盐类;(3)向试管中加入10 mL 4 mol·L-1的盐酸,以去除残留样品中第二阶段产生的氟化物(如CaF2等)。每次加酸溶液进行处理后,要在室温下静置24 h,让充分反应完全。同时用去离子水将样品漂洗、离心3—4次,使得悬浮液的pH>6,并将悬浮液倒掉。最后使用约400 mL去离子水将试管中的残留物过滤到直径为47 mm的石英滤膜(使用前在780℃下焙烧3 h)上。将滤膜样品于40℃烘干后保存在冰箱中(1—4℃),留待后面的黑碳含量分析测定。

图1 采样点分布图Fig.1 Location of the sampling sites

采用IMPROVE_A协议,使用DRI Model 2001碳分析仪进行黑碳含量的分析。由于黑碳不具有挥发性,在纯He通入的情况下,温度阶段性上升到140℃,280℃,480℃,580℃,生成4个有机碳组分(OC1,OC2,OC3,OC4);然后通入2% O2/ 98% He的混合气体,温度阶段性上升到580℃,740℃,840℃,生成3个元素碳组分(EC1,EC2,EC3)。在纯He的情况下加热温度,伴随着有机物的氧化和碳化,反射光不断降低,而当O2通入的时候,随着碳的氧化,反射光不断增强,当反射光回到起始值时,将这一点定义为有机碳和黑碳的分界点,定义EC1的前面这一部分为热解碳(POC)。定义有机碳为OC1+OC2+OC3+OC4+POC,总的黑碳(BC)为EC1+EC2+EC3-POC(Cao et al,2003)。另外,根据Han et al(2007a)定义,焦炭(char)为EC1-POC,烟炱(soot)为EC2+EC3。所有样品黑碳含量测定均在中国科学院地球环境研究所粉尘与环境研究室完成。样品分析过程中的质量保证/质量控制详见Cao et al(2003)。

1.4 数据统计分析

实验数据采用Origin 8.5以及SPSS 19.0软件进行分析。

2 结果与讨论

2.1 土壤有机碳、黑碳、焦炭和烟炱含量变化特征

由表1可以看出,阳新县农田土壤总有机碳含量变化范围是4.31— 32.87 g · kg-1,平均值为14.27 g · kg-1,变异系数为53.09%,属中等变异。不同类型土壤总有机碳含量的大小顺序是:水稻土>红壤>潮土。阳新县农田土壤总有机碳平均含量与我国水稻土相当(13.83 g · kg-1)(Pan at al,2004),远低于青海湖流域土壤(31.64 g · kg-1)(胡卫国等,2010),但高于我国黄土高原土壤(4.59 g · kg-1)(涂夏明等,2010)。农田土壤总有机碳含量低一方面与长期耕作有关,因为耕作的机械作用会导致土壤呼吸作用加强,有机碳分解加快(West and Post,2002;Baker et al,2007);另一方面,阳新县属亚热带季风性气候,一般认为较为湿热的环境条件会使得土壤中有机碳的分解速率加快(张国盛等,2005)。

黑碳、焦炭和烟炱含量分别为0.17— 3.18 g · kg-1,0.03—2.37 g·kg-1和0.09—1.50 g·kg-1(表1)。其中水稻土黑碳含量最高,其次为红壤,潮土最低。不同类型土壤焦炭和烟炱含量也呈现相同的变化趋势,但焦炭含量一般高于烟炱含量。黑碳与烟炱含量的变异系数在10%—100%,属中等变异;而焦炭含量的变异系数大于100%,属强变异性。从表2中对比发现,本研究中的农田土壤黑碳含量要低于世界其他城市地区背景土壤。例如,阳新农田土壤黑碳含量低于欧洲黑钙土(Schmidt et al,1999)、美国农田土壤(Skjemstad et al,2002)和西伯利亚森林土(Czimczik et al,2003)。与国内一些城市土壤黑碳研究对比,阳新农田土壤黑碳含量低于南京(He and Zhang,2009)、北京(Liu et al,2011)、上海(徐福银等,2014)以及西安(Han et al,2009)等城市土壤,但是高于黄土高原表土(Zhan et al,2013)。目前,由于国际上还没有统一的土壤黑碳分离和分析方法,同一样品采用不同的测定方法得到的黑碳浓度可能相差1— 2个数量级(Schmidt et al,2001)。因此,如果测量方法不同,不同的研究结果之间则很难进行比较。造成不同地区土壤黑碳含量差异的主要原因是来源贡献不同,森林、草原土壤中黑碳主要来源于生物质燃烧,即自然野火。一些研究发现频发的野火会导致土壤中黑碳的继续氧化,使得黑碳含量降低(Czimczik et al,2005)。而城市地区土壤黑碳含量受人类活动干扰较大,如工业活动、机动车尾气排放、居民燃煤及薪柴燃烧、垃圾焚烧等。

表1 不同类型土壤中有机碳、黑碳、焦炭和烟炱含量统计Tab.1 Statistical analysis of total organic carbon (TOC), black carbon (BC), char and soot concentrations in different types of soils

黑碳占有机碳的比例变化范围在1.45%—26.43%,平均值为6.76%。这一研究结果低于浙北平原农业土壤(戴婷等,2009)和美国农田土壤(Skjemstad et al,2002)。不同类型土壤中,潮土黑碳/有机碳比值最高,其次是红壤,水稻土最低。一方面,这可能与旱地土壤施用较多的农家肥带入黑碳物质较多有关;另一方面,土壤的传统翻耕方式以及作物轮作耕作制度可能导致土壤中有机碳的矿化分解加快(Six et al,2002),从而影响黑碳/有机碳的比值。而水稻土因为长期处于水淹的环境,土壤中有机碳的分解较慢,因此导致黑碳/有机碳比值较低。

表2 与世界其他地区不同土壤中黑碳含量的比较Tab.2 Comparison of black carbon concentrations in other soils from the world with this study

焦炭/烟炱比值变化范围为0.02—3.44,平均值为1.18。三种不同类型土壤焦炭/烟炱比值的大小顺序为:红壤>潮土>水稻土。反映出不同类型土壤黑碳的来源可能有所不同。农田土壤中焦炭和烟炱来源较为复杂,除了田间秸秆焚烧的贡献外,还可能来自于工业燃煤、机动车尾气等的排放。因此,不同地区土壤中焦炭和烟炱含量受污染排放源的影响较大。这可能也是导致不同类型土壤中焦炭/烟炱比值存在差异的主要原因。

2.2 有机碳、黑碳、焦炭、烟炱含量之间相关性分析

由图2相关性分析结果表明,农田土壤中黑碳与焦炭含量(r= 0.92,p< 0.01)、黑碳与烟炱含量(r= 0.75,p< 0.01)都呈显著正相关,说明焦炭与烟炱是农田土壤黑碳的重要组成部分。此外,黑碳与黑碳/有机碳比值(r= 0.53,p<0.01)、黑碳与有机碳含量之间(r= 0.44,p< 0.01)呈显著正相关,说明农田土壤黑碳含量的增加有助于有机碳的积累,也间接地说明黑碳在有机碳积累过程中发挥着重要的作用。一方面由于黑碳类物质的存在,其特殊的化学和生物惰性使得土壤中的有机碳得以保存下来;另一方面,由于黑碳的存在,吸附和固定了有机物质、粘土矿物,并起到稳定和固持有机质的作用(Czimczik and Masiello,2007)。这与其他很多土壤和道路尘研究结果相一致。有些学者研究发现,上海市绿地土壤黑碳含量与有机碳之间有显著的正相关性(r2= 0.82)(徐福银等,2014),南京市土壤有机碳与黑碳呈对数显著相关(r2= 0.80)(He and Zhang,2009),浙江省地表灰尘中黑碳含量与有机碳呈正相关(r2= 0.88)(黄佳鸣等,2012)。农田土壤能够固定较多有机碳与黑碳组分存在有关,或者是黑碳在农田土壤有机碳的固定过程中充当了重要的作用。

图2 有机碳、黑碳、焦炭和烟炱含量之间的相关性Fig.2 Relationships between concentrations of black carbon and organic carbon, char and soot

2.3 土壤黑碳来源分析

一般情况下,黑碳的产生来自两个方面:一是自然源排放,主要来自火山爆发、草原或森林大火等;二是人为源的排放,主要来自居民/商业活动、能源生产、工业排放和机动车尾气等。这些排放的黑碳绝大部分就地埋藏沉积进入到土壤中。由于焦炭和烟炱的形成条件存在较大差异,因此其来源也不相同。一般认为,机动车排放和草本植物燃烧会产生较小的char/soot比值,而木本植物在低温下燃烧会产生较高的char/soot比值(Chow et al,2004;Chen et al,2007)。煤燃烧产生的char/soot比值大小取决于煤的类型,如烟煤比无烟煤燃烧产生更大的char/soot比值(Han et al,2010)。Cao et al(2005)在西安地区研究发现,char/soot比值为1.9指示煤燃烧,比值为11.6指示生物质燃烧。Han et al(2009)的研究结果显示,西安市道路尘中char/soot比值为1.66,说明黑碳主要来源于煤和机动车排放;而较高的char/soot比值(大于2.6)则主要与郊区农田的露天燃烧和居民薪柴燃烧有关。Lim et al(2012)对韩国高山郡大气气溶胶研究发现,夏季PM1.0和PM10中char/soot比值最小,分别为0.8和2.0,主要反映来自于韩国和日本的机动车尾气的贡献较大。

从char/soot比值的频数分析结果(图3)可以看出,所有样品char/soot比值均小于3.5,说明阳新地区农田土壤中的黑碳主要来源于化石燃料燃烧,如工业燃煤排放及机动车尾气等。阳新地区由于金属矿藏资源丰富,分布有较多的矿冶企业,粉尘排放较多。工业粉尘中粉煤灰的大量排放,为土壤中黑碳的大量积累创造了条件。Lehndorff et al(2015)研究发现,自1958年以来,德国哈雷市耕地土壤中75%的黑碳来源于工业排放。此外,作为黄石地区重要的原材料工业基地,交通运输业也十分发达。机动车,特别是重型卡车尾气排放也成为农田土壤黑碳的一个重要来源。王俊霞等(2009)研究发现土壤黑碳含量的高低与距离高速公路沿线远近有关,一般随着距离的增加,黑碳含量逐渐降低。这一方面与机动车尾气排放有关,另一方面可能与机动车行驶过程中道路扬尘污染有关。研究发现,城市道路交通扬尘是大气颗粒物污染的重要来源(韩力慧等,2009)。关于城市道路尘黑碳的研究已有较多报道(黄佳鸣等,2012;潘苏红等,2012;邓正伟等,2014),而且城市道路尘中黑碳含量普遍较高。因此,可以推测道路扬尘也可能对农田土壤中黑碳的积累有一定贡献。char/soot比值大于2.5的样品占所有样品的8%左右,除了化石燃料燃烧的贡献以外,可能与农田秸秆焚烧还田及草木灰等农家肥的施加有关。因为秸秆焚烧残渣以及草木灰中黑碳的主要形式是焦炭,因此土壤中char/soot比值较大。总体来说,对于城市地区而言,土壤黑碳的来源与人类活动密切相关。

3 结论

(1)黑碳、焦炭和烟炱在农田土壤中均有分布,且呈现较大的变化特征。黑碳含量变化范围为0.17—3.18 g·kg-1,平均值为0.85 g·kg-1,变异系数为73.97%。水稻土中黑碳、焦炭和烟炱平均含量最大,其次为红壤,而潮土最低。说明不同类型黑碳在水稻土中富集明显。黑碳占有机碳的比例变化范围在1.45%—26.4%,平均值为6.76%。

图3 char/soot比值频数分布直方图Fig.3 Frequency histograms of char/soot ratio

(2)黑碳与有机碳含量之间呈现显著的正相关性,说明农田土壤黑碳含量的增加有助于有机碳的积累,也间接地说明黑碳在有机碳积累过程中发挥着重要的作用。黑碳与焦炭、烟炱含量之间也显著正相关,说明焦炭与烟炱是农田土壤黑碳的重要组成部分。

(3)土壤中黑碳的来源可以用焦炭/烟炱比值进行判定,焦炭/烟炱比值的变化范围为0.02—3.44,平均值为1.18,说明农田土壤中的黑碳主要来源于化石燃料燃烧,如工业燃煤排放及机动车尾气等,这与阳新县矿产资源开采及冶炼有关。道路扬尘、农田秸秆焚烧及农家肥的施用也可能对农田土壤黑碳的积累有一定贡献。

戴 婷, 李艾芬, 章明奎. 2009. 浙北平原农业土壤中黑碳分布特征的研究[J].土壤通报, 40(6): 1321 – 1324. [Dai T, Li A F, Zhang M K. 2009. Distribution characteristics of black carbon in agricultural soils of northern Zhejiang plain [J].Chinese Journal of Soil Science, 40(6): 1321 – 1324.]

邓正伟, 方凤满, 江培龙, 等. 2014. 芜湖市区地表灰尘中黑碳含量分布特征[J].安徽师范大学学报:自然科学版, 37(1): 58 – 62. [Deng Z W, Fang F M, Jiang P L, et al. 2014. Black carbon concentration distribution characteristics in urban surface dust of Wuhu city [J].Journal of Anhui Normal University: Natural Science, 37(1): 58 – 62.]

韩力慧, 庄国顺, 程水源, 等. 2009. 北京地面扬尘的理化特性及其对大气颗粒物污染的影响[J].环境科学, 30(1):1 – 8. [Han L H, Zhuang G S, Cheng S Y, et al. 2009. Charactersitcs of re-suspended road dust and its signi fi cant effect on the airbone particulate pollution in Beijing [J].Environmental Science, 30(1): 1 – 8.]

胡卫国, 曹军骥, 韩永明. 2010. 青海湖流域六类土壤表土有机碳黑碳含量特征及其储量[J].地球环境学报, 1(3): 213 – 218. [Hu W G, Cao J J, Han Y M. 2010. The characteristic of organic carbon and black carbon content and its storage in six types topsoil of Qinghai Lake basin of China [J].Journal of Earth Environment, 1(3): 213 – 218.]

黄佳鸣, 王晓旭, 王 阳, 等. 2012. 地表灰尘中黑碳含量的研究[J].浙江大学学报(农业与生命科学版), 38(1): 91 – 96. [Huang J M, Wang X X, Wang Y, et al. 2012. Contents of black carbon in some surface dusts from Zhejiang province [J].Journal of Zhejiang University (Agriculture & Life Science), 38(1): 91 – 96.]

刘兆云, 章明奎. 2009. 林地土壤中黑碳的出现及分布特点[J].浙江林学院学报, 26(3): 341 – 345. [Liu Z Y, Zhang M K. 2009. Black carbon occurrence and distribution of forest soils in Zhejiang province, China [J].Journal of Zhejiang Forestry College, 26(3): 341 – 345.]

潘苏红, 张 干, 孙亚莉, 等. 2012. 中国与印度典型城市道路街尘中多环芳烃与黑碳的对比研究[J].环境科学, 33(4): 1204 – 1208. [Pan S H, Zhang G, Sun Y L, et al. 2012. Distribution characteristics of polycyclic aromatic hydrocarbons and black carbon in road dusts from typical cities of China and India [J].Envirenmental Science, 33(4): 1204 – 1208.]

涂夏明, 曹军骥, 韩永明, 等. 2010. 黄土高原表土焦炭和烟炱的含量分布与意义[J].地球环境学报, 1(2): 126 – 132. [Tu X M, Cao J J, Han Y M, et al. 2010. Variations and implication of Char-BC and Soot-BC in the surface soil of Loess Plateau, China [J].Journal of Earth Environment, 1(2): 126 – 132.]

王俊霞, 俞元春, 张雪莲. 2009. 高速公路沿线土壤黑碳含量特征[J].南京林业大学学报(自然科学版), 33(1): 155 – 157. [Wang J X, Yu Y C, Zhang X L. 2009. Characteristics of soil black carbon along the highway [J].Journal of Nanjing Forestry University (Natural Sciences Edition), 2009, 33(1): 155 – 157.]

王 曦. 2012. 城市林业土壤黑碳含量及对多环芳烃分布的影响[D]. 南京: 南京林业大学硕士学位论文. [Wang X. 2012. Black carbon content of urban forest soil and its impact on distribution of polycyclic aromatic hydrocarbons (PAHs) [D]. Nanjing: Master dissertation of Nanjing Forestry University.]

徐福银, 包 兵, 方海兰. 2014. 上海市城市绿地土壤中黑碳分布特征[J].土壤通报, 45(2): 457 – 461. [Xu F Y, Bao B, Fang H L, et al. 2014. Distribution characteristics of black carbon in greenbelt soils of Shanghai [J].Chinese Journal of Soil Science, 45(2): 457 – 461.]

尹云锋, 杨玉盛, 高 人, 等. 2009. 黑碳在杉木人工林土壤不同组分中的分配规律研究[J].土壤, 41(4): 625 – 629. [Yin Y F, Yang Y S, Gao R, et al. 2009. Distribution of black carbon from soil different fractions in Chinese fir plantation [J].Soils, 41(4): 625 – 629.]

张国盛, 黄高宝, Chan Y. 2005. 农田土壤有机碳固定潜力研究进展[J].生态学报, 25(2): 351 – 357. [Zhang G S, Huang G B, Chan Y. 2005. Soil organic carbon sequestration potential in cropland[J].Acta Ecologica Sinica, 25(2): 351 – 357.]

Cao J J, Lee S C, Ho K F, et al. 2003. Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period [J].Atmospheric Environment, 37(11): 1451 – 1460.

Cao J J, Chow J C, Lee S C, et al. 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China [J].Atmospheric Chemistry and Physics, 5(3): 3127 – 3137.

Chen L-W A, Moosmüller H, Arnott W P, et al. 2007. Emissions from laboratory combustion of wildland fuels: Emission factors and source pro fi les [J].Environmental Science & Technology, 41(12): 4317 – 4325.

Chow J C, Watson J G, Kuhns H, et al. 2004. Source pro fi les for industrial, mobile, and area sources in the Big Bend Regional aerosol visibility and observational study [J].Chemosphere, 54(2): 185 – 208.

Czimczik C I, Preston C M, Schmidt M W I, et al. 2003. How surface fi re in Siberian Scots pine forests affects soil organic carbon in the forest fl oor: Stocks, molecular structure, and conversion to black carbon (charcoal) [J].Global Biogeochemical Cycles, 17(1): 1020, doi:1010.1029/2002GB001956.

Czimczik C I, Schmidt M W I, Schulze E. 2005. Effects of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forests [J].European Journal of Soil Science, 56(3): 417 – 428.

Czimczik C I, Masiello C A. 2007. Controls on black carbon storage in soils [J].Global Biogeochemical Cycles, 21: GB3005, doi:3010.1029/2006GB002798.

Edmondson J L, Stott I, Potter J, et al. 2015. Black carbon contribution to organic carbon stocks in urban soil [J].Environmental Science & Technology, 49(14): 8339 – 8346.

一杭想在楼下一个早餐点前喝碗豆浆,却见两个戴墨镜的男子一边狼吞虎咽地吃着包子,一边偷偷地看他,见一杭有所察觉,立即低下头吃东西。一杭的心提了起来,范坚强不会在路上对我下手吧?他迅速走过去,到前面一家早餐店买了两根油条,边走边回头,那两个人似乎并没有再注意他。一杭这才放下心来,看来是自己太多疑了,弄得草木皆兵。

Hammes K, Torn M S, Lapenas A G, et al. 2008. Centennial black carbon turnover observed in a Russian steppe soil [J].Biogeosciences, 5(5): 1339 – 1350.

Han Y M, Cao J J, Chow J C, et al. 2007a. Evaluation of the thermal/optical re fl ectance method for discrimination between char-and soot-EC [J].Chemosphere, 69(4): 569 – 574.

Han Y M, Cao J J, An Z S, et al. 2007b. Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments [J].Chemosphere, 69(4): 526 – 533.

Han Y M, Cao J J, Chow J C, et al. 2009. Elemental carbon in urban soils and road dusts in Xi’an, China and its implication for air pollution [J].Atmospheric Environment, 43(15): 2464 – 2470.

Han Y M, Cao J J, Lee S C, et al. 2010. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi’an, China [J].Atmospheric Chemistry and Physics, 10(2): 595 – 607.

Han Y M, Wei C, Bandowe B A, et al. 2015. Elemental carbon and polycyclic aromatic compounds in a 150-yr sediment core from Lake Qinghai, Tibetan Plateau, China: Influence of regional and local sources and transport pathways [J].Environmental Science & Technology, 49(7): 4176 – 4183.

He Y, Zhang G L. 2009. Historical record of black carbon in urban soils and its environmental implications [J].Environmental Pollution, 157(10): 2684 – 2688.

Kuhlbusch T. 1998. Black carbon and the carbon cycle [J].Science, 280(5371): 1903 – 1904.

Lehmann J. 2007. Bio-energy in the black [J].Frontiers in Ecology and the Environment, 5(7): 381 – 387.

Lehndorff E, Brodowski S, Schmidt L, et al. 2015. Industrial carbon input to arable soil since 1958 [J].Organic Geochemistry, 80: 46 – 52.

Lim S, Lee M, Lee G, et al. 2012. Ionic and carbonaceous compositions of PM10, PM2.5and PM1.0at Gosan ABC superstation and their ratios as source signature [J].Atmospheric Chemistry and Physics, 12: 2007 – 2024.

Liu S D, Xia X H, Zhai Y W, et al. 2011. Black carbon (BC) in urban and surrounding rural soils of Beijing, China: spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs) [J].Chemosphere, 82(2): 223 – 228.

Lorenz K, Preston C M, Kandeler E. 2006. Soil organic matter in urban soils: Estimation of elemental carbon by thermal oxidation and characterization of organic matter by solidstate13C nuclear magnetic resonance (NMR) spectroscopy [J].Geoderma, 130(3 / 4): 312 – 323.

Masiello C A. 2004. New directions in black carbon organic geochemistry [J].Marine Chemistry, 92(1/2/3/4): 201 – 213.

Pan G X, Li L Q, Wu L S, et al. 2004. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils [J].Global Change Biology, 10(1): 79 – 92.

Ramanathan V, Carmichael G. 2008. Global and regional climate changes due to black carbon [J].Nature Geoscience, 1(4): 221 – 227.

Schmidt M W I, Skjemstad J O, Gehrt E, et al. 1999. Charred organic carbon in German chernozemic soils [J].European Journal of Soil Science, 50(2): 351 – 365.

Schmidt M W I, Noack A G. 2000. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges [J].Global Biogeochemical Cycles, 14(3): 777 – 793.

Schmidt M W I, Skjemstad J O, Czimczik CI, et al. 2001. Comparative analysis of black carbon in soils [J].Global Biogeochemical Cycles, 15(1): 163 – 167.

Shrestha G, Traina S J, Swanston C W. 2010. Black carbon’s properties and role in the environment: A comprehensive review [J].Sustainability, 2(1): 294 – 320.

Six J, Conant R, Paul E A, et al. 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils [J].Plant and Soil, 241(2): 155 – 176.

Skjemstad J O, Reicosky D C, Wilts A R, et al. 2002. Charcoal carbon in US agricultural soils [J].Soil Science Society of America Journal, 66(4): 1249 – 1255.

West T O, Post W M. 2002. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis [J].Soil Science Society of America Journal, 66(6): 1930 – 1946.

Zhan C L, Cao J J, Han Y M, et al. 2013. Spatial distributions and sequestrations of organic carbon and black carbon in soils from the Chinese Loess Plateau [J].Science of the Total Environment, 465: 255 – 266.

Zhan C L, Cao J J, Han Y M, et al. 2015. Spatial patterns, storages and sources of black carbon in soils from the catchment of Qinghai Lake, China [J].European Journal of Soil Science, 66(3): 525 – 534.

Characteristics and sources of black carbon in agricultural soils from a county in central China

ZHAN Changlin1,2, WAN Dejun3, WANG Ping2, HAN Yongming2, ZHANG Jiaquan1, LIU Hongxia1, XIAO Wensheng1, LIU Xianli1
(1. School of Environmental Science and Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; 2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 3. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China)

Background, aim, and scopeBlack carbon (BC) is a continuum of thermally altered materials produced by incomplete combustion of biomass, biofuels, and fossil fuels. It is found globally in the water, atmosphere, snow, ice, sediments, and soils. BC generally resides in the soil for a long time acting as a long-term C sink, with a potential negative feedback on climate warming. BC is composed of charand soot corresponding to combusted solid residues and clusters of carbon particles formed by gas-phase processes, respectively. Many studies have focused on BC in urban and forestland soils, while little attention is paid to agricultural soils in China. Furthermore, many previous studies did not differentiate between different BC fractions (char and soot) in soils, thereby much important information regarding the sources and environmental behavior of these two major components is missing. In this paper, the variation characteristics of BC, char and soot concentrations in agricultural soils were studied. The impact factor and potential sources of BC were also studied.Materials and methodsA total of fortysix topsoil samples (0—20 cm) were collected with steel shovel in farmland from Yangxin County of Hubei Province, central China. The soil types can be classi fi ed into three categories: paddy soil, red soil, and fl uvo-aquic soil, and the number of soil samples is twenty-three, eighteen, and fi ve, respectively. The concentrations of BC, char and soot in soils were analyzed by thermal optical re fl ectance method following the IMPROVE_A protocol. Total organic carbon (TOC) content was determined using potassium dichromate oxidation method.ResultsBC, char and soot concentrations in the agricultural soils varied from 0.17 g·kg-1to 3.18 g·kg-1, 0.03 g·kg-1to 2.37 g·kg-1and 0.09 g·kg-1to 1.50 g·kg-1, with average value of 0.17 g·kg-1, 0.03 g·kg-1, and 0.09 g·kg-1, respectively. The average contents of BC, char and soot in three different types of soils ranked as follows: paddy soil > red soil > fl uvoaquic soil. The variation coefficient of char was higher than 100%, while those coefficients of BC and soot were 73.97% and 68.59%, respectively. BC fraction in the agricultural soils contributed to 1.45%—26.43% of TOC, with a mean value of 6.76%. The highest proportional contribution of BC to TOC was found in fl uvo-aquic soil (8.67%), followed by red soil (7.68%), while the smallest was in paddy soil (5.62%). Char/soot ratios varied from 0.02 to 3.44, averaging 1.18. The average char/soot ratios in the three types of soils ranked as follows: red soil > fl uvo-aquic soil > paddy soil. Strong positive correlation was found between BC, char and soot conentrations. Close correlations between the concentrations of BC and TOC and BC/TOC.DiscussionThe measured BC concentrations in our study were lower than some background soils in the world and urban soils in China. One possible reason for the variability in BC distribution is due to the source contribution in different regions. Moreover, different BC analytical methods in various studies may lead to these differences. The average proportion of BC to TOC was lower than agricultural soils in other regions, which is likely attribute to the differences in land cultivation methods or application content of farmyard manure (plant ash). The identi fi cation of char/soot ratios showed that fossil fuels combustion, such as industrial coal combustion and vehicle exhaust emissions, might be the main source of soil BC in the county.ConclusionsThe results show that BC, char and soot were inhomogeneously distributed in agricultural soils. The positive close correlation between BC and TOC suggested that BC plays an important role in the accumulation of TOC. Fossil fuel combustion is possibly the main source of soil BC. Road fugitive dust, farmland straw burning, and applications of farmyard manure (plant ash) may be other contributed source to BC.Recommendations and perspectivesThe data provide scientific basis for different BC fractions in soils and their signi fi cant roles in global carbon cycle and climatic effect. BC in agricultural soils were signi fi cantly in fl uenced by human activities, especially industrial dust and vehicle exhaust.

agricultural soil; black carbon; char; soot; organic carbon; sources

HAN Yongming, E-mail: yongming@ieecas.cn

10.7515/JEE201601007

2015-10-20;录用日期:2015-11-13

Received Date:2015-10-20;Accepted Date:2015-11-13

湖北省教育厅科学技术研究计划青年人才项目(Q20144401);黄土与第四纪地质国家重点实验室开放基金(SKLLQG1228,1326);矿区环境污染控制与修复湖北省重点实验室开放基金(2013106);湖北理工学院优秀青年科技创新团队资助计划项目(13xtz07)

Foundation Item:Foundation of Hubei Educational Committee for Youths (Q20144401); State Key Laboratory of Loess and Quaternary Geology Foundation (SKLLQG1228, 1326); Open Foundation of Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation (2013106); Foundation of Collaborative Innovation of Hubei Polytechnic University (13xtz07)

韩永明,E-mail: yongming@ieecas.cn

猜你喜欢

焦炭比值农田
达尔顿老伯的农田
达尔顿老伯的农田
2020年我国累计出口焦炭349万t
山西省2020年建成高标准农田16.89万公顷(253.34万亩)
昆钢2500m3高炉使用劣质焦炭生产实践
焦炭塔管线开裂原因分析
比值遥感蚀变信息提取及阈值确定(插图)
物理中的比值定义法
不同应变率比值计算方法在甲状腺恶性肿瘤诊断中的应用
2013年6月全国分省市焦炭产量