金融因素对宏观经济波动加速效应的实证分析
2016-01-21杜蒙蒙刘斐弘
杜蒙蒙+刘斐弘
【摘要】大量的事实证明,金融系统对于宏观经济波动影响很强,金融系统能够对经济冲击产生加速和放大的作用。本文基于非参数模型下,分别研究货币、信贷冲击(M1、M2、金融机构贷款)以及企业资产状况对产出、消费、投资以及价格水平的影响效应。
【关键词】金融加速器 宏观经济波动 货币冲击
我国金融政策积极地保障了我国宏观经济的快速发展,对实体经济的促进作用也不断增加。随着我国经济的开放程度逐步提高,国际市场对我国经济的冲击不容忽视。通过本文的我国的金融加速器效应实证研究,具体计算出各个金融变量对我国宏观经济波动的影响程度,全面分析我国金融加速器的特征与规律。以上研究结果为我国制定和实施准确合理的宏观经济政策,促进我国经济增长提供了依据,具有较强的现实意义。
一、文献综述
(一)国外研究现状
Bagehot(1873)提出了银行信贷量是引发经济周期波动的一个重要的金融因素。Aftelion(1913)第一次提出了像这样经济冲击能够被加速和放大的状况。Haberler(1937)在对宏观经济波动周期的研究中,发现了金融市场中有可以放大冲击的效应存在。muelson(1939)提出了传统的金融加速器效应的观点,增加消费或投资对国民收入的提升有推动作用。Christiano等人(2004)估计了大萧条时期的美国的金融加速器效应。Jacobsen与Hammersland(2008)采用误差修正模型,对金融加速器效应进行了检验。Nadeau和Wasmer(2011)验证了在美国劳动力市场中存在金融加速器效应。Gatti和Gallegati(2012)建立了一个信贷网络,该网络包含了银行体系以及上、下游企业。
(二)国内研究现状
蒋冠(2004)在微观基础上,利用金融摩擦理论,分析了货币政策的传导机制。龚六堂和杜清源于震,刘森以及赵振全(2007)对我国金融加速器效应进行了验证。袁申国(2010)研究分析了我国不同省市的房地产信贷市场中的金融加速器效应的差异。崔光灿(2011)通过在BGG模型的基础上建立包含金融加速器的两部门动态宏观经济学模型研究了我国资产价格变动对我国宏观经济的金融加速器效应。汪川、周镇峰以及黎新(2012)在DSGE模型中引入金融加速器机制,分析了我国信贷因素对宏观经济波动的影响。
二、理论模型
非参数模型
设Y为被解释变量,X=(X1,X2,…,Xd)为解释变量,给定样本检测值,假定(Yi,Xi)独立同分布,建立非参数回归模型:
Yi=m(Xi)+σ(Xi)εi,i=1,2,…,n (1)
其中m(·)是未知的函数,m(Xi)=E(Yi|Xi),εi是均值为零,方差为1,且与Xi独立的序列,随机误差项μi=σ(Xi)εi,其条件方差为σ2(Xi)=E(μ2i|Xi)。
窗宽hn>0,核权函数K■(u)=h■■(uh■■),核函数K(u)?叟0。回归函数核估计的渐近方差随着窗宽减少而增大,渐近偏随着窗宽减少而减少。所以,非参数估计就是在估计的偏和方差中寻求平衡,使得渐近均方误最小,渐近均方积分误差,AIMSE=?蘩AMSE(x)dx,最小化渐近均方积分误差,得到最优的全局窗宽为:
h■=■n■ (2)
其中,A=?蘩■dx,B=?蘩2D■■(x)D■(x)f(x)■+trH■(x)■dx。
使得AMSE(x)最小的核函数为使式R■(K)μ■■(K)达到最小的核函数。
三、实证分析
金融加速器效应是一个复杂的系统,各个变量对宏观经济的影响既可能是线性的,也可能是非线性的。这时基于线性设定的回归分析模型可能存在较大误差。本文建立非参数模型来考察金融加速器机制中各金融变量对宏观经济波动的影响效应。
(一)变量选取与处理
本文中所采用的变量有:产出、消费、投资、价格水平、M1、M2以及金融机构贷款额。
(二)实证结果
1.货币市场冲击对宏观经济的影响。产出(GDP)分别对M1、M2的线性以及非参数回归结果如以下四图所示:
图1产出对M1的线性回归 图2产出对M1的非参数回归
图3产出对M2的线性回归 图4产出对M2的非参数回归
图1、3为产出对M1、M2的简单线性回归,图2、4为非参数回归。可以看出,非参数回归的拟合效果明显优于简单的线性回归,拟合值更接近于实际值,因此采用非参数回归方法能够得到更精确的回归结果。
非参数回归模型的斜率在不同的时点是变化的,因此以上非参数回归方程在每个时间节点都对应一个相应的斜率估计值。产出对各个金融变量的平均弹性系数的估计值。M1增长所导致的产出增加的弹性系数为0.4094,即在其他条件不变的情况下,M1增长一单位,能够导致产出增长0.4094个单位。而M2与金融机构贷款增长一单位,仅能分别带动产出增长0.0027和0.0050个单位。这说明在我国金融市场中,M1的变动对产出的影响最为明显,因此在制定宏观经济政策时应着重考虑M1因素,以更好的传导货币政策,保证产出的平稳增长。
2.信贷市场冲击对宏观经济的影响。产出、消费、投资以及价格水平分别金融机构贷款额的线性以及非参数回归结果如以下图:
图5产出对贷款的线性回归 图6产出对贷款的非参数回归
图7消费对贷款的线性回归 图8消费对贷款的非参数回归
以上图分别为产出、消费、投资以及价格水平对金融机构贷款额的简单线性回归,同样的,非参数回归的拟合效果更优于线性回归,其拟合值更接近于实际值,非参数回归方法能够估计出更为精确的回归系数。
以上四个非参数回归方程在不同的时间节点对应着不同的回归系数,我国信贷市场对宏观经济的影响较货币市场更低。信贷规模增加一亿,能够分别拉动产出、消费和投资增加0.0050、0.0021和0.1676个单位,而信贷规模增加一万亿,能够拉动价格水平增加0.0746个单位。因此,在促进我国宏观经济平稳快速发展的金融政策方面,应更多地考虑货币市场,特别是M1因素,而可以相对减少对信贷政策的依赖。
四、结论
第一,我国货币与信贷市场以及企业资产的变化能够通过金融加速器效应对宏观经济产生影响,其中,企业资产的影响作用较货币和信贷市场更为明显。政府部门在制定相关经济政策中应更多地考虑企业因素。
第二,在我国的货币和信贷市场变量中,其中M1对产出、消费以及投资的影响相对较大,金融机构贷款额对价格水平的影响相对较大。因此对M1的宏观调控应是我国货币政策中最先被考虑与重视的工具。
第三,我国货币、信贷市场以及企业因素对产出、消费、投资的影响相对较大,而对价格水平的影响很小。因此可主要通过对金融市场及企业资产的调控实现产出、消费以及投资的稳定增长,而不会使价格水平产生较大变化。
参考文献
[1]Bagehot Walter.Lombard Street:A Deseription of the Money Market[J].London:Henry S King Co,1873.
[2]Wicksell Knut.Interest and Prices.New York: Augustus M Kelley[M].1898:11-44.
[3]赵振全,于震,刘森.金融加速器效应在中国存在吗?[J].经济研究,2007,(6):27-37.
[4]黄静.房价上涨与信贷扩张:基于金融加速器视角的实证分析[J].中国软科学,2010(5):10-17.
作者简介:杜蒙蒙(1989-),山东聊城人,中国海洋大学经济学院数量经济学研究生,研究方向:数理金融学方法与应用;刘斐弘(1987-),山东烟台人,中国海洋大学经济学院数量经济学研究生,现就职于烟台中国银行,研究方向:数理金融学方法与应用。
【摘要】大量的事实证明,金融系统对于宏观经济波动影响很强,金融系统能够对经济冲击产生加速和放大的作用。本文基于非参数模型下,分别研究货币、信贷冲击(M1、M2、金融机构贷款)以及企业资产状况对产出、消费、投资以及价格水平的影响效应。
【关键词】金融加速器 宏观经济波动 货币冲击
我国金融政策积极地保障了我国宏观经济的快速发展,对实体经济的促进作用也不断增加。随着我国经济的开放程度逐步提高,国际市场对我国经济的冲击不容忽视。通过本文的我国的金融加速器效应实证研究,具体计算出各个金融变量对我国宏观经济波动的影响程度,全面分析我国金融加速器的特征与规律。以上研究结果为我国制定和实施准确合理的宏观经济政策,促进我国经济增长提供了依据,具有较强的现实意义。
一、文献综述
(一)国外研究现状
Bagehot(1873)提出了银行信贷量是引发经济周期波动的一个重要的金融因素。Aftelion(1913)第一次提出了像这样经济冲击能够被加速和放大的状况。Haberler(1937)在对宏观经济波动周期的研究中,发现了金融市场中有可以放大冲击的效应存在。muelson(1939)提出了传统的金融加速器效应的观点,增加消费或投资对国民收入的提升有推动作用。Christiano等人(2004)估计了大萧条时期的美国的金融加速器效应。Jacobsen与Hammersland(2008)采用误差修正模型,对金融加速器效应进行了检验。Nadeau和Wasmer(2011)验证了在美国劳动力市场中存在金融加速器效应。Gatti和Gallegati(2012)建立了一个信贷网络,该网络包含了银行体系以及上、下游企业。
(二)国内研究现状
蒋冠(2004)在微观基础上,利用金融摩擦理论,分析了货币政策的传导机制。龚六堂和杜清源于震,刘森以及赵振全(2007)对我国金融加速器效应进行了验证。袁申国(2010)研究分析了我国不同省市的房地产信贷市场中的金融加速器效应的差异。崔光灿(2011)通过在BGG模型的基础上建立包含金融加速器的两部门动态宏观经济学模型研究了我国资产价格变动对我国宏观经济的金融加速器效应。汪川、周镇峰以及黎新(2012)在DSGE模型中引入金融加速器机制,分析了我国信贷因素对宏观经济波动的影响。
二、理论模型
非参数模型
设Y为被解释变量,X=(X1,X2,…,Xd)为解释变量,给定样本检测值,假定(Yi,Xi)独立同分布,建立非参数回归模型:
Yi=m(Xi)+σ(Xi)εi,i=1,2,…,n (1)
其中m(·)是未知的函数,m(Xi)=E(Yi|Xi),εi是均值为零,方差为1,且与Xi独立的序列,随机误差项μi=σ(Xi)εi,其条件方差为σ2(Xi)=E(μ2i|Xi)。
窗宽hn>0,核权函数K■(u)=h■■(uh■■),核函数K(u)?叟0。回归函数核估计的渐近方差随着窗宽减少而增大,渐近偏随着窗宽减少而减少。所以,非参数估计就是在估计的偏和方差中寻求平衡,使得渐近均方误最小,渐近均方积分误差,AIMSE=?蘩AMSE(x)dx,最小化渐近均方积分误差,得到最优的全局窗宽为:
h■=■n■ (2)
其中,A=?蘩■dx,B=?蘩2D■■(x)D■(x)f(x)■+trH■(x)■dx。
使得AMSE(x)最小的核函数为使式R■(K)μ■■(K)达到最小的核函数。
三、实证分析
金融加速器效应是一个复杂的系统,各个变量对宏观经济的影响既可能是线性的,也可能是非线性的。这时基于线性设定的回归分析模型可能存在较大误差。本文建立非参数模型来考察金融加速器机制中各金融变量对宏观经济波动的影响效应。
(一)变量选取与处理
本文中所采用的变量有:产出、消费、投资、价格水平、M1、M2以及金融机构贷款额。
(二)实证结果
1.货币市场冲击对宏观经济的影响。产出(GDP)分别对M1、M2的线性以及非参数回归结果如以下四图所示:
图1产出对M1的线性回归 图2产出对M1的非参数回归
图3产出对M2的线性回归 图4产出对M2的非参数回归
图1、3为产出对M1、M2的简单线性回归,图2、4为非参数回归。可以看出,非参数回归的拟合效果明显优于简单的线性回归,拟合值更接近于实际值,因此采用非参数回归方法能够得到更精确的回归结果。
非参数回归模型的斜率在不同的时点是变化的,因此以上非参数回归方程在每个时间节点都对应一个相应的斜率估计值。产出对各个金融变量的平均弹性系数的估计值。M1增长所导致的产出增加的弹性系数为0.4094,即在其他条件不变的情况下,M1增长一单位,能够导致产出增长0.4094个单位。而M2与金融机构贷款增长一单位,仅能分别带动产出增长0.0027和0.0050个单位。这说明在我国金融市场中,M1的变动对产出的影响最为明显,因此在制定宏观经济政策时应着重考虑M1因素,以更好的传导货币政策,保证产出的平稳增长。
2.信贷市场冲击对宏观经济的影响。产出、消费、投资以及价格水平分别金融机构贷款额的线性以及非参数回归结果如以下图:
图5产出对贷款的线性回归 图6产出对贷款的非参数回归
图7消费对贷款的线性回归 图8消费对贷款的非参数回归
以上图分别为产出、消费、投资以及价格水平对金融机构贷款额的简单线性回归,同样的,非参数回归的拟合效果更优于线性回归,其拟合值更接近于实际值,非参数回归方法能够估计出更为精确的回归系数。
以上四个非参数回归方程在不同的时间节点对应着不同的回归系数,我国信贷市场对宏观经济的影响较货币市场更低。信贷规模增加一亿,能够分别拉动产出、消费和投资增加0.0050、0.0021和0.1676个单位,而信贷规模增加一万亿,能够拉动价格水平增加0.0746个单位。因此,在促进我国宏观经济平稳快速发展的金融政策方面,应更多地考虑货币市场,特别是M1因素,而可以相对减少对信贷政策的依赖。
四、结论
第一,我国货币与信贷市场以及企业资产的变化能够通过金融加速器效应对宏观经济产生影响,其中,企业资产的影响作用较货币和信贷市场更为明显。政府部门在制定相关经济政策中应更多地考虑企业因素。
第二,在我国的货币和信贷市场变量中,其中M1对产出、消费以及投资的影响相对较大,金融机构贷款额对价格水平的影响相对较大。因此对M1的宏观调控应是我国货币政策中最先被考虑与重视的工具。
第三,我国货币、信贷市场以及企业因素对产出、消费、投资的影响相对较大,而对价格水平的影响很小。因此可主要通过对金融市场及企业资产的调控实现产出、消费以及投资的稳定增长,而不会使价格水平产生较大变化。
参考文献
[1]Bagehot Walter.Lombard Street:A Deseription of the Money Market[J].London:Henry S King Co,1873.
[2]Wicksell Knut.Interest and Prices.New York: Augustus M Kelley[M].1898:11-44.
[3]赵振全,于震,刘森.金融加速器效应在中国存在吗?[J].经济研究,2007,(6):27-37.
[4]黄静.房价上涨与信贷扩张:基于金融加速器视角的实证分析[J].中国软科学,2010(5):10-17.
作者简介:杜蒙蒙(1989-),山东聊城人,中国海洋大学经济学院数量经济学研究生,研究方向:数理金融学方法与应用;刘斐弘(1987-),山东烟台人,中国海洋大学经济学院数量经济学研究生,现就职于烟台中国银行,研究方向:数理金融学方法与应用。
【摘要】大量的事实证明,金融系统对于宏观经济波动影响很强,金融系统能够对经济冲击产生加速和放大的作用。本文基于非参数模型下,分别研究货币、信贷冲击(M1、M2、金融机构贷款)以及企业资产状况对产出、消费、投资以及价格水平的影响效应。
【关键词】金融加速器 宏观经济波动 货币冲击
我国金融政策积极地保障了我国宏观经济的快速发展,对实体经济的促进作用也不断增加。随着我国经济的开放程度逐步提高,国际市场对我国经济的冲击不容忽视。通过本文的我国的金融加速器效应实证研究,具体计算出各个金融变量对我国宏观经济波动的影响程度,全面分析我国金融加速器的特征与规律。以上研究结果为我国制定和实施准确合理的宏观经济政策,促进我国经济增长提供了依据,具有较强的现实意义。
一、文献综述
(一)国外研究现状
Bagehot(1873)提出了银行信贷量是引发经济周期波动的一个重要的金融因素。Aftelion(1913)第一次提出了像这样经济冲击能够被加速和放大的状况。Haberler(1937)在对宏观经济波动周期的研究中,发现了金融市场中有可以放大冲击的效应存在。muelson(1939)提出了传统的金融加速器效应的观点,增加消费或投资对国民收入的提升有推动作用。Christiano等人(2004)估计了大萧条时期的美国的金融加速器效应。Jacobsen与Hammersland(2008)采用误差修正模型,对金融加速器效应进行了检验。Nadeau和Wasmer(2011)验证了在美国劳动力市场中存在金融加速器效应。Gatti和Gallegati(2012)建立了一个信贷网络,该网络包含了银行体系以及上、下游企业。
(二)国内研究现状
蒋冠(2004)在微观基础上,利用金融摩擦理论,分析了货币政策的传导机制。龚六堂和杜清源于震,刘森以及赵振全(2007)对我国金融加速器效应进行了验证。袁申国(2010)研究分析了我国不同省市的房地产信贷市场中的金融加速器效应的差异。崔光灿(2011)通过在BGG模型的基础上建立包含金融加速器的两部门动态宏观经济学模型研究了我国资产价格变动对我国宏观经济的金融加速器效应。汪川、周镇峰以及黎新(2012)在DSGE模型中引入金融加速器机制,分析了我国信贷因素对宏观经济波动的影响。
二、理论模型
非参数模型
设Y为被解释变量,X=(X1,X2,…,Xd)为解释变量,给定样本检测值,假定(Yi,Xi)独立同分布,建立非参数回归模型:
Yi=m(Xi)+σ(Xi)εi,i=1,2,…,n (1)
其中m(·)是未知的函数,m(Xi)=E(Yi|Xi),εi是均值为零,方差为1,且与Xi独立的序列,随机误差项μi=σ(Xi)εi,其条件方差为σ2(Xi)=E(μ2i|Xi)。
窗宽hn>0,核权函数K■(u)=h■■(uh■■),核函数K(u)?叟0。回归函数核估计的渐近方差随着窗宽减少而增大,渐近偏随着窗宽减少而减少。所以,非参数估计就是在估计的偏和方差中寻求平衡,使得渐近均方误最小,渐近均方积分误差,AIMSE=?蘩AMSE(x)dx,最小化渐近均方积分误差,得到最优的全局窗宽为:
h■=■n■ (2)
其中,A=?蘩■dx,B=?蘩2D■■(x)D■(x)f(x)■+trH■(x)■dx。
使得AMSE(x)最小的核函数为使式R■(K)μ■■(K)达到最小的核函数。
三、实证分析
金融加速器效应是一个复杂的系统,各个变量对宏观经济的影响既可能是线性的,也可能是非线性的。这时基于线性设定的回归分析模型可能存在较大误差。本文建立非参数模型来考察金融加速器机制中各金融变量对宏观经济波动的影响效应。
(一)变量选取与处理
本文中所采用的变量有:产出、消费、投资、价格水平、M1、M2以及金融机构贷款额。
(二)实证结果
1.货币市场冲击对宏观经济的影响。产出(GDP)分别对M1、M2的线性以及非参数回归结果如以下四图所示:
图1产出对M1的线性回归 图2产出对M1的非参数回归
图3产出对M2的线性回归 图4产出对M2的非参数回归
图1、3为产出对M1、M2的简单线性回归,图2、4为非参数回归。可以看出,非参数回归的拟合效果明显优于简单的线性回归,拟合值更接近于实际值,因此采用非参数回归方法能够得到更精确的回归结果。
非参数回归模型的斜率在不同的时点是变化的,因此以上非参数回归方程在每个时间节点都对应一个相应的斜率估计值。产出对各个金融变量的平均弹性系数的估计值。M1增长所导致的产出增加的弹性系数为0.4094,即在其他条件不变的情况下,M1增长一单位,能够导致产出增长0.4094个单位。而M2与金融机构贷款增长一单位,仅能分别带动产出增长0.0027和0.0050个单位。这说明在我国金融市场中,M1的变动对产出的影响最为明显,因此在制定宏观经济政策时应着重考虑M1因素,以更好的传导货币政策,保证产出的平稳增长。
2.信贷市场冲击对宏观经济的影响。产出、消费、投资以及价格水平分别金融机构贷款额的线性以及非参数回归结果如以下图:
图5产出对贷款的线性回归 图6产出对贷款的非参数回归
图7消费对贷款的线性回归 图8消费对贷款的非参数回归
以上图分别为产出、消费、投资以及价格水平对金融机构贷款额的简单线性回归,同样的,非参数回归的拟合效果更优于线性回归,其拟合值更接近于实际值,非参数回归方法能够估计出更为精确的回归系数。
以上四个非参数回归方程在不同的时间节点对应着不同的回归系数,我国信贷市场对宏观经济的影响较货币市场更低。信贷规模增加一亿,能够分别拉动产出、消费和投资增加0.0050、0.0021和0.1676个单位,而信贷规模增加一万亿,能够拉动价格水平增加0.0746个单位。因此,在促进我国宏观经济平稳快速发展的金融政策方面,应更多地考虑货币市场,特别是M1因素,而可以相对减少对信贷政策的依赖。
四、结论
第一,我国货币与信贷市场以及企业资产的变化能够通过金融加速器效应对宏观经济产生影响,其中,企业资产的影响作用较货币和信贷市场更为明显。政府部门在制定相关经济政策中应更多地考虑企业因素。
第二,在我国的货币和信贷市场变量中,其中M1对产出、消费以及投资的影响相对较大,金融机构贷款额对价格水平的影响相对较大。因此对M1的宏观调控应是我国货币政策中最先被考虑与重视的工具。
第三,我国货币、信贷市场以及企业因素对产出、消费、投资的影响相对较大,而对价格水平的影响很小。因此可主要通过对金融市场及企业资产的调控实现产出、消费以及投资的稳定增长,而不会使价格水平产生较大变化。
参考文献
[1]Bagehot Walter.Lombard Street:A Deseription of the Money Market[J].London:Henry S King Co,1873.
[2]Wicksell Knut.Interest and Prices.New York: Augustus M Kelley[M].1898:11-44.
[3]赵振全,于震,刘森.金融加速器效应在中国存在吗?[J].经济研究,2007,(6):27-37.
[4]黄静.房价上涨与信贷扩张:基于金融加速器视角的实证分析[J].中国软科学,2010(5):10-17.
作者简介:杜蒙蒙(1989-),山东聊城人,中国海洋大学经济学院数量经济学研究生,研究方向:数理金融学方法与应用;刘斐弘(1987-),山东烟台人,中国海洋大学经济学院数量经济学研究生,现就职于烟台中国银行,研究方向:数理金融学方法与应用。