书介
2016-02-27
机器学习实战
《机器学习实战》是机器学习的人工智能研究领域中一个极其重要的方向之一。在现今大数据时代的背景下,捕获数据并从中萃取有价值的信息或模式,使得这一过去为分析师与数学家所专属的研究领域越来越为人们瞩目。《机器学习实战》通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效可复用的Python代码阐释如何处理统计数据,进行数据分析及可视化。读者可从中学到一些核心的机器学习算法,并将其运用于某些策略性任务中,如分类、预测及推荐等。
《机器学习实战》适合机器学习相关研究人员及互联网从业人员学习参考。
《机器学习实战》面向日常任务的高效实战内容,介绍并实现机器学习的主流算法。《机器学习实战》没有从理论角度来揭示机器学习算法背后的数学原理,而是通过“原理简述+问题实例+实际代码+运行效果”来介绍每一个算法。学习计算机的人都知道,计算机是一门实践学科,没有真正实现运行,很难真正理解算法的精髓。这本书的好处就是边学边用,非常适合于急需迈进机器学习领域的人员学习。实际上,即使对于那些对机器学习有所了解的人来说,通过代码实现也能进一步加深对机器学习算法的理解。
《机器学习实战》的代码采用Python语言编写。Python代码简单优雅、易于上手,科学计算软件包众多,已经成为不少大学和研究机构进行计算机教学和科学计算的语言。相信Python编写的机器学习代码也能让读者尽快领略到这门学科的精妙之处。
本书作者哈林顿(Peter Harrington)拥有电气工程学士和硕士学位,他曾经在美国加州和中国的英特尔公司工作7年。Peter拥有5项美国专利,在三种学术期刊上发表过文章。他现在是Zillabyte公司的首席科学家,在加入该公司之前,他曾担任2年的机器学习软件顾问。Peter在业余时间还参加编程竞赛和建造3D打印机。
数据挖掘导论
《数据挖掘导论(完整版)》全面介绍了数据挖掘的理论和方法,旨在为读者提供将数据挖掘应用于实际问题所必需的知识。《数据挖掘导论(完整版)》涵盖五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都包含两章:前面一章讲述基本概念、代表性算法和评估技术,后面一章较深入地讨论高级概念和算法。目的是使读者在透彻地理解数据挖掘基础的同时,还能了解更多重要的高级主题。此外,书中还提供了大量示例、图表和习题。
《数据挖掘导论(完整版)》适合作为相关专业高年级本科生和研究生数据挖掘课程的教材,同时也可作为数据挖掘研究和应用开发人员的参考书。
《数据挖掘导论(完整版)》是明尼苏达大学和密歇根州立大学数据挖掘课程的教材,由于独具特色,正式出版之前就已经被斯坦福大学、得克萨斯大学奥斯汀分校等众多名校采用。《数据挖掘导论(完整版)》与许多其他同类图书不同,《数据挖掘导论(完整版)》将重点放在如何用数据挖掘知识解决各种实际问题。只要求具备很少的预备知识——不需要数据库背景,只需要很少的统计学或数学背景知识。
《数据挖掘导论(完整版)》中包含大量的图表、综合示例和丰富的习题,并且使用示例、关键算法的简洁描述和习题,尽可能直接聚焦于数据挖掘的主要概念。
教辅内容极为丰富,包括课程幻灯片、学生课题建议、数据挖掘资源(如数据挖掘算法和数据集)、联机指南(使用实际的数据集和数据分析软件,《数据挖掘导论(完整版)》介绍的部分数据挖掘技术提供例子讲解)。
本书作者陈封能(Pang-Ning Tan)为密歇根州立大学计算机与工程系助理教授,主要教授数据挖掘、数据库系统等课程。此前,曾是明尼苏达大学美国陆军高性能计算研究中心副研究员。
本书翻译范明是郑州大学信息工程学院教授,中国计算机学会数据库专业委员会委员、人工智能与模式识别专业委员会委员,长期从事计算机软件与理论教学和研究。先后发表论史40余篇。
深入浅出数据分析
《深入浅出数据分析》以类似“章回小说”的活泼形式,生动地向读者展现优秀的数据分析人员应知应会的技术:数据分析基本步骤、实验方法、最优化方法、假设检验方法、贝叶斯统计方法、主观概率法、启发法、直方图法、回归法、误差处理、相关数据库、数据整理技巧;正文之后,意犹未尽地以三篇附录介绍数据分析十大要务、R工具及ToolPak工具,在充分展现目标知识以外,为读者搭建了走向深入研究的桥梁。
《深入浅出数据分析》构思跌宕起伏,行文妙趣横生,无论读者是职场老手,还是业界新人;无论是字斟句酌,还是信手翻阅,都能跟着文字在职场中走上几回,体味数据分析领域的乐趣与挑战。
“《深入浅出数据分析》写得漂亮,读者可以学到分析现实问题的系统性方法。从卖咖啡到开橡皮玩具厂,再到要求老板涨工资,此书告诉我们如何发现和解密数据在日常生活中的强大作用。从图形图表到Excel和R计算机程序,《深入浅出数据分析》想尽办法让各个层次的读者都体会到系统化的数据分析对于制定大大小小的决策的强大作用。”
——Eric Heilman, 乔治敦预备学校统计学教师
“被堆积如山的数据压得喘不过气了?让Michael Milton做你的老师吧,在办公工具里添上数据分析工具,抢占技术先机。《深入浅出数据分析》将告诉你如何将原始数据转变成真正的知识。别再抽签算卦了——几套软件,一本《深入浅出数据分析》,就能让你做出正确的决策。”
——Bill Mietelski, 软件工程师
本书作者米尔顿将自己的大半职业生涯献给了非营利机构,帮助这些机构解析和处理从赞助人那里收集来的数据,提高融资能力。多年来,他博览群书,这些书籍虽字字珠玑,却枯燥乏味;蓦然抬首,深入浅出系列图书让他眼前一亮,他欣然抓住机会,走出图书馆和书店,人们会看到他在跑步、摄影,以及亲手酿制啤酒。