烟草茄尼醇生物合成基因
2016-02-03刘艳华张洪博张忠锋
闫 宁,刘艳华,张洪博,张忠锋
(中国农业科学院烟草研究所,青岛 266101)
烟草茄尼醇生物合成基因
闫宁,刘艳华,张洪博,张忠锋
(中国农业科学院烟草研究所,青岛 266101)
茄尼醇不仅是合成辅酶Q10和维生素K2等泛醌类药物的重要中间体,而且是卷烟烟气多环芳烃的重要前体物,对卷烟安全性有较大影响。综述了烟草茄尼醇生物合成途径及其关键酶基因的研究进展,展望了其在烟草医药价值开发和低危害烟草品种培育中的应用潜力。
烟草;茄尼醇;生物合成;基因;代谢调控
茄尼醇(solanesol)是由9个类异戊二烯单元组成的非环式萜醇,可以用于合成辅酶Q10和维生素K2等泛醌类药物[1-2]。卷烟燃烧过程中,茄尼醇裂解产生多环芳烃,对卷烟安全性产生不利影响[3]。自从在烟草中首次发现茄尼醇以来[4],茄尼醇在番茄和马铃薯等茄科作物中均有报道,但在烟草中含量最高[1,3-6]。由于茄尼醇碳链较长,化学合成难度很大[7],因此主要依赖于从烟叶中提取获得[1,6]。烟叶茄尼醇含量是茄尼醇获得量的主要限制因子,烟叶茄尼醇含量由主基因和多基因共同决定,并以主基因遗传为主[8]。茄尼醇既是合成泛醌类药物的重要中间体,也是卷烟烟气多环芳烃的重要前体物。因此,烟草茄尼醇合成代谢调控对烟草医药价值开发和低危害烟草品种培育具有重要意义。
1 烟草茄尼醇生物合成途径
在烟草中,茄尼醇是在质体中经由2-甲基-D-赤藓糖醇-4-磷酸(MEP)途径合成的[1,6,9]。1-脱氧-5-磷酸木酮糖合成酶(DXS)催化丙酮酸和甘油醛-3-磷酸缩合生成1-脱氧-5-磷酸木酮糖(DXP),DXP在1-脱氧-5-磷酸木酮糖还原异构酶(DXR)的催化下经过分子内重排和还原反应生成MEP;MEP在2C-甲基赤藓糖醇-4-胞苷焦磷酸合成酶(CMS)、2C-甲基赤藓糖醇-4-胞苷焦磷酸激酶(CMK)、2-甲基赤藓糖醇-2,4-环焦磷酸合成酶(MCS)和1-羟基-2-甲基-2-丁烯-4-焦磷酸合成酶(HDS)的依次催化下生成1-羟基-2-甲基-2-丁烯-4-焦磷酸(HMBPP);1-羟基-2-甲基-2-丁烯-4-焦磷酸还原酶(HDR)催化HMBPP生成C5异戊烯基焦磷酸(IPP)和C5二甲基烯丙基焦磷酸(DMAPP);IPP和DMAPP之间的转换由异戊烯基焦磷酸异构酶(IPI)完成[1,6,10]。牻牛儿基焦磷酸合酶(GPPS)催化IPP和DMAPP生成C10牻牛儿基焦磷酸(GPP),法尼基焦磷酸合酶(FPPS)催化IPP和GPP生成C15法尼基焦磷酸(FPP),牻牛儿基牻牛儿基焦磷酸合酶(GGPPS)催化IPP和FPP生成C20牻牛儿基牻牛儿基焦磷酸(GGPP)[11-12]。茄尼基焦磷酸合酶(SPS)能够催化IPP、DMAPP、GPP、FPP、GGPP生成C45茄尼基焦磷酸(SPP),SPP焦磷酸基团转变为羟基即生成茄尼醇[1,2,6]。
2 烟草茄尼醇生物合成关键酶基因
2.11-脱氧-5-磷酸木酮糖合成酶基因
1-脱氧-5-磷酸木酮糖合成酶,简称DXS,是MEP代谢途径中的第一个酶,它催化丙酮酸和甘油醛-3-磷酸生成DXP[1,6]。目前,已在蒺藜苜蓿[13]、番茄[14-15]、拟南芥[16]和烟草[17]等中鉴定出DXS基因。在蒺藜苜蓿中,鉴定到两个DXS基因,其中MtDXS1在除根以外的植物组织中表达,而MtDXS2仅在菌根真菌定殖的根中表达量较高[13]。在番茄中,DXS基因表达水平和番茄果实类胡萝卜素含量呈正相关[14];番茄SlDXS2基因沉默导致β-水芹烯含量下降[15]。通过对拟南芥DXS基因进行过表达或基因沉默发现,与野生型植株相比,转基因植株叶绿素、生育酚、类胡萝卜素、脱落酸和赤霉素含量发生明显变化[16]。将拟南芥DXS基因在薰衣草中进行表达可以显著提高叶片和花中的精油含量[18];将编码DXS和类胡萝卜素合成相关酶的基因共转化至大肠杆菌中,可以显著提高番茄红素和玉米黄质等的含量[19];在烟草中,DXS定位于叶绿体中,DXS基因沉默导致叶绿素和类胡萝卜素含量显著下降[17]。最近,Campbell等[20]发现,将马铃薯DXS1、DXS2基因在本氏烟中进行瞬时表达可以显著提高茄尼醇含量。因此,DXS是茄尼醇生物合成中的第一个关键酶基因,其过表达或抑制表达能够导致下游代谢产物含量发生变化。
2.21-脱氧-5-磷酸木酮糖还原异构酶基因
1-脱氧-5-磷酸木酮糖还原异构酶,简称DXR,它催化DXP经过分子内重排和还原反应生成MEP[1,6]。目前,已在薄荷[21]、番茄[22]、玉米[23]、橡胶[24]和烟草[25-27]等中鉴定到DXR基因。DXR基因过表达导致拟南芥叶片叶绿素和类胡萝卜素含量升高[28];在薄荷中过表达DXR基因,可以使薄荷精油产量提高50%[29]。Wu等[30]从丹参须根中克隆到DXR基因,并发现其在高渗透压和真菌激发子处理下表达量增加,而且其表达量与丹参酮含量呈正相关。马靓[25]首次从烟草中克隆获得一个DXR基因,该基因开放读码框长度为1,422 bp,编码473个氨基酸,且N-末端有一个富含脯氨酸残基的信号肽。Zhang等[27]从普通烟草中鉴定到两个DXR基因NtDXR1和NtDXR2,Southern印迹和基因分型表明,它们分别来源于绒毛烟草和林烟草;它们均是在叶片中表达量最高,花和茎中其次,根和种子中最低。烟草DXR基因敲除植株呈现白化表型[26],而烟草DXR基因的叶绿体过表达可以提高茄尼醇等萜类化合物的含量[31]。最近,Campbell等[20]发现,将马铃薯DXR基因在本氏烟中进行瞬时表达可以显著提高茄尼醇含量。因此,DXR是茄尼醇生物合成中的关键酶基因,其过表达可以促进茄尼醇等下游代谢产物积累。
2.3异戊烯基焦磷酸异构酶基因
异戊烯基焦磷酸异构酶,简称IPI,它可以催化IPP和DMAPP之间的互相转换,IPP在IPI和Mg2+的催化下转化为DMAPP[1,6]。目前,已在烟草[32]、拟南芥[33-34]、番茄[35]和长春花[36]等中鉴定到IPI基因。在烟草中,鉴定到两个IPI基因,IPI1、IPI2分别定位于叶绿体和细胞质中,高盐、高光照条件下IPI1表达量增加,高盐、低温条件下IPI2表达量增加,而100 μmol/L ABA处理后IPI1和IPI2表达量均增加[32]。在拟南芥中,鉴定到两个IPI基因,AtIPI1、AtIPI2分别定位于质体和线粒体中[33];AtIPI1、AtIPI2单突变体表型都正常,但AtIPI1、AtIPI2双突变体在长日照条件下表现出植株矮化和雄性不育症状,且其甾醇和泛醌含量降低50%以上[34]。在大肠杆菌中导入IPI基因,导致多种萜类化合物含量增加[37];在单细胞绿藻中导入IPI基因,导致类胡萝卜素含量增加,且类胡萝卜素含量与IPI基因表达量呈正相关[38]。最近,Campbell等[20]研究发现,将马铃薯IPI与SPS基因在本氏烟中进行共同表达可以显著提高茄尼醇含量。因此,IPI是萜类化合物生物合成中的关键酶基因,其过表达或抑制表达能够导致下游代谢产物含量发生变化。
2.4法尼基焦磷酸合酶基因
法尼基焦磷酸合酶,简称FPPS,它催化IPP和GPP生成FPP[12]。FPP是合成倍半萜和多萜醇等萜类化合物的前体物,例如甾醇和茄尼醇等[12,39]。段娜娜等[40]克隆获得K326烟草品种FPPS基因,其cDNA序列全长705 bp,编码234个氨基酸,其核苷酸序列与玉米、杜仲、拟南芥、青蒿FPPS基因核苷酸序列同源性分别为74%、76%、77%、80%。将人参FPPS基因转入积雪草中,能够导致下游达玛烯二醇合酶、环阿屯醇合酶基因表达量以及鲨烯、植物甾醇含量升高[41]。将酵母FPPS基因转入烟草后,转基因植株中的甾醇和类胡萝卜素含量显著提高[42];将薄荷FPPS基因转入烟草后,转基因植株对赤星病抗性提高[43],烟叶类胡萝卜素合成相关基因Psy、Lycb表达量和总类胡萝卜素含量升高[44],烤后烟叶8种类胡萝卜素降解产物、茄酮、新植二烯含量和感官评吸质量提高[45]。因此,FPPS是萜类化合物生物合成中的关键酶基因,其过表达能够促进下游代谢产物积累。
2.5牻牛儿基牻牛儿基焦磷酸合酶基因
牻牛儿基牻牛儿基焦磷酸合酶,简称GGPPS,它催化IPP和FPP生成GGPP[46]。GGPP是合成二萜、四萜和多萜类化合物的共同前体,参与叶绿素、类胡萝卜素、细胞分裂素、赤霉素、脱落酸、质体醌、泛醌和多萜醇等的合成[47-48]。植物GGPPS分为大亚基和小亚基两个分支,普通烟草中鉴定出9个GGPPS家族成员,其中大亚基7个、小亚基2个;林烟草、绒毛烟草中分别鉴定出5个GGPPS家族成员,其中大亚基4个、小亚基1个[49]。NtGGPPS3属于大亚基[50],定位于叶绿体和质膜上,NtGGPPS3基因在烟草重要生育期各组织中均有表达,在叶和茎中的表达量相对较高[51];NtGGPPS5属于小亚基,NtGGPPS5基因在烟草根、茎、叶和芽中均有表达,其表达量排序为:芽>叶>茎>根[52]。茉莉酸甲酯处理后NtGGPPS1表达量显著升高,而生长素处理后NtGGPPS1表达量下降;与对照植株相比,NtGGPPS1基因沉默植株叶绿素和类胡萝卜素含量显著降低[53]。最近,Campbell等[20]研究发现,将马铃薯GGPPS3基因在本氏烟中进行瞬时表达可以显著提高茄尼醇含量。因此,GGPPS是萜类化合物生物合成中的关键酶基因,其过表达可以促进茄尼醇等下游代谢产物积累。
2.6茄尼基焦磷酸合酶基因
茄尼基焦磷酸合酶,简称SPS,它催化IPP、DMAPP、GPP、FPP、GPPP生成SPP,SPP是茄尼醇和质体醌合成的前体物[1,2,6]。目前,已在拟南芥[54-57]、橡胶[58]、水稻[59]、番茄[60]和烟草[2]等中鉴定出SPS基因。在拟南芥中,鉴定到两个SPS基因,而且AtSPS1和AtSPS2在叶片和茎中表达量显著高于根中[55]。AtSPS1和AtSPS2基因沉默会降低叶片中的质体醌含量并诱导产生光系统Ⅱ光抑制[57],而fibrillin 5(FBN5)可以结合到AtSPS1和AtSPS2上调控质体醌合成[61]。在水稻中,鉴定到两个SPS基因,OsSPS1、OsSPS2分别定位于线粒体和质体中,OsSPS1优先催化FPP合成线粒体中的泛醌-9,OsSPS2优先催化GPP合成质体醌-9[59]。在烟草中,NtSPS1和NtSPS2表达量在烟株不同器官中的排序为:叶>茎>根,这与茄尼醇、叶绿素在烟株中的分布规律一致[2];NtSPS1和NtSPS2均定位于叶绿体中[2],这与番茄SPS的亚细胞定位相一致[60];NtSPS1和NtSPS2均存在两个保守的DDxxD结构域[2],其参与协调二价金属离子和焦磷酸基团结合,对反应底物的定位起关键作用[11]。番茄SPS在烟草中过表达可以显著提高未成熟叶片中的质体醌含量和成熟叶片中的茄尼醇含量[60],而将马铃薯SPS基因分别与DXS、DXR、CMS、CMK、MCS、HDR、IPI、GGPPS3基因在本氏烟中进行共同表达可以显著提高茄尼醇含量[20]。因此,SPS是茄尼醇生物合成中的关键酶基因,其过表达可以促进茄尼醇等下游代谢产物积累。
3 问题与展望
茄尼醇既是合成辅酶Q10和维生素K2等泛醌类药物的重要中间体,也是卷烟烟气多环芳烃的重要前体物,对卷烟安全性有较大影响。近年来,茄尼醇生物合成关键酶基因的分离鉴定与基因功能研究取得了较大进展,但是茄尼醇合成代谢调控机制仍有许多不明之处。烟草、番茄和马铃薯等基因组序列信息为茄尼醇合成代谢调控机制的深入研究提供了序列基础,在阐明茄尼醇合成代谢途径的基础上,可以利用转录组等组学方法揭示茄尼醇代谢流的分配规律以及与其他代谢途径之间的互作机制。此外,将茄尼醇生物合成中的关键酶基因在微生物中进行异源表达,不仅可用于鉴定茄尼醇生物合成关键酶基因的功能,而且可用于生产具有药用价值的茄尼醇衍生物;通过转基因技术或基因组编辑技术干扰、沉默或敲除烟草茄尼醇合成代谢关键基因,获得茄尼醇含量降低的烟草转化植株,为培育烟气多环芳烃含量降低的烟草品种奠定基础,对提高烟草医药价值和烟草行业转型升级都具有重要意义。
[1] Yan N, Liu Y H, Gong D P, et al. Solanesol:a review of its resources, derivatives, bioactivities, medicinal applications, and biosynthesis[J]. Phytochem Rev, 2015,14(3)∶ 413-417.
[2] 闫宁,赵韬智,向德虎,等. 普通烟草茄尼基焦磷酸合酶基因NtSPS的克隆和表达分析[J]. 中国烟草科学,2016,37(3):45-51.
[3] 杜咏梅,张怀宝,张忠锋,等. 我国烤烟茄尼醇含量及其与烟草和烟气主要化学成分的相关性[J]. 中国烟草科学,2014,35(6):54-58.
[4] Rowland R L, Latimer P H, Giles J A. Flue-cured tobacco. I. Isolation of solanesol, an unsaturated alcohol[J]. J Amer Chem Soc, 1956, 78(18)∶ 4680-4683.
[5] Kotipalli P K, Rao C V N, Raj K. Estimation of solanesol in tobacco and non-tobacco plants from Solanaceae family[J]. J Med Arom Plant Sci, 2008, 30(1)∶ 65-68.
[6] Taylor M A, Fraser P D. Solanesol∶ added value from Solanaceous waste[J]. Phytochemistry, 2011, 72(11-12)∶1323-1327.
[7] Roe S J, Oldfield M F, Geach N, et al. A convergent stereocontrolled synthesis of [3-14C]solanesol[J]. J Lablled Comp Radiopharm, 2013, 56(9-10)∶ 485-491.
[8] 向德虎,赵韬智,杜咏梅,等. 烟草茄尼醇含量的遗传分析[J]. 中国烟草科学,2015,36(6):1-7.
[9] Fukusaki E, Takeno S, Bamba T, et al. Biosynthetic pathway for the C45 polyprenol, solanesol, in tobacco[J]. Biosci Biotechnol Biochem, 2004, 68(9)∶ 1988-1990.
[10] 吕婧,刘贯山,晁江涛,等. 影响烟草香气物质合成代谢途径关键酶基因的研究进展[J]. 中国农学通报,2014,30(4):49-57.
[11] 王凌健,方欣,杨长青,等. 植物萜类次生代谢及其调控[J]. 中国科学:生命科学,2013,43(12):1030-1046.
[12] 闫宁,龚达平,张忠锋. 烟草甾醇合成代谢分子调控研究进展[J]. 中国烟草科学,2015,36(2):110-117.
[13] Walter M H, Hans J, Strack D. Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases∶differential regulation in shoots and apocarotenoidaccumulating mycorrhizal roots[J]. Plant J, 2002, 31(3)∶243-254.
[14] Lois L M, Rodríguez-Concepción M, Gallego F, et al. Carotenoid biosynthesis during tomato fruit development∶regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase[J]. Plant J, 2000, 22(6)∶ 503-513.
[15] Paetzold H, Garms S, Bartram S, et al. The isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 controls isoprenoid profiles, precursor pathway allocation, and density of tomato trichomes[J]. Mol Plant, 2010, 3(5)∶ 904-916.
[16] Estévez J M, Cantero A, Reindl A, et al. 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants[J]. J Biol Chem,2001, 276(25)∶ 22901-22909.
[17] 李尊强. 烟草香气相关基因DXS基因和CHS基因的功能分析[D]. 北京:中国农业科学院,2013.
[18] Muñoz-Bertomeu J, Arrillaga I, Ros R, et al. Up-regulation of 1-deoxy-D-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender[J]. Plant Physiol, 2006, 142(3)∶ 890-900.
[19] Matthews P D, Wurtzel E T. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase[J]. Appl Microbiol Biotechnol, 2000, 53(4)∶ 396-400.
[20] Campbell R, Freitag S, Bryan G J, et al. Environmental and genetic factors associated with solanesol accumulation in potato leaves[J]. Front Plant Sci, 2016, 7∶ 1263.
[21] Lange B M, Croteau R. Isoprenoid biosynthesis via amevalonate-independent pathway in plants∶ cloning and heterologous expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from peppermint[J]. Arch Biochem Biophys, 1999, 365(1)∶ 170-174.
[22] Rodríguez-Concepción M, Ahumada I, Diez-Juez E, et al. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening[J]. Plant J, 2001, 27(3)∶ 213-222.
[23] Hans J, Hause B, Strack D, et al. Cloning, characterization,and immunolocalization of a mycorrhiza-inducible 1-deoxy-d-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize[J]. Plant Physiol, 2004,134(2)∶ 614-624.
[24] Seetang-Nun Y, Sharkey T D, Suvachittanont W. Molecular cloning and characterization of two cDNAs encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Hevea brasiliensis[J]. J Plant Physiol, 2008, 165(9)∶ 991-1002.
[25] 马靓. 烟草5-磷酸脱氧木酮糖还原异构酶(DXR)基因全长cDNA的克隆及序列分析[D]. 武汉:华中科技大学,2007.
[26] 聂梦云,高军平,罗培,等. 基于CRISPR/Cas9技术的烟草NtDXR基因敲除及功能分析[J]. 烟草科技,2016,49(6):1-7.
[27] Zhang H, Niu D, Wang J, et al. Engineering a platform for photosynthetic pigment, hormone and cembrane-related diterpenoid production in Nicotiana tabacum[J]. Plant Cell Physiol, 2015, 56(11)∶ 2125-2138.
[28] Carretero-Paulet L, Cairó A, Botella-Pavía P, et al. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase[J]. Plant Mol Biol, 2006, 62(4)∶ 683-695.
[29] Mahmoud S S, Croteau R B. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase[J]. Proc Natl Acad Sci U S A,2001, 98(15)∶ 8915-8920.
[30] Wu S J, Shi M, Wu J Y. Cloning and characterization of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene for diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza (Chinese sage) hairy roots[J]. Biotechnol Appl Biochem, 2009, 52(Pt 1)∶ 89-95.
[31] Hasunuma T, Takeno S, Hayashi S, et al. Overexpression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase gene in chloroplast contributes to increment of isoprenoid production[J]. J Biosci Bioeng, 2008, 105(5)∶ 518-526.
[32] Nakamura A, Shimada H, Masuda T, et al. Two distinct isopentenyl diphosphate isomerases in cytosol and plastid are differentially induced by environmental stresses in tobacco[J]. FEBS Lett, 2001, 506(1)∶ 61-64.
[33] Phillips M A, D'Auria J C, Gershenzon J, et al. The Arabidopsis thaliana type I isopentenyl diphosphate isomerases are targeted to multiple subcellular compartments and have overlapping functions in isoprenoid biosynthesis[J]. Plant Cell, 2008, 20(3)∶ 677-696.
[34] Okada K, Kasahara H, Yamaguchi S, et al. Genetic evidence for the role of isopentenyl diphosphate isomerases in the mevalonate pathway and plant development in Arabidopsis[J]. Plant Cell Physiol, 2008,49(4)∶ 604-616.
[35] Sun J, Zhang Y Y, Liu H, et al. A novel cytoplasmic isopentenyl diphosphate isomerase gene from tomato(Solanum lycopersicum)∶ cloning, expression, and color complementation[J]. Plant Mol Biol Rep, 2010, 28(3)∶473-480.
[36] Guirimand G, Guihur A, Phillips M A, et al. A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus[J]. Plant Mol Biol, 2012, 79(4)∶ 443-459.
[37] Kajiwara S, Fraser P D, Kondo K, et al. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli[J]. Biochem J, 1997, 324(Pt 2)∶ 421-426.
[38] Sun Z, Cunningham F X, Gantt E. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte[J]. Proc Natl Acad Sci U S A, 1998, 95(19)∶11482-11488.
[39] 李永波,樊庆琦,王宝莲,等. 植物法呢基焦磷酸合酶基因(FPPS)研究进展[J]. 农业生物技术学报,2012,20(3):321-330.
[40] 段娜娜,岳彩鹏,苗红梅,等. 烟草法呢基焦磷酸合酶基因的克隆及序列分析[J]. 烟草科技,2010(1):56-59.
[41] Kim O T, Kim S H, Ohyama K, et al. Upregulation of phytosterol and triterpene biosynthesis in Centella asiatica hairy roots overexpressed ginseng farnesyl diphosphate synthase[J]. Plant Cell Rep, 2010, 29(4)∶ 403-411.
[42] Daudonnet S, Karst F, Tourte Y. Expression of the farnesyldiphosphate synthase gene of Saccharomyces cerevisiae in tobacco[J]. Mol Breeding, 1997, 3(2)∶ 137-145.
[43] 崔红,刘海礁,李雪君. 转外源法呢基焦磷酸合酶基因烟草抗赤星病研究[J]. 作物学报,2006,32(6):817-820.
[44] 王冰莹,杨永霞,闫鼎,等. fps基因过量表达对烟叶类胡萝卜素生物合成的影响[J]. 中国烟草学报,2012,18(2):44-48.
[45] 李雪君,崔红,刘海礁,等. fps转基因烤烟类胡萝卜素及其降解产物的研究[J]. 中国烟草科学,2006,27(3):25-27.
[46] Liang P H, Ko T P, Wang A H. Structure, mechanism and function of prenyltransferases[J]. Eur J Biochem, 2002,269(14)∶ 3339-3354.
[47] Yan N, Du Y, Liu X, et al. Chemical structures,biosynthesis, bioactivities, biocatalysis and semisynthesis of tobacco cembranoids∶ An overview[J]. Ind Crop Prod,2016, 83∶ 66-80.
[48] Beck G, Coman D, Herren E, et al. Characterization of the GGPP synthase gene family in Arabidopsis thaliana[J]. Plant Mol Biol, 2013, 82(4)∶ 393-416.
[49] 李泽锋,魏攀,夏玉珍,等. 烟草牻牛儿基牻牛儿基焦磷酸合成酶基因家族的全基因组鉴定[J]. 烟草科技,2015,48(6):1-8.
[50] 李锋,李明,金立锋,等. 烟草牻牛儿基牻牛儿基焦磷酸合成酶基因的克隆及分析[J]. 烟草科技,2012, 45(5):60-64.
[51] 孙建生,夏玉珍,李正风,等. 烟草NtGGPPS3基因的亚细胞定位和组织表达分析[J]. 贵州农业科学,2015,43(8):38-41.
[52] 林世锋,王仁刚,张孝廉,等. 烟草牻牛儿基牻牛儿基焦磷酸合成酶小亚基基因的克隆及组织表达谱[J]. 烟草科技,2014, 47(2):70-75.
[53] 魏攀,孟利军,陈千思,等. 烟草牻牛儿基牻牛儿基焦磷酸合成酶基因NtGGPPS1的克隆和功能分析[J]. 烟草科技,2016,49(4):8-15.
[54] Hirooka K, Bamba T, Fukusaki E, et al. Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase[J]. Biochem J, 2003, 370(Pt 2)∶ 679-686.
[55] Hirooka K, Izumi Y, An C I, et al. Functional analysis of two solanesyl diphosphate synthases from Arabidopsis thaliana[J]. Biosci Biotechnol Biochem, 2005, 69(3)∶ 592-601.
[56] Jun L, Saiki R, Tatsumi K, et al. Identification and subcellular localization of two solanesyl diphosphate synthases from Arabidopsis thaliana[J]. Plant Cell Physiol,2004, 45(12)∶ 1882-1888.
[57] Block A, Fristedt R, Rogers S, et al. Functional modeling identifies paralogous solanesyl-diphosphate synthases that assemble the side chain of plastoquinone-9 in plastids[J]. J Biol Chem, 2013, 288(38)∶ 27594-27606.
[58] Phatthiya A, Takahashi S, Chareonthiphakorn N, et al. Cloning and expression of the gene encoding solanesyl diphosphate synthase from Hevea brasiliensis[J]. Plant Sci,2007, 172(4)∶ 824-831.
[59] Ohara K, Sasaki K, Yazaki K. Two solanesyl diphosphate synthases with different subcellular localizations and their respective physiological roles in Oryza sativa[J]. J Exp Bot,2010, 61(10)∶ 2683-2692.
[60] Jones M O, Perez-Fons L, Robertson F P, et al. Functional characterization of long-chain prenyl diphosphate synthases from tomato[J]. Biochem J, 2013, 449(3)∶ 729-740.
[61] Kim E H, Lee Y, Kim H U. Fibrillin 5 is essential for plastoquinone-9 biosynthesis by binding to solanesyl diphosphate synthases in Arabidopsis[J]. Plant Cell, 2015,27(10)∶ 2956-2971.
Solanesol Biosynthetic Genes in Tobacco (Nicotiana tabacum L.)
YAN Ning, LIU Yanhua, ZHANG Hongbo, ZHANG Zhongfeng
(Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China)
Solanesol is not only an important intermediate for the synthesis of ubiquinone drugs, such as coenzyme Q10 and vitamin K2, but is also an important precursor of polycyclic aromatic hydrocarbons in cigarette smoke, and has a great influence on the safety of cigarette. In this paper, the solanesol biosynthetic pathways and their key enzyme genes were summarized. It provided useful information for medical value development of tobacco and cultivation of less harmful tobacco varieties.
tobacco; solanesol; biosynthesis; gene; metabolic regulation
S572
1007-5119(2016)05-0098-06
10.13496/j.issn.1007-5119.2016.05.018
中国烟草总公司基因组重大专项项目[110201401008(JY-08)];中国农业科学院科技创新工程(ASTIP-TRIC05);中国农业科学院基本科研业务费专项
闫 宁,男,博士,助理研究员,从事烟草功能成分与综合利用研究。E-mail:yanning5110@163.com
2016-08-15
2016-09-24