APP下载

母乳的生物学功能研究进展

2015-09-22马守庆边高瑞朱伟云

食品科学 2015年5期
关键词:高血糖素区系初乳

马守庆,边高瑞,朱伟云*

(南京农业大学动物科技学院,消化道微生物实验室,江苏南京210095)

母乳的生物学功能研究进展

马守庆,边高瑞,朱伟云*

(南京农业大学动物科技学院,消化道微生物实验室,江苏南京210095)

母乳中含有的营养物质、促生长因子、免疫因子和其他活性物质,对新生动物具有提供营养、促进生长、增强免疫力和调控微生物区系等重要作用。本文综述母乳中这些生物活性物质的含量以及它们所发挥的具体功能。同时通过比较母乳喂养和配方奶粉喂养的效果来探讨母乳特定的一种或几种活性因子的缺乏对新生动物的影响以及作用。现阶段,由于母乳中很多物质还未被人们所发现,因此其对机体的影响也无从得知,本文期望可以指导消费者树立正确的母乳喂养观念。

母乳;营养作用;促生长作用;免疫作用;调控微生物区系

母乳在为新生动物提供营养、促进生长、增强免疫力和调控微生物区系方面起到了重要作用。母乳喂养和非母乳喂养的新生动物流行病学和免疫学的研究,以及母乳中特定活性物质的调查研究引起了人们对母乳中免疫调节物质鉴别的兴趣。研究发现与喂食配方奶粉相比,母乳喂养的新生动物在同阶段会获得更多的体质量增加量和正常的器官系统发育。目前研究发现,母乳中含有乳糖、乳脂和蛋白质等常规成分以及丰富的免疫因子,如分泌型免疫球蛋白A(secreted immunoglobulin A,sIgA)、免疫球蛋白G(immunoglobulin G,IgG)和IgM等免疫球蛋白以及白细胞介素-2(interleukin-2,IL-2)、IL-4、IL-6、IL-10、IL-12、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、转化生长因子-β(transforming growth factor-β,TGF-β)和干扰素-γ(interferon-γ,IFN-γ)等细胞因子;以及促生长因子,如胰岛素样生长因子-1(insulinlike growth factor-1,IGF-1)、表皮生长因子(epidermal growth factor,EGF)和血管内皮生长因子(vascular endothelial growth factor,VEGF)等。这些物质在为新生动物提供营养、促进生长、增强免疫力和调控微生物区系方面都产生了极其重要的作用。新生动出生后如果不及时吸吮初乳的话,会导致后期生长发育受阻、免疫功能低下、营养吸收障碍、代谢机能紊乱和疾病发生频繁等。我们利用本实验室对猪开展实验的优势,集中讨论近些年各种动物乳的生物学功能,尤以猪和人类为主。同时讨论乳中常规成分、免疫因子以及促生长因子产生上述4种作用的机制,并对以后母乳更多的生物学作用和新物质的发现作简要概述。

1 营养作用

在营养方面,母乳中的乳糖、脂类和蛋白质为主要的营养物质,自胎儿出生一直到断奶这段时期,母乳为新生动物提供基本的且唯一重要的营养保障。表1列出了不同地区哺乳期女性以及一些品种母畜常乳中3 种主要营养成分的含量。总结文献中近年来对这3 种物质最新功能的研究进展,发现乳糖可提供新生动物早期营养需要,对新生动物脑和神经的发育起着至关重要的作用,另外乳糖还可以提高新生动物生长速率、饲料消化率以及乳酸菌的菌群数量[1-3];乳脂对新生动物抵抗感染、合成激素和氧化分解提供能量以及延长生命等很多方面有重要作用,另外多不饱和脂肪酸有防止血栓形成、降血脂和抗癌作用[4-5]。乳蛋白可以为机体提供必需氨基酸、免疫保护以及调控微生物菌群。乳蛋白中含有的酪蛋白经酶解后产生的各种活性肽在促生长、调节物质代谢和调控微生物区系等方面发挥着巨大作用[6-7]。

2 促生长作用

母乳中含有多种促生长因子,包括胰岛素样生长因子-1(IGF-1)、表皮生长因子(EGF)、胰高血糖素样肽(glucagon-like peptide,GLP)、胰岛素和酪蛋白酶解物等,这些生长因子对新生婴儿组织器官的生长发育具有重要的意义。表2列出了不同动物初乳中几种重要促生长因子的含量。

表2不同动物初乳中几种重要的促生长因子含量Table2Concentrations of several important growth promoters in colostrum from different speciesecies

2.1表皮生长因子(EGF)

EGF首先在小鼠的唾液腺中被发现并提纯于人的尿液中[29],是第一种被人们所发现并提纯的促生长因子,其由53 个氨基酸组成,分子质量为6 201 D,分子内有6 个半胱氨酸组成的二硫键,形成3 个分子内环型结构,组成生物活性所必需的受体结合区域。此后,1978年研究者在人乳中首次发现了EGF的存在[30]。研究发现,EGF对肠黏膜的损伤具有重要的修复作用,通过口服EGF可以促进肠道和其他组织细胞的分裂和分化[31-32]。同时有研究显示EGF在极早产儿体内的含量高于早产儿,在早产儿体内的含量高于正常产儿,这表明EGF对于新生儿的生长发育具有重要作用[1]。

2.2胰岛素样生长因子-1(IGF-1)

IGF-1主要由肝脏分泌产生,并且在所有细胞中都有少量表达,对所有组织都有促进细胞分化和蛋白质合成的作用,对脑、肌肉、骨骼和血管的生长起着重要作用[33]。在猪初乳中其含量范围为0.1~0.4 mg/L,在常乳中的含量为0.01~0.04 mg/L[24]。在IGF-1基因敲除母鼠上进行的实验发现[34],幼鼠出生时的体质量仅为正常幼鼠的60%,并且出生后生长缓慢,在出生第8周时的体质量仅为正常鼠的30%。Trejo等[35]用纯合子雄性侏儒鼠和野型雌性Lewis鼠进行杂交产生杂合子后代进行外周血IGF-1和脑脊液中IGF-1含量测定,发现循环血液中的IGF-1并不影响海马体中IGF-1基因的表达,但是会影响微脉管结构和功能、脑的发育和突触可塑性相关基因的表达,而这些变化都会影响脑的发育和认知功能下降。IGF-1还能刺激乳幼鼠肠道的麦芽糖酶、乳糖酶、碱性磷酸酶和氨基肽酶的活性升高。

2.3胰岛素

胰岛素由胰岛细胞分泌产生,同样被发现在母乳中有分布。很多人都在致力于探讨胰岛素在仔猪胃肠道发育中的机制[36]。研究发现[37],选取出生两天的小猪,分成两组,一组喂食含有胰岛素的配方奶粉,另一组不含有胰岛素,实验进行6 d,在第7天进行宰杀,称量小肠质量,发现实验组小猪的小肠质量大于对照组。同时,另一研究发现[38],建立缺血再灌注损伤模型大鼠,口服胰岛素的实验组与不服用胰岛素的对照组相比可有效增加十二指肠和空肠的质量,也可增加十二指肠、空肠和回肠黏膜的质量,同时对回肠黏膜的DNA表达量、空肠和回肠黏膜蛋白含量,以及空肠和回肠绒毛高度,隐窝深度都有显著提高(P<0.05)。

2.4胰高血糖素样肽-1(GLP-1)

胰高血糖素样肽(GLP-1、GLP-2)和胰高血糖素由存在于肠道内的L型细胞选择性组织特异性分裂原,以及胰腺内分泌α细胞和脑中神经元产生。由于现在对乳中各种物质的测定方法还不健全,关于乳中胰高血糖素样肽含量的检测并不是很多。但动物在进食初乳后,会引起血中胰高血糖素样肽浓度的升高,说明胰高血糖素样肽的分泌和进食初乳是密切相关的。另外由于该物质和新生动物肠道发育密切相关,本实验室正在进行这方面的工作,相信以后可以测得该种物质的浓度值。GLP-1通过葡萄糖促进胰岛素的分泌、合成、分化、再生以及抑制胰高血糖素的分泌来控制血糖的吸收,达到降低血糖含量的目的[39]。Zhan Yi等[40]研究了胰高血糖素样肽-1受体(GLP-1R)激动剂在减轻体质量方面的作用,发现无论是糖尿病患者还是非糖尿病患者,加入激动剂的实验组都比对照组体质量减轻的程度更大,存在显著差异(P<0.05)。同时有研究显示,GLP-1可以抑制由晚期糖化终产物(advanced glycation end products,AGEs)所引起的细胞凋亡,保护血管内皮细胞免受体内有毒代谢物质的损害。另外,GLP-1R激动剂在维持血压正常和血浆胆固醇浓度方面都具有一定的有益作用[41]。

2.5胰高血糖素样肽-2(GLP-2)

GLP-2借助其对胃的蠕动性和营养吸收、基层组织细胞的分裂和分化以及肠的通透性的影响来保持肠道黏膜上皮的完整性,以及增强黏膜血液流动和营养吸收的作用[42-43]。Petersen等[44]研究发现,在猪、牛和羊3 种动物的羊水、常乳和初乳中,GLP-2的含量为0~20 pmol/L。Deniz等[45]考察GLP-2对肠系膜动脉血流的作用,发现在注射了0.9、2.3、4.6、9.3 nmol/kg GLP-2后,大鼠的肠系膜动脉血流都显著增加(P<0.05),而对照组并没有变化。Kaji等[46]进行的研究表明,在肠道切除的早期,GLP-2对肠道的生长效应达到最大,同时GLP-2受体的表达也显著增加(P<0.05),这对肠道形态结构和腺窝细胞的增殖、分化都有很重要的作用。研究显示,在对大鼠进行小肠原位移植手术后,注射GLP-2实验组的绒毛高度、隐窝深度和增殖细胞核抗原水平显著高于对照组(P<0.05),Na+/K+-ATP酶和双糖酶活性恢复速率亦显著高于对照组(P<0.05)。

3 调控微生物区系

婴儿早期建立的消化道微生物区系除了对幼龄动物肠道生理功能和免疫系统的发育有重要作用外,还对婴幼儿的后期发育乃至成年后的健康和疾病发生均有一定的影响。母体是影响婴幼儿消化道微生物发育的最重要因素,而母乳就是母体影响的一个重要途径。平板培养发现,乳样中的微生物主要是Streptococcus和Staphylococcus,其与肠道早期定殖的微生物区系中的微生物分型比较一致,同时Bifidobacterium和Lactobacillus出现的频率也很高,这表明母乳是一个益生菌的传递系统[47-50]。母乳喂养的婴儿体内Bifidobacterium和Lactobacillus的含量确实要显著高于配方奶粉喂养的婴儿,而Bacteroides、Clostridium coccoides、Staphylococcus和Enterobacteriaceae的含量则显著低于后者[51-53]。对母乳和新生儿粪样中分离出的上述微生物菌株进行鉴定后发现,其属于同一菌株或同源性很高,这也表明母乳对于婴儿早期肠道微生物定殖的重要起源作用[52]。母乳中含有丰富的寡糖,在人乳中已发现超过200 种低聚糖[54],其对于新生儿发育过程中微生物区系的形成具有很强的益生作用[50]。Bifi dobacterium longum subsp. infantis的一些菌株可以专一地降解人乳寡糖(human milk oligosaccharides,HMOs)[55]。HMOs还可以上调B. longum subsp.等微生物进行碳水化合物降解和细胞黏附等相关基因的表达[56]。因此,Firmicutes和Actinobacteria的早期定殖受益于母乳的作用,同时一些微生物还可以为非消化碳水化合物的利用提供方便,即在婴儿能够摄入固体食物之前,其肠道微生物区系已经为降解简单的植物性食物如大米做好了准备[57]。同时,母乳喂养的婴儿肠道微生物区系的多样性和丰度均低于配方乳喂养的婴儿[58-59],这可能是母乳中的益生元(HMOs等)选择性地促进益生菌的生长,同时抑制了Staphylococci和E. coli等其他潜在致病菌的生长[60]。

4 免疫作用

乳中参加免疫作用的物质主要是免疫球蛋白和各种细胞因子,乳中含有IL-1、IL-2、IL-4、IL-6、IL-8、IL-10、IL-12、TNF-α和IFN-γ等细胞因子和sIgA、IgG和IgM等免疫球蛋白,这些物质在初乳中的含量很高,对新生动物抵抗疾病和免疫系统的发育具有重要作用。

4.1细胞因子

研究发现人乳中含有较高浓度的TGF-β、TNF-α、IL-1、IL-6、IL-8和IFN-γ,猪乳中除了含有较高浓度的IL-6、TGF-β和IFN-γ外,IL-4和IL-12的含量也较高,但TNF-α和IL-10的含量较低[23]。按作用的不同,这些细胞因子可分为促炎细胞因子和抗炎细胞因子,它们在新生动物体内始终处于动态平衡中,在婴儿不同发育时期提供健康保障[61]。Hawkes等[22]采集了49 人在泌乳3 个月之内的257 个乳样,经放射免疫分析或酶联免疫分析发现,IL-1β、IL-6和TNF-α等促炎因子仅在部分样品中发现,并且检测到的含量变化范围很大(IL-1β含量<15~400 pg/mL;IL-6含量<15~1 032 pg/mL;TNF-α含量<15~2 933 pg/mL)。抗炎细胞因子TGF-β1(含量143~7 108 pg/mL)和TGF-β2(含量208~57 935 pg/mL)存在于各个样品中。这可能是由于促炎细胞因子在母体受到感染时含量会增加,用以促进炎症反应,而在这个实验中选取的实验对象都是无炎症母体。

细胞因子为小分子质量的可溶性糖蛋白,以自分泌或旁分泌的形式结合在特定细胞受体上,来控制和协调免疫系统的发展和功能。因此,细胞因子在免疫调节、抗病毒和抗肿瘤等方面有重要作用[62]。傅雯萍等[63]研究比较了早产与足月分娩所分泌的母乳,结果显示,早产母乳中TNF-α的含量显著高于足月产母乳(P<0.05),会给早产儿提供较好的免疫保护作用。新生动物在出生后不久极容易受到感染和败血症的影响,导致较高的发病率和死亡率[64]。同时有研究表明,TGF-β1和TGF-β2可以提高IgA在初乳中的含量,随之发生的是在婴儿血清中IgA的含量也有明显上升[65]。

4.2免疫球蛋白

由于猪和人的胎盘为上皮绒毛膜胎盘,所以免疫球蛋白很少能透过胎盘,导致胎儿出生后体内不会含有母体免疫物质,而乳中含有大量免疫球蛋白,经测定人的初乳中IgA、IgG和IgM的含量分别为1.007、5.807、0.302 mg/mL,常乳中的含量为0.707、0.300、0.003 mg/mL[66-67]。

如果胎儿出生后不能及时吸吮初乳,则在后期发生各种微生物感染性疾病的机率很高。这是由于初乳中的IgA、IgG和IgM进入新生儿的肠道并吸收进入血液后会对新生儿被动免疫反应的生成起到至关重要的作用。IgA、IgG和IgM主要使机体产生天然被动免疫,阻止某些特异性病毒的感染[66]。Hilpert等[68]利用轮状病毒高免牛的含有乳免疫球蛋白浓缩物来治疗婴儿急性轮状病毒胃肠道感染,发现病毒存在于婴儿体内的时间显著减少(P<0.05)。IgA主要抵抗局部感染、共生细菌和食物中的病原[69]。母乳中还含有较多的sIgA,陈瀑等[70]发现,人初乳中含有抵抗轮状病毒、柯萨奇病毒、埃可病毒、腺病毒、呼吸道合胞病毒、幽门螺杆菌、空肠弯曲菌、肠致病性大肠埃希氏菌和沙门氏菌O的sIgA,但在常乳中抵抗柯萨奇病毒、埃可病毒和幽门螺杆菌的sIgA已不存在。

5 结语

母乳作为新生儿最重要的营养、生长、免疫调控物质来源,得到了人们广泛的重视。经过近几十年来的研究,人们仍不能够完全地解析母乳的活性成分及其作用。近几年,母乳对新生动物作用的研究发展极为迅速,随着细胞流式术、糖组学和蛋白质组学等新兴技术在乳糖成分和蛋白质成分等研究方面的应用,母乳中的新物质及其作用不断得以发现和揭示,人们对母乳的生物学功能也会愈加清楚。

[1] BANO G.Glucose homeostasis,obesity and diabetes[J].Best Practice&Research Clinical Obstetrics&Gynaecology,2013,27(5):715-726.

[2] KIM J S,SHINDE P L,YANG Y X,et al.Effects of dietary lactose levels during different starter phases on the performance of weaning pigs[J].Livestock Science,2010,131(2):175-182.

[3] TRAYHURN P,TEMPLE N J,AERDE J V.Evidence from immunoblotting studies on uncoupling protein that brown adipose tissue is not present in the domestic pig[J].Canadian Journal of Physiology and Pharmacology,1989,67(12):1480-1485.

[4] BARROS K V,CARVALHO P O,CASSULINO A P,et al.Fatty acids in plasma,white and red blood cells,and tissues after oral or intravenous administration of fish oil in rats[J].Clinical Nutrition,2013,32(6):993-998.

[5] O’ROURKE E J,PETRIC K,XAVIER R,et al.ω-6Polyunsaturated fatty acids extend life span through the activation of autophagy[J].Genes&Develepment,2013,27:429-44.

[6] L☒NNERDAL B.Biochemistry and physiological function of human milk proteins[J].The American Journal of Clinical Nutrition,1985,42(6):1299-1317.

[7] LIAO Yalin,ALVARADO R,PHINNEY B,et al.Proteomic characterization of human milk whey proteins during a twelve-month lactation period[J].Journal of Proteome Research,2011,10(4):1746-1754.

[8] SHI Yudong, SUN Guoqing, ZHANG Zhiguo, et al. The chemical composition of human milk from Inner Mongolia of China[J]. Food Chemistry, 2011, 127(3): 1193-1198.

[9] WOJCIK K Y, RECHTMAN D J, LEE M L, et al. Macronutrient analysis of a nationwide sample of donor breast milk[J]. Journal of the American Dietetic Association, 2009, 109(1): 137-140.

[10] YAMAWAKI N, YAMADA M, KAN-NO T, et al. Macronutrient, mineral and trace element composition of breast milk from Japanese women[J]. Journal of Trace Elements in Medicine and Biology, 2005, 19(2): 171-181.

[11] HARTMANN B T, PANG W W, KEIL A D, et al. Best practice guidelines for the operation of a donor human milk bank in an Australian NICU[J]. Early Human Development, 2007, 83(10): 667-673.

[12] KIM S W, BRANDHERM M, FREELAND M, et al. Effects of yeast culture supplementation to gestation and lactation diets on growth of nursing piglets[J]. Asian-Australasian Journal of Animal Sciences, 2008, 21(7): 1011-1014.

[13] RAYNAL-LJUTOVAC K, LAGRIFFOUL G, PACCARD P, et al. Composition of goat and sheep milk products: an update[J]. Small Ruminant Research, 2008, 79(1): 57-72.

[14] MARKIEWICZ-KĘSZYCKA M, WÓJTOWSKI J, KUCZYŃSKA B, et al. Chemical composition and whey p rotein fraction of late lactation mares’ milk[J]. International Dairy Journal, 2013, 31(2): 62-64.

[15] WEISBJERG M R, LARSEN M K, HYMLLER L, et al. Milk production and composition in Danish Holstein, Danish Red, and Danish Jersey cows supplemented with saturated or unsaturated fat[J]. Livestock Science, 2013,155(1): 60-70.

[16] READ L C, UPTON F M, FRANCIS G L, et al. Changes in the growth-promoting activity of human milk during lactation[J]. Pediatric Research, 1984, 18(2): 133-139.

[17] BEARDMORE J M, RICHARDS R C. Concentrations of epidermal growth factor in mouse milk throughout lactation[J]. The Journal of Endocrinology, 1983, 96(2): 287-292.

[18] XU R, WANG F, ZHANG S H. Postnatal adaptation of the gastrointestinal tract in neonatal pigs: a possible role of milk-borne growth factors[J]. Livestock Production Science, 2000, 66(2): 95-107. [19] OZGURTAS T, AYDIN I, TURAN O, et al. Vascular endothelial growth factor, basic fibroblast growth factor, insulin-like growth factor-Ⅰ and platelet-derived growth factor levels in human milk of mothers with term and preterm neonates[J]. Cytokine, 2010, 50(2): 192-194.

[20] DONOVAN S M, HARTKE J L, MONACO M H, et al. Insulin-like growth factor-Ⅰ and piglet intestinal development[J]. Journal of Dairy Science, 2004, 87: E47-E54.

[21] CASTIGLIEGO L, LI X, ARMANI A, et al. An immunoenzymatic assay to measure insulin-like growth factor 1 (IGF-1) in buffalo milk with an IGF binding protein blocking pre-treatment of the sample[J]. International Dairy Journal, 2011, 21(6): 421-426.

[22] HAWKES J S, BRYAN D L, JAMES M J, et al. Cytokines (IL-1β, IL-6, TNF-α, TGF-β1, and TGF-β2) and prostaglandin E2 in human milk during the fi rst three months postpartum[J]. Pediatric Research, 1999, 46(2): 194-199.

[23] NGUYEN T V, YUAN L, AZEVEDO M S P, et al. Transfer of maternal cytokines to suckling piglets: in vivo and in vitro models with implications for immunomodulation of neonatal immunity[J]. Veterinary Immunology and Immunopathology, 2007, 117(3): 236-248.

[24] OLLIKAINEN P, MUURONEN K. Determination of insulin-like growth factor-1 and bovine insulin in raw milk and its casein and whey fractions after microfi ltration and ultrafi ltration[J]. International Dairy Journal, 2013, 28(2): 83-87.

[25] KROENING T A, MUKERJI P, HARDS R G. Analysis of beta-casein and its phosphoforms in human milk[J]. Nutrition Research, 1998, 18(7): 1175-1186.

[26] RAMÍREZ-PALOMINO P, FERNÁNDEZ-ROMERO J M, GÓMEZHENS A. Rapid chromatographic determination of caseins in milk with photometric and fluorimetric detection using a hydrophobic monolithic column[J]. Food Chemistry, 2014, 142: 249-254.

[27] TORKELSON A R, DWYER K A, ROGAN G J, et al. Radioimmunoassay of somatotropin in milk from cows administered recombinant bovine somatotropin[J]. Journal of Dairy Science, 1987, 70(Suppl 1): 146.

[28] MOLIK E, MISZTAL T, ROMANOWICZ K, et al. Short-day and melatonin effects on milking parameters, prolactin profi les and growthhormone secretion in lactating sheep[J]. Small Ruminant Research, 2012, 109(2): 182-187.

[29] COHEN S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal[J]. Journal of Biological Chemistry, 1962, 237(5): 1555-1562.

[30] KLAGSBRUN M. Human milk stimulates DNA synthesis and cellular proliferation in cultured fibroblasts[J]. Proceedings of the National Academy of Sciences, 1978, 75(10): 5057-5061.

[31] DVORAK B. Milk epidermal growth factor and gut protection[J]. The Journal of Pediatrics, 2010, 156(Suppl 2): 31-35.

[32] XU Ruojun. Development of the newborn GI tract and its relation to colostrum/milk intake: a review[J]. Reproduction, Fertility and Development, 1996, 8(1): 35-48.

[33] HÅRD A L, SMITH L E, HELLSTRÖM A. Nutrition, insulin-like growth factor-1 and retinopathy of prematurity[C]//Seminars in Fetal and Neonatal Medicine. Philadelphia: WB Saunders, 2013: 136-142.

[34] BAKER J, LIU J P, ROBERTSON E J, et al. Role of insulin-like growth factors in embryonic and postnatal growth[J]. Cell, 1993, 75(1): 73-82.

[35] TREJO J L, CARRO E, TORRES-ALEMÁN I. Circulating insulinlike growth factorⅠ mediates exercise-induced increases in the number of new neurons in the adult hippocampus[J]. The Journal of Neuroscience, 2001, 21(5): 1628-1634.

[36] MONNIER L, COLETTE C, OWENS D. Basal insulin analogs: from pathophysiology to therapy. What we see, know, and try to comprehend?[J]. Diabetes & Metabolism, 2013, 39(6): 468-476.

[37] SHEN Weihua, XU Ruojun. Gastrointestinal stability and absorption of insulin in suckling pigs[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2000, 125(3): 389-401.

[38] SUKHOTNIK I, SHEHADEH N, MOGILNER J, et al. Benefi cial effects of oral insulin on intestinal recovery following ischemia-reperfusion injury in rat[J]. Journal of Surgical Research, 2005, 128(1): 108-113.

[39] AMIRAM M, LUGINBUHL K M, LI X, et al. A depot-forming glucagon-like peptide-1 fusion protein reduces blood glucose for fi ve days with a single injection[J]. Journal of Controlled Release, 2013, 172(1): 144-151.

[40] ZHAN Yi, SUN Huilin, CHEN Hong, et al. Glucagon-like peptide-1 (GLP-1) protects vascular endothelial cells against advanced glycation end products (AGEs)-induced apoptosis[J]. Medical Science Monitor Basic Research, 2012, 18(7): 286-291.

[41] VILSBLL T, CHRISTENSEN M, JUNKER A E, et al. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials[J]. British Medical Journal, 2012, 344. doi: 10.1136/bmj.d7771.

[42] GUAN X, KARPEN H E, STEPHENS J, et al. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow[J]. Gastroenterology, 2006, 130(1): 150-164.

[43] DRUCKER D J. Mini review: the glucagon-like peptides[J]. Endocrinology, 2001, 142(2): 521-527.

[44] PETERSEN Y M, HARTMANN B, HOLST J J, et al. Introduction of enteral food increases plasma GLP-2 and decreases GLP-2 receptor mRNA abundance during pig development[J]. The Journal of Nutrition, 2003, 133(6): 1781-1786.

[45] DENIZ M, BOZKURT A, KURTEL H. Mediators of glucagon-like peptide 2-induced blood fl ow: responses in different vascular sites[J]. Regulatory Peptides, 2007, 142(1): 7-15.

[46] KAJI T, TANAKA H, REDSTONE H, et al. Temporal changes in the intestinal growth promoting effects of glucagon-like peptide 2 following intestinal resection[J]. Journal of Surgical Research, 2009, 152(2): 271-280.

[47] KLATT N R, FUNDERBURG N T, BRENCHLEY J M. Microbial translocation, immune activation, and HIV disease[J]. Trends in Microbiology, 2013, 21(1): 6-13.

[48] SAHL J W, MATALKA M N, RASKO D A. Phylomark, a tool to identify conserved phylogenetic markers from whole-genome alignments[J]. Applied and Environmental Microbiology, 2012, 78(14): 4884-4892.

[49] FERNÁNDEZ L, LANGA S, MARTÍN V, et al. The human milk microbiota: origin and potential roles in health and disease[J]. Pharmacological Research, 2013, 69(1): 1-10.

[50] PETHERICK A A. Development: mother’s milk: a rich opportunity[J]. Nature, 2010, 468: S5-S7.

[51] HARMSEN H J M, WILDEBOER-VELOO A C M, RAANGS G C, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identifi cation and detection methods[J]. Journal of Pediatric Gastroenterology and Nutrition, 2000, 30(1): 61-67.

[52] FALLANI M, YOUNG D, SCOTT J, et al. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics[J]. Journal of Pediatric Gastroenterology and Nutrition, 2010, 51(1): 77-84.

[53] RINNE M, KALLIOMAKI M, ARVILOMMI H, et al. Effect of probiotics and breastfeeding on the Bifi dobacterium and Lactobacillus/ Enterococcus microbiota and humoral immune responses[J]. The Journal of Pediatrics, 2005, 147(2): 186-191.

[54] HAN N S, KIM T J, PARK Y C, et al. Biotechnological production of human milk oligosaccharides[J]. Biotechnology Advances, 2012, 30(6): 1268-1278.

[55] SELA D A, MILLS D A. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides[J]. Trends in Microbiology, 2010, 18(7): 298-307.

[56] GONZÁLEZ R, KLAASSENS E S, MALINEN E, et al. Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide[J]. Applied and Environmental Microbiology, 2008, 74(15): 4686-4694.

[57] KOENIG J E, SPOR A, SCALFONE N, et al. Succession of microbial consortia in the developing infant gut microbiome[J]. Proceedings of the National Academy of Sciences, 2011, 108(Suppl 1): 4578-4585.

[58] LI M, BAUER L L, CHEN X, et al. Microbial composition and in vitro fermentation patterns of human milk oligosaccharides and prebiotics differ between formula-fed and sow-reared piglets[J]. The Journal of Nutrition, 2012, 142(4): 681-689.

[59] PENDERS J, THIJS C, VINK C, et al. Factors influencing the composition of the intestinal microbiota in early infancy[J]. Pediatrics, 2006, 118(2): 511-521.

[60] LEBOUDER E, REY-NORES J E, RUSHMERE N K, et al. Soluble forms of toll-like receptor (TLR) 2 capable of modulating TLR2 signaling are present in human plasma and breast milk[J]. The Journal of Immunology, 2003, 171(12): 6680-6689.

[61] 杨静静, 庞广昌. 母乳中免疫成分及其对婴儿免疫发育作用的研究进展[J]. 食品科学, 2006, 27(10): 641-643.

[62] ZANARDO V, NICOLUSSI S, CAVALLIN S, et al. Effect of maternal smoking on breast milk interleukin-1α, β-endorphin, and leptin concentrations[J]. Environmental Health Perspectives, 2005, 113(10): 1410-1413.

[63] 傅雯萍, 常桂珍, 李亚蕊. 初乳中免疫活性细胞及TNF-α的测量研究[J].中华围产医学杂志, 2000, 3(3): 169-171.

[64] OMOREGIE R, EGBE C A, DIRISU J, et al. Microbiology of neonatal septicemia in a tertiary hospital in Benin City, Nigeria[J]. Biomarkers and Genomic Medicine, 2013, 5(4): 142-146.

[65] OGAWA J, SASAHARA A, YOSHIDA T, et al. Role of transforming growth factor-β in breast milk for initiation of IgA production in newborn infants[J]. Early Human Development, 2004, 77(1): 67-75.

[66] SMILOWITZ J T, TOTTEN S M, HUANG J, et al. Human milk secretory immunoglobulin A and lactoferrin N-glycans are altered in women with gestational diabetes mellitus[J]. The Journal of Nutrition, 2013, 143(12): 1906-1912.

[67] HURLEY W L. Immunoglobulins in mammary secretions[M]// Advanced dairy chemistry-1 proteins. New York: Springer US, 2003: 421-447.

[68] HILPERT H, BRIISSOW H, MIETENS C, et al. Use of bovine milk concentrate containing antibody to rotavirus to treat rotavirus gastroenteritis in infants[J]. Journal of Infectious Diseases, 1987, 156(1): 158-166.

[69] 李杨, 庞广昌, 于立琴. 牛初乳中的IgG对肠黏膜免疫系统调节的初步研究[J]. 食品科学, 2009, 30(17): 297-301.

[70] 陈瀑, 谢建渝, 杨致邦, 等. 人母乳中分泌型免疫球蛋白A的抗体特异性分析[J]. 中国微生态学杂志, 2009, 21(3): 235-238.

Progresses in Biological Functions of Maternal Milk

MA Shouqing,BIAN Gaorui,ZHU Weiyun*
(Laboratory of Gastrointestinal Microbiology,College of Animal Science and Technology,Nanjing Agricultural University,Nanjing210095,China)

This article mainly focus on the functions of maternal milk factors like nutritional substances,growth factors,immune factors and other bioactive substances on newborn animals and elaborates the possible mechanisms of these functions.These factors play important roles in nutrition,growth promotion,immune system and microflora regulation.We elucidate the critical functions of material milk as well as discuss the effect of deficiency of one or more specific active factors on newborn animals by comparison between breasted and non-breasted newborn animals.Even though considerable knowledge is available about milk,more functions of milk and new substances remain to be discovered.

maternal milk;nutritional function;growth-promoting function;immune function;microflora regulation

F416.82

A

1002-6630(2015)05-0233-06

10.7506/spkx1002-6630-201505043

2014-04-09

欧盟第7框架项目(FP7-KBBE-2008-2B);科技部中国-欧盟科技合作项目(1008)

马守庆(1989—),男,硕士研究生,主要从事消化道微生物研究。E-mail:2013105048@njau.edu.cn

朱伟云(1962—),女,教授,博士,主要从事消化道微生物研究。E-mail:zhuweiyun@njau.edu.cn

猜你喜欢

高血糖素区系初乳
基于品管圈的多学科联合干预策略在早产儿初乳喂养中的应用
赣粤地区蕨类植物区系新资料
用初乳进行口腔免疫护理对早产极低出生体重儿的影响
早期初乳口腔内滴注对极低出生体重早产儿喂养管理的影响
胰高血糖素样肽1及其受体激动剂在支气管哮喘治疗中的研究进展
内蒙古灌木植物多样性及其区系分析
犊牛饲喂初乳好处多
2型糖尿病应用胰高血糖素样肽-1受体激动剂治疗的效果探讨
空腹及糖负荷后胰高血糖素水平与代谢综合征的相关性研究
不同施肥处理对农田土壤微生物区系和功能的影响