支持细胞调控精原干细胞增殖、分化和凋亡的研究进展
2016-02-22梁洺源朱化彬陈晓丽郝海生赵学明
梁洺源,朱化彬,陈晓丽,郝海生,赵学明,秦 彤,王 栋*
(1.吉林农业大学动物科学技术学院,长春 130118; 2.中国农业科学院北京畜牧兽医研究所,农业部畜禽遗传资源与利用重点开放实验室,北京100193)
支持细胞调控精原干细胞增殖、分化和凋亡的研究进展
梁洺源1,2,朱化彬2,陈晓丽2,郝海生2,赵学明2,秦彤2,王栋2*
(1.吉林农业大学动物科学技术学院,长春 130118; 2.中国农业科学院北京畜牧兽医研究所,农业部畜禽遗传资源与利用重点开放实验室,北京100193)
摘要:精原干细胞(Spermatogonial stem cells,SSCs)在支持细胞(Sertoli cells,SCs)调控下有序增殖、分化、凋亡,维持雄性动物正常的精子发生。本文主要对SCs与SSCs的生理结构关系及SCs通过GDNF、FGF2、RA、BMP4、SCF、FasL和SR-BI对SSCs增殖、分化与凋亡的调控进行综述。为精子发生机理的深入研究提供重要参考,将对提高雄性动物繁殖效率具有重要意义,还为探索男性不育疾病的临床治疗方法提供有价值的参考。
关键词:精原干细胞;支持细胞;增殖;分化;凋亡
精原干细胞(Spermatogonial stem cells,SSCs)是精子发生的源泉,在雄性动物遗传信息传递过程中发挥着重要作用。雄性动物性成熟后,睾丸生精小管基膜上的SSCs不断分化形成分化型的A1-4型精原细胞→B型精原细胞→精母细胞→精子细胞→精子,这一分化过程即为生精过程[1]。支持细胞(Sertoli cells,SCs)是动物睾丸内唯一与生精细胞紧密相连的体细胞,不仅在结构上支撑整个生精过程,还分泌多种调控因子,促进SSCs增殖和分化,同时,SCs还接受机体信号调节生精细胞凋亡,保证机体内产生精子数量的稳定,在精子生成过程中具有不可或缺的重要地位。由于精子发生机理研究不但关系到家畜繁殖效率,而且还关系到人类男性不孕不育问题的解决[2],SCs对SSCs的增殖、分化和凋亡调控通路备受关注[3-6]。本文综述了SCs对SSCs的支撑与调控作用,以期为提高雄性动物繁殖效率和治疗男性不育提供重要参考。
1支持细胞与精原干细胞的关系
SCs与SSCs是睾丸曲细精管中两类重要的功能细胞。SCs体积较大,位于睾丸生精小管生精上皮,呈不规则锥体形分布,细胞一端位于基底膜上,另一端延伸至曲精细管管腔内。SSCs则体积较小,紧贴于生精上皮基膜内侧并与SCs相接[7],完全被SCs包围,并与SCs形成紧密嵌合体,在这个稳定的龛环境下,SSCs与周围SCs相互协作,依附曲精细管的形态结构,自我更新、增殖与分化,构成雄性动物整个生命周期中正常有序、周而复始的生精过程[8-9]。SCs质膜间紧密结合,与曲细精管周围基底膜肌样细胞共同构成血睾屏障,为SSCs自我更新及正常有序的精子发生提供免疫屏障和适宜的微环境,防止有害物质干扰及损害精子发生[10]。对小鼠SSCs和SCs体外培养结果表明,两种细胞通过细胞间的直接联系及SCs旁分泌两种途径促进SSCs自我更新、增殖[11]。不添加各种SSCs增殖因子时,常规培养液下,以SCs为饲养层的SSCs培养效果明显优于常规培养液和SCs分泌液无饲养层培养,SCs饲养层培养的SSCs贴壁率显著高于其他两种培养方式,SSCs可稳定增殖,形成稳定集落并维持约30 d,而另外两组一周后SSCs数量明显减少,说明SSCs需通过与SCs直接接触,才能适时触发SCs分泌与SSCs增殖、分化特定阶段相适应的各种细胞因子,并使各种因子根据SSCs生长需求达到一种动态平衡,确保SSCs的正常更新、增殖。SCs分泌液虽可为SSCs生长提供所需的部分细胞因子,但分泌液提供的静态环境无法满足SSCs持续生长的动态需要。SCs是生精细胞的“饲养细胞”,体内与SSCs紧密结合,确保它能根据SSCs自我更新、增殖、分化需要适时分泌各种细胞因子,并通过维持SSCs龛环境的稳定,确保雄性动物精子发生的持续性和有序性。
2支持细胞对精原干细胞的调控作用
SSCs增殖分化生成精子是睾丸最重要的生命事件,SCs对保障SSCs正常功能发挥重要调控作用。研究表明,SCs可分泌多达14种因子参与SSCs的增殖、分化与凋亡调控,其中胶质细胞源性神经营养因子(Glial cell line-derived neurotrophic factor,GDNF)、成纤维细胞生长因子2(Fibroblast growth factor 2,FGF2)、干细胞因子(Stem cell factor,SCF)、视黄酸(Retinoic acid,RA)、骨形态生成蛋白4(Bone morphogenetic protein 4,BMP4)、Fas配体(FasL)和清道夫B类I型(SR-BI)7种因子对SSCs的增殖、分化和凋亡具有重要调控作用[12](表1,图1),根据生物学功能,这7种因子可分为3类,其中GDNF和FGF2参与SSCs的自我更新过程,是SSCs的增殖因子;SCF、RA和BMP4参与SSCs的分化调控,是SSCs的分化因子;FasL和SR-BI则参与精子的自发凋亡过程,是SSCs的凋亡因子。3类细胞因子通过不同的调控通路,逐级作用于其下游通路因子和效应因子,通过这些因子共同协作,SCs实现对SSCs的功能调控,维持SSCs的更新、增殖、分化及凋亡,确保生精过程的正常、有序[8,12]。
表1支持细胞分泌的调控精原干细胞增殖、分化的因子[12]
Table 1Factors produced by SCs regulate the self-renewal and differentiation of spermatogonia including SSCs[12]
2.1支持细胞对精原干细胞增殖的调控机制
对遗传修饰小鼠的研究发现,GDNF是促进SSCs增殖的关键因子[13-14],使GDNF对SSCs增殖调控机理成为研究焦点[15-16]。随着研究的不断深入,GDNF的调控作用逐渐清晰。SCs中GDNF过表达会导致小鼠曲细精管内未分化SSCs数量显著增多,甚至会出现生殖细胞瘤[13];但敲除GDNF的成年杂合小鼠中GDNF表达量显著下降,SSCs大量消亡,精子发生受阻,并最终导致小鼠不育[17]。GDNF与SSCs细胞膜上胶质细胞源性神经营养因子受体α1(Glialcellline derived neurotrophic factor receptor alpha1,GFRα1)结合,介导磷酸化受体酪氨酸激酶RET激活肉瘤基因(Sarcoma gene,Src)家族激酶/癌基因Ras通路,刺激磷脂酰肌醇激酶(PI3K)活化,激活蛋白激酶B(Protein kinase B,称为AKT),促进细胞增殖和抑制细胞凋亡。GDNF还可通过Src/Ras激活刺激丝裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)家族的三级激酶的级联反应,将胞内信号传递进入核内,上调转录因子Ets差异基因5(Etv5),继而上调序列特异性转录抑制因子(B cell CLL/lymphoma 6,member B,Bcl6b)、miRNA21和Brachyury的表达[18]。敲除Bcl6b基因,小鼠表现出局部SSCs缺失,说明Bcl6b是一个重要的SSCs增殖调控因子[19]。由GDNF诱导表达的转录因子Etv5还可促使GDNF受体Ret合成[20],促进GDNF胞外信号向胞内传递。
FGF2是重要的精原干细胞增殖调控因子之一[21-22]。K.Ishii 等[23]发现,向生殖干细胞(Germline stem cell,GS)体外培养体系添加FGF2因子,可促进MAP2K1磷酸化,推动GS细胞增殖;而采用抑制剂抑制MAP2K1后,GS细胞增殖速度下降;转染活化型MAP2K1后,细胞增殖速度加快,Etv5和Bcl6b蛋白水平上升,说明MAP2K1是FGF2的下游靶蛋白,Etv5和Bcl6b是MAP2K1的下游靶蛋白。FGF2可通过MAP2K1/Etv5/Bcl6b通路参与SSCs增殖调控。SCs分泌的FGF2与膜上成纤维细胞生长因子受体(Fibroblast growth factor receptor,FGFR)结合,相继激活Src/Ras/MEK通路各因子,磷酸化MAP2K1,上调下游靶蛋白Etv5的表达水平,进而上调下游蛋白Bcl6b,促进SSCs增殖。
2.2支持细胞对精原干细胞分化的调控机制
维生素A衍生物RA对SSCs分化起重要调控作用。受到精子生成生理因素的影响,SCs表达的RA与其受体RARα结合,抑制了SCs表达和分泌GDNF,并使SCs表达促进SSCs分化的因子KL、BMP4,SCs分泌BMP4 与SSCs膜上受体Bmpr1a(又称ALK3)结合,促进SSCs内的RA与其受体RARγ结合,诱导未分化的SSCs表达酪氨酸激酶Kit(又称c-kit)和分化细胞特异基因Stra8,推动SSCs分化[24]。SCs分泌的分化因子KL与分化型精原细胞膜上受体Kit结合,使Kit自我磷酸化,促进分化型精原细胞进一步分化(图2)。无饲养层SSCs培养证明RA能直接诱导Stra8和Kit表达,使SSCs过度成分化型精原细胞[25]。供体SSCs移植入KL或Kit基因突变鼠睾丸曲细精管,SSCs虽能增殖,但不能分化,精子发生因此受阻[26]。推测RA/KL/kit通路可能是精原细胞分化的开关[27]。
BMP4为转化生长因子β(Transforming growth factor-β,TGF-β)家族成员。小鼠出生后7 d内,BMP4由SCs表达,此后主要由精原细胞和精母细胞表达。BMP4可与SSCs表面受体Bmpr1a(又称Alk3)特异结合,将细胞分化信号传导至SSCs胞内,诱导胞内下游特异型蛋白Smad1/5/8磷酸化,磷酸化的Smad1/5/8可与公共调节型Smad4结合形成Smad复合物并转运到细胞核内,与靶基因结合,促进黏附相关分子的转录与合成,尤其是E-钙粘蛋白,调控细胞骨架蛋白-微丝、微管,保障细胞正常分裂、分化[28]。Smad复合物还作为转录因子,上调精卵发生碱性螺旋-环-螺旋蛋白转录因子2(Spermatogenesis-and oogenesis-specific basic helix-loop-helix (bHLH) transcription factor 2,Sohlh2)表达,Sohlh2再促进下游基因c-kit表达[5],推动分化型精原细胞的形成,形成BMP4/BMPRIA/Smads/Sohlh2/c-kit SSCs分化调控通路。
c-kit是精原细胞分化标志。SCs分泌的SCF能够与c-kit特异结合,促进精原细胞继续分化并产生精子。敲除试验表明,SCF基因突变小鼠曲细精管内仅存留未分化的A型精原细胞,精子发生受阻[29]。c-kit受体基因719位酪氨酸(Tyr)突变为苯丙氨酸(Phe)的组织学分析显示,生后10 d,对照鼠曲细精管内精原细胞增殖并开始减数分裂,而突变鼠曲细精管内可发现A1~A4型精原细胞,但从A型精原细胞~B型精原细胞、B型精原细胞形成精母细胞的分化过程受到阻碍,精原细胞分化减少,生精细胞凋亡比例上升。生后21 d,仅在曲细精管基底膜处存有小部分生精细胞,雄性动物因此丧失生殖功能,表明c-kit突变导致精子发生在减数分裂前受到阻滞[30]。SCF/c-kit是调控精原细胞的分化及精原细胞分化至精母细胞的关键通路,是保证精子生成的重要途径。
2.3支持细胞对精原干细胞凋亡的调控机制
生精细胞是曲细精管主要的细胞成分,具有无限增生潜能。但是其赖以生存的SCs数量较少,仅占成年睾丸细胞总数的3%,并且一个SCs大约仅能支撑30~50个生精细胞的正常活动[31-32]。为维持睾丸正常的生精能力,SCs除分泌SSCs增殖和分化因子外,还分泌凋亡因子,促使大部分生精细胞走向凋亡。所以,仅约25%的A1型精原细胞分化生成初级精母细胞[33]。受到细胞凋亡信号刺激,SCs分泌肿瘤坏死因子家族(Tumor necrosis factor,TNF) 配体(如FasL)等促凋亡因子,启动凋亡程序。一方面,SCs分泌FasL与其SSCs受体Fas结合,将胞外信号传递到生精细胞内。另一方面,细胞内的DNA损伤等信号向线粒体内传递,促使细胞色素C释放。两个通路均可造成Caspase家族激活,线粒体细胞色素C释放,使细胞质、核质浓缩,核仁碎裂及DNA降解等[34-35],并使膜内侧磷脂酰丝氨酸(PS)外翻,PS标记一旦被SCs检测到,SCs上的清道夫B类I型(Scavenger receptor class B type I,SR-BI)受体便立即与细胞内吞噬衔接蛋白(Engulfment adapter protein,GULP)结合,触发p38胞外信号调节激酶(p38 mitogen-activated protein kinase,p38MAPK)磷酸化水平,进一步活化SCs细胞Rac1(信号传导分子小 G 蛋白Rac亚家族),使肌动蛋白微丝(Actin filaments)发生重排,吞噬凋亡细胞[36]。
2.3.1胞外信号通路Fas/FasL胞外途径是哺乳动物生精细胞凋亡主要途径[37]。在凋亡信号调控下,生精细胞特异表达跨膜糖蛋白Fas,与SCs特异表达的配体FasL特异结合,使Fas形成带有死亡结构域的三聚化体,吸引生精细胞内Fas相关的新死亡结构域蛋白(Fas-associating protein with a novel death domain,FADD)并与之结合,FADD蛋白再与Caspase-8前体结合,形成死亡诱导信号复合物(Death-inducing signaling complex,DISC)[38]。在I型细胞中,Caspase-8自身激活,激活后的Caspase-8再激活Caspase-3和Caspase-7等凋亡效应因子[39],对特定凋亡底物DNA修复酶PARP(Poly ADP-ribose polymerase)实施切割,使其失去正常功能,致使Ca2+/Mg2+依赖性核酸内切酶活性增高,DNA裂解,细胞凋亡。I型细胞死亡过程,不依赖细胞内凋亡通路。在II细胞中,X连锁凋亡抑制蛋白(X-linked inhibitor of apoptosis,XIAP)可以直接抑制Caspase-3和Caspase-7,导致Caspase-8激活Bcl-2家族中凋亡诱导因子Bid,激活后的Bid移位至线粒体并激活凋亡诱导因子Bax,促进线粒体释放细胞色素C,进入细胞内凋亡通路[40]。
2.3.2胞内信号通路胞内凋亡途径对生精细胞凋亡也至关重要,Bcl-2家族基因在该途径中发挥着举足轻重的作用,可分为Bax、Bid、p53基因上调凋亡调控因子(Thep53 upregulated modulator of apoptosis,PUMA)、Noxa和Bak等主要细胞凋亡诱导因子和Bcl-2、Bcl-x1等主要细胞凋亡抑制因子。其中,Bcl-2对细胞存活起关键作用,Bax对细胞死亡起关键作用,两者的相对水平决定了细胞的生死[41]。研究表明,Bcl-2蛋白主要通过抑制细胞线粒体通透性转换孔(Mitochondrial permeablity transition pore,mPTP)的开放,保证线粒体渗透压平衡,维持线粒体完整性,进而保证细胞能量系统正常运转。同时,Bcl-2还通过阻断内质网Ca2+流出,降低依赖Ca2+的核酸内切酶活性,抑制其对核DNA的切割损伤;Bcl-2还具有抗氧化作用,抑制氧自由基的产生,阻断细胞凋亡[42]。相反,Bax则能促进线粒体mPTP开放,使线粒体膜通透性增强,导致细胞质流入线粒体,渗透压失衡,使线粒体膜破裂,释放细胞色素C。细胞色素C和凋亡酶激活因子(Apoptotic protease activating facter-1,APAF-1)结合形成复合体,激Caspase-9,进而激活凋亡效应因子Caspase-3、6、7等[43],引发细胞凋亡。
当细胞暴露在辐射、化学毒物、氧化等非正常环境后,部分生精细胞的DNA会受到损伤,进而启动细胞DNA修复或凋亡程序。p53感知DNA损伤,使细胞在G1期停滞,启动DNA修复,p53在此通路中发挥至关重要的作用。一旦DNA无法修复,p53则启动损伤细胞凋亡程序[44]。一方面核内四聚化p53可作为反式作用因子,上调衔接蛋白ASK,刺激Bax、Bid、PUMA和Noxa等促凋亡靶基因表达水平上升[45],并定位于线粒体膜上,诱发线粒体膜通透性增加,释放细胞色素C,诱发胞内凋亡途径。此外,p53还可促进DNA损伤释放的组蛋白H1.2向细胞质迁移,通过Bak依赖方式,诱发线粒体释放细胞色素C,推动细胞走向凋亡[43];另一方面,胞质中的p53可诱发异源二聚体Bax-Bcl-xl和Bax-Bcl-2等解聚释放Bax,随后Bax定位于线粒体膜上,促进mPTP开放,释放细胞色素C。p53还可直接激活Bak,同样诱发线粒体内的细胞色素C流向细胞质,推动细胞凋亡。敲除Bax/Bak凋亡诱导因子的小鼠可抵抗包括基因损伤在内的各种凋亡刺激,说明Bax/Bak在凋亡途径起到死亡关卡作用[46]。
3小结
研究表明,SSCs增殖、分化、凋亡的主要调控机制已逐渐清晰,为精子发生机理研究奠定坚实基础,但各个通路中的具体调控细节及各个通路间的调控关系还有待深入研究,随着人类文明的不断进步,人和动物都将面临越来越多的药物残留、电子辐射、生产生活压力等,这些负效应对雄性生殖机能的影响将越来越明显[47-49],生精细胞抵抗白消安等药物、放射性伤害和生产生活压力等的具体机制及调控机理还有待深入研究。
参考文献(References):
[1]DE ROOIJ D G.Proliferation and differentiation of spermatogonial stem cells[J].Reproduction,2001,121(3):347-354.
[2]YANG S,PING P,MA M,et al.Generation of haploid spermatids with fertilization and development capacity from human spermatogonial stem cells of cryptorchid patients[J].StemCellReports,2014,3(4):663-675.
[3]CHEN S R,LIU Y X.Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling[J].Reproduction,2015,149(4):R159-R167.
[4]GARCIA T X,FARMAHA J K,KOW S,et al.RBPJ in mouse Sertoli cells is required for proper regulation of the testis stem cell niche[J].Development,2014,141(23):4468-4478.
[5]LI Y,ZHANG Y,ZHANG X,et al.BMP4/Smad signaling pathway induces the differentiation of mouse spermatogonial stem cells via upregulation of Sohlh2[J].AnatRec(Hoboken),2014,297(4):749-757.
[6]MOHAMED R H,KARAM R A,HAGRASS H A,et al.Anti-apoptotic effect of spermatogonial stem cells on doxorubicin-induced testicular toxicity in rats[J].Gene,2015,561(1):107-114.
[7]HOFMANN M C.Gdnf signaling pathways within the mammalian spermatogonial stem cell niche[J].MolCellEndocrinol,2008,288(1-2):95-103.
[8]GRISWOLD M D.The central role of Sertoli cells in spermatogenesis[J].SeminCellDevBiol,1998,9(4):411-416.
[9]司蕾,张学明,岳占碰,等.睾丸支持细胞对精原干细胞发育的调节[J].细胞生物学杂志,2008,30(4):479-482.
SI L,ZHANG X M,YUE Z P,et al.Regulation of sertoli cell on the development of spermatogonial stem cell[J].ChineseJournalofCellBiology,2008,30(4):479-482.(in Chinese)
[10]PHILLIPS B T,GASSEI K,ORWIG K E.Spermatogonial stem cell regulation and spermatogenesis[J].PhilosTransRSocLondBBiolSci,2010,365(1546):1663-1678.
[11]熊涛,唐伟,刘世学,等.支持细胞对体外培养精原干细胞的作用途径研究[J].生殖与避孕,2010,30(12):793-799.
XIONG T,TANG W,LIU S X,et al.Both juxtacrine and paracrine signaling indispensable in spermatogonial stem cell cultures[J].Reproduction&Contraception,2010,30(12):793-799.(in Chinese)
[12]HAI Y,HOU J,LIU Y,et al.The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis[J].SeminCellDevBiol,2014,29:66-75.
[13]MENG X,LINDAHL M,HYVÖNEN M E,et al.Regulation of cell fate decision of undifferentiated spermatogonia by GDNF[J].Science,2000,287(5457):1489-1493.
[14]EBATA K T,YEH J R,ZHANG X,et al.Soluble growth factors stimulate spermatogonial stem cell divisions that maintain a stem cell pool and produce progenitorsinvitro[J].ExpCellRes,2011,317(10):1319-1329.
[15]LEE J,KANATSU-SHINOHARA M,INOUE K,et al.Akt mediates self-renewal division of mouse spermatogonial stem cells[J].Development,2007,134(10):1853-1859.
[16]GUO Y,LIU L,SUN M,et al.Expansion and long-term culture of human spermatogonial stem cells via the activation of Smad3 and Akt pathways[J].ExpBiolMed(Maywood),2015,240(8):1112-1122.
[17]MOORE M W,KLEIN R D,FARIAS I,et al.Renal and neuronal abnormalities in mice lacking GDNF[J].Nature,1996,382(6586):76-79.
[18]WU X,GOODYEAR S M,TOBIAS J W,et al.Spermatogonial stem cell self-renewal requires ETV5-mediated downstream activation of Brachyury in mice[J].BiolReprod,2011,85(6):1114-1123.
[19]OATLEY J M,AVARBOCK M R,TELARANTA A I,et al.Identifying genes important for spermatogonial stem cell self-renewal and survival[J].ProcNatlAcadSciUSA,2006,103(25):9524-9529.
[20]TYAGI G,CARNES K,MORROW C,et al.Loss of Etv5 decreases proliferation and RET levels in neonatal mouse testicular germ cells and causes an abnormal first wave of spermatogenesis[J].BiolReprod,2009,81(2):258-266.
[21]KADAM P H,KALA S,AGRAWAL H,et al.Effects of glial cell line-derived neurotrophic factor,fibroblast growth factor 2 and epidermal growth factor on proliferation and the expression of some genes in buffalo (Bubalus bubalis) spermatogonial cells[J].ReprodFertilDev,2013,25(8):1149-1157.
[22]ZHANG Y,WANG S,WANG X,et al.Endogenously produced FGF2 is essential for the survival and proliferation of cultured mouse spermatogonial stem cells[J].CellRes,2012,22(4):773-776.
[23]ISHII K,KANATSU-SHINOHARA M,TOYOKUNI S,et al.FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation[J].Development,2012,139(10):1734-1743.
[24]BUSADA J T,CHAPPELL V A,NIEDENBERGER B A,et al.Retinoic acid regulates Kit translation during spermatogonial differentiation in the mouse[J].DevBiol,2015,397(1):140-149.
[25]ZHOU Q,NIE R,LI Y,et al.Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid:aninvivostudy in vitamin A-sufficient postnatal murine testes[J].BiolReprod,2008,79(1):35-42.
[26]OHTA H,YOMOGIDA K,DOHMAE K,et al.Regulation of proliferation and differentiation in spermatogonial stem cells:the role of c-kit and its ligand SCF[J].Development,2000,127(10):2125-2131.
[27]PELLEGRINI M,FILIPPONI D,GORI M,et al.ATRA and KL promote differentiation toward the meiotic program of male germ cells[J].CellCycle,2008,7(24):3878-3888.
[28]CARLOMAGNO G,VAN BRAGT M P,KORVER C M,et al.BMP4-induced differentiation of a rat spermatogonial stem cell line causes changes in its cell adhesion properties[J].BiolReprod,2010,83(5):742-749.[29]DE ROOIJ D G,OKABE M,NISHIMUNE Y.Arrest of spermatogonial differentiation in jsd/jsd,Sl17H/Sl17H,and cryptorchid mice[J].BiolReprod,1999,61(3):842-847.
[30]KISSEL H,TIMOKHINA I,HARDY M P,et al.Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses[J].EMBOJ,2000,19(6):1312-1326.
[31]PRINT C G,LOVELAND K L.Germ cell suicide:new insights into apoptosis during spermatogenesis[J].Bioessays,2000,22(5):423-430.
[32]DE FRANÇA L R,HESS R A,COOKE P S,et al.Neonatal hypothyroidism causes delayed Sertoli cell maturation in rats treated with propylthiouracil:evidence that the Sertoli cell controls testis growth[J].AnatRec,1995,242(1):57-69.
[33]HUCKINS C.The morphology and kinetics of spermatogonial degeneration in normal adult rats:an analysis using a simplified classification of the germinal epithelium[J].AnatRec,1978,190(4):905-926.
[34]ORRENIUS S,NICOTERA P,ZHIVOTOVSKY B.Cell death mechanisms and their implications in toxicology[J].ToxicolSci,2011,119(1):3-19.
[35]SHAHA C,TRIPATHI R,MISHRA D P.Male germ cell apoptosis:regulation and biology[J].PhilosTransRSocLondBBiolSci,2010,365(1546):1501-1515.[36]OSADA Y,SUNATANI T,KIM I S,et al.Signalling pathway involving GULP,MAPK and Rac1 for SR-BI-induced phagocytosis of apoptotic cells[J].JBiochem,2009,145(3):387-394.
[37]TAKAHASHI T,TANAKA M,BRANNAN C I,et al.Generalized lymphoproliferative disease in mice,caused by a point mutation in the Fas ligand[J].Cell,1994,76(6):969-976.
[38]WANG L,YANG J K,KABALEESWARAN V,et al.The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations[J].NatStructMolBiol,2010,17(11):1324-1329.[39]GUPTA S,AGRAWAL A,AGRAWAL S,et al.A paradox of immunodeficiency and inflammation in human aging:lessons learned from apoptosis[J].ImmunAgeing,2006,3:5.
[40]KAUFMANN T,STRASSER A,JOST P J.Fas death receptor signalling:roles of Bid and XIAP[J].CellDeathDiffer,2012,19(1):42-50.
[41]XU C,WU A,ZHU H,et al.Melatonin is involved in the apoptosis and necrosis of pancreatic cancer cell line SW-1990 via modulating of Bcl-2/Bax balance[J].BiomedPharmacother,2013,67(2):133-139.
[42]周桔,罗荣保,汤长发,等.Bcl-2蛋白家族和p53 基因在细胞凋亡中的调控效应[J].中国组织工程研究与临床康复,2007,11(10):1950-1952.
ZHOU J,LUO R B,TANG C F,et al.Effect of Bcl-2 protein family andp53 gene on regulating and controlling cell apoptosis[J].JournalofClinicalRehabilitativeTissueEngineeringResearch,2007,11(10):1950-1952.(in Chinese)
[43]RUIZ-VELA A,KORSMEYER S J.Proapoptotic histone H1.2 induces CASP-3 and-7 activation by forming a protein complex with CYT c,APAF-1 and CASP-9[J].FEBSLett,2007,581(18):3422-3428.
[44]CARVAJAL L A,MANFREDI J J.Another fork in the road-life or death decisions by the tumour suppressor p53[J].EMBORep,2013,14(5):414-421.
[45]ZHIVOTOVSKY B,KROEMER G.Apoptosis and genomic instability[J].NatRevMolCellBiol,2004,5(9):752-762.
[46]WEI M C,ZONG W X,CHENG E H,et al.Proapoptotic BAX and BAK:a requisite gateway to mitochondrial dysfunction and death[J].Science,2001,292(5517):727-730.
[47]HIRAYANAGI Y,QU N,HIRAI S,et al.Busulfan pretreatment for transplantation of rat spermatogonia differentially affects immune and reproductive systems in male recipient mice[J].AnatSciInt,2015,90(4):264-274.
[48]PEAKE K,MANNING J,LEWIS C A,et al.Busulfan as a myelosuppressive agent for generating stable high-level bone marrow chimerism in mice[J].JVisExp,2015(98):e52553.
(编辑程金华)
The Study Progress of the Proliferation,Differentiation and Apoptosis of Spermatogonial Stem Cells under the Regulation of Sertoli Cells
LIANG Ming-yuan1,2,ZHU Hua-bin2,CHEN Xiao-li2,HAO Hai-sheng2,ZHAO Xue-ming2,QIN Tong2,WANG Dong2*
(1.CollegeofAnimalScienceandTechnology,JilinAgriculturalUniversity,Changchun130118,China;2.TheKeyLaboratoryforFarmAnimalGeneticandUtilizationofMinistryofAgricultureofChina,InstituteofAnimalScience,ChineseAcademyofAgriculturalSciences,Beijing100193,China)
Key words:spermatogonial stem cells;sertoli cells;proliferation;differentiation;apoptosis
Abstract:The proliferation,differentiation and apoptosis of spermatogonial stem cells (SSCs) are regulated orderly by sertoli cells (SCs) and maintain the spermatogenesis of male animals.This review focuses on the relationship of physical structure between SCs and SSCs,and the regulation for the proliferation,differentiation and apoptosis of SSCs by GDNF,FGF2,RA,BMP4,SCF,FasL and SR-BI which are SCs-derived factors.This information provides an important reference for the further studies of spermatogenesis and will have great significance to improve reproductive efficiency of male animals,and also provides a valuable reference to explore the clinical treatment of male infertility disease.
doi:10.11843/j.issn.0366-6964.2016.02.003
收稿日期:2015-07-08
基金项目:奶牛产业技术体系北京创新团队项目;中国农业科学院家畜胚胎工程与繁殖创新团队项目(cxgc-ias-06);国家十二五科技支撑计划课题资助项目(2011BAD19B02)
作者简介:梁洺源(1989-),女,河北燕郊人,硕士,主要从事动物遗传育种与繁殖研究,E-mail:mingyuanliang@163.com *通信作者:王栋,研究员,博导,主要从事动物遗传育种与繁殖研究,E-mail:dwangcn2002@vip.sina.com
中图分类号:S814
文献标志码:A
文章编号:0366-6964(2016)02-0225-07