新课程高中数学必修教学中系统研究疑难问题的思考
2015-09-10牛淑琴
牛淑琴
一、课题研究的意义
高中数学新课程改革从试点到全国已全面展开,随着高中新课程改革的推进,甘肃省也成为其中一员.在新一轮课程改革如火如荼地进行中,很多从事数学教育的工作者积极投身到了这场改革的浪潮中.由于新教材对原有的数学知识体系进行了调整,对原有的繁难问题进行了删减,对学生难以理解的重点内容进行了分散处理,为了让高中新课程改革与高考有效衔接与匹配,教学中优化课堂教学结构,增强教学效果,就成为新课程标准实施的关键.
高中数学很多地方难度大、方法新、分析能力要求高,在学生学习过程中,不论是基础知识的形成,还是基本技能的掌握,或者是基本能力的培养,都会遇到很多疑难问题.这些疑难易错问题,如果不及时解决,就会极大地阻碍思维的发展,从而挫伤学生的自信心.学好高中数学,在高考中取得好成绩的关键之一是解决好学习中的疑难易错问题,所以强化学生解决疑难、归纳整理的能力尤为重要.
通过近几年的教学和反思,为了帮助学生有效克服学习障碍,减少学习过程中的“无用功”,确保高考时“胸中自有雄兵百万”,也为了使数学课堂教学中教师准确把握教学重点,突破难点,详略得当,确保较高的课堂教学效率,针对高中阶段遇到的疑难和易错问题进行总结归纳和分析,是减负增效的一种有效途径.
目前国内中学数学教育研究关于这方面的思考相对来说较多,但以初中阶段研究居多,高中阶段较少.新课标背景下要求增强课改意识,转变教学观念,但高考升学仍然看分数,所以人们会更多地关注这些能够直接提高成绩的解题技巧、化归演绎等,学生和教师也很重视整理和归纳疑难易错题,但许多都很零散,不成体系,而且与新课标内容不相匹配.又因为各省所用资料各不相同,许多省份高考自主命题,符合新课标教材且甘肃考生适用的很少,至于这一课题研究最终对甘肃考生成资料性、适用性、推广性的研究的文章也较少,为了使新课程改革与高考融合得更深入,我们很有必要对新课标人教A版高中数学必修1到必修5内容遇到的疑难和易错问题进行系统全面的总结归纳和分析.
二、课题研究的主要内容及重、难点
学生学习中常见的错误主要有:1.知识性错误:数学概念理解错误,公式应用错误,定理、性质应用错误等;2.数学方法应用性错误:思维定性、以偏概全、审题中忽视隐含条件的数学思维等.前车之覆后车之鉴,教师授课时要强化学生数学解题过程中的错误警戒意识,使得课堂内容重点突出、针对性更强,使学生形成严谨的数学思维习惯,能有效构建数学解题过程中常见性错误的“错题库”,达到让学生跳出题海,轻松而高效地学习数学的目的.同时针对高考中常见的易错、易混、易忘典型题目系统地整理出来,疑难问题集中攻克,易错问题及时纠正,学生面对高考也心中有数,手中有法,自然在高考时能考出优异成绩.
三、课题研究的思路及方法
1.在课堂教学中将遇到学生不易于理解的知识点和课后学生反馈的问题,在考试中容易出错的典型问题整理出来,经过教研讨论,形成更好、更科学的授课思路,让学生理解、接受、消化、吸收.如:
例1:(2010.天津)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )
A.若f(x)是偶函数,则f(-x)是偶函数
B.若f(x)不是奇函数,则f(-x)不是奇函数
C.若f(-x)是奇函数,则f(x)是奇函数
D.若f(-x)不是奇函数,则f(x)不是奇函数
【解题探究】本题重点关注:(1)要求的是“否命题”而非“命题的否定”;(2)注意“奇函数”的否定对象是什么?
【规范解答】选B.因为否命题是既否定题设,又否定结论,而奇函数的否定不是偶函数,而是“不是奇函数”,所以否命题应为“若f(x)不是奇函数,则f(-x)不是奇函数”.
【误区警示】知识性错误.
本题为由原命题确定否命题,在本题中易将否命题误认为命题的否定,或将奇函数的否定误认为是偶函数,从而导致错选,这类问题,常见的误区有:
(1)不能正确区分命题的否定与否命题;
(2)将条件或结论的否定搞错.
例2:若抛物线y=ax-1上恒有关于直线x+y=0对称的相异两点A,B,则a的取值范围是?摇 ?摇.
【解题探究】(1)直线AB的方程必为y=x+b,根据点A,B关于直线x+y=0对称,用参数a表示出b,根据直线与抛物线相交于不同两点建立关于参数a的不等式;(2)求出抛物线斜率为1的平行弦中点的轨迹方程,利用这个轨迹方程与直线x+y=0的交点在抛物线内部建立关于参数a的不等式.
【规范解答】解法一:设抛物线上的两点为A(x,y),B(x,y),AB的方程为y=x+b,代入抛物线方程y=ax-1,得ax-x-(b+1)=0.设AB的中点为M(x,y),则x=,y=x+b=+b.由于M(x,y)在直线x+y=0上,故x+y=0,由此得b=-,此时ax-x-(b+1)=0变为ax-x-(-+1)=0.由△=1+4a(-+1)>0,解得a>.故填a>.
解法二:根据点差法,不难求出抛物线y=ax-1的斜率为1的平行弦中点的轨迹方程是x=.当a>0时,y>-1;当a<0时,y<-1.将x=与x+y=0联立,得满足条件的AB中点M的坐标是(,-).当a>0时,->-1,解得a>;当a<0时,-<-1,此时无解.综上知,a>.故填a>.
【误区警示】圆锥曲线上存在不同的两点关于某条直线对称,试确定圆锥曲线中或者直线中的某个参数的取值范围,这是圆锥曲线中的一个难点.化解这个难点的方法有两种:一是利用两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上,写出用参数表达的直线方程,利用直线与圆锥曲线有两个不同的交点,由判别式大于0列出关于参数的不等式解决;二是利用圆锥曲线上与对称轴垂直的平行弦中点的轨迹与对称轴的交点在圆锥曲线内部,列出关于参数的不等式解决.
2.各章以疑难易错问题为主线,注重分析解决问题的思路和学生学习能力的发展,通过解决常见疑难易错问题这一平台,揭示解决问题的通性通法.学生对于纠错本可以进行如下使用:(1)分门别类,系统整理;(2)深入分析,找出“病根”;(3)常翻常看,温故知新;(4)分析归纳,总结方法,举一反三.
3.启发和引导学生学习类比、推广、特殊化、化归等数学思考的常用逻辑方法,使学生学会数学思考与推理,不断提高数学思维能力,培养起更浓厚的数学学习兴趣.