APP下载

青藏高原拉萨地体北部早白垩世火山岩的成因及意义*

2015-07-21丁慧霞张泽明向华祁敏苟正彬雷恒聪

岩石学报 2015年5期
关键词:安山玄武岩锆石

丁慧霞 张泽明** 向华 祁敏 苟正彬 雷恒聪

1.中国地质科学院地质研究所,大陆构造与动力学国家重点实验室,北京 100037

2.中国地质大学地球科学与资源学院,北京 100083

1 引言

喜马拉雅-青藏高原造山带作为世界上最年轻、最壮观的大陆碰撞造山带,受到了地质学者的广泛关注(Yin and Harrison,2000)。位于青藏高原南部的拉萨地体(图1a),不仅经历了新生代印度与欧亚大陆的碰撞造山作用(Yin and Harrison,2000;Kapp et al.,2007;Mo et al.,2008;Chen et al.,2010;Tan et al.,2010;Hébert et al.,2012),还经历了与新特提斯洋俯冲有关的安第斯型造山作用(Maluski et al.,1982;Allègre et al.,1984;Coulon et al.,1986;Copeland et al.,1995;Yin and Harrison,2000;Zhu et al.,2009a),是研究大陆弧与大陆碰撞造山带的典型地区。现有拉萨地体的大多数研究多侧重于新生代的变形、变质、岩浆作用以及造山作用,为了解和认识新生代的碰撞造山作用过程及青藏高原的隆升机制提供了重要信息。但其在印度与欧亚大陆碰撞之前的地质演化历史还没有得到很好的约束。

图1 青藏高原地质简图(a,据Zhu et al.,2008)和研究区地质简图(b)Fig.1 Simplified geological map of the Tibetan Plateau (a,after Zhu et al.,2008)and geological map of the studied area(b)

白垩纪时期的岩浆岩在拉萨地体广泛分布(Zhu et al.,2009b,2011;Ma et al.,2013),了解它们的成因和地球动力学背景可以为拉萨地体在新生代碰撞之前的演化历史提供信息。但是它们的成因机制还存在争议,主要有以下几种模型:(1)新特提斯洋岩石圈板片北向俯冲(Coulon et al.,1986;Wen et al.,2008;Zhu et al.,2009a;Zhang et al.,2012;Jiang et al.,2012;Ma et al.,2013;Jiang et al.,2014)、(2)新特提斯洋脊俯冲(Zhang et al.,2010b;管琪等,2010;Guo et al.,2013)、(3)班公-怒江洋南向俯冲(Zhu et al.,2009b,2011;张亮亮等,2010;Sui et al.,2013;Chen et al.,2014;Wu et al.,2014,2015)、(4)新特提斯洋脊俯冲导致的弧后伸展(Meng et al.,2014)以及(5)拉萨地体与羌塘地体碰撞引起加厚地壳的熔融(Xu et al.,1985;Pearce and Houjun,1988;Chiu et al.,2009)。本文对拉萨地体北部早白垩世晚期的基性-酸性火山岩进行了岩石学、锆石U-Pb年代学以及Hf 同位素的研究,并探讨了它们的成因和动力学模式,其成果为拉萨地体在印度与欧亚大陆碰撞之前的构造演化提供了制约。

2 区域地质背景和样品特征

青藏高原是由多块体组成的(Yin and Harrison,2000;Tapponnier et al.,2001;莫宣学等,2006),从北到南依次为:松潘-甘孜杂岩,羌塘地体,拉萨地体和喜马拉雅带,它们之间分别为金沙江、班公湖-怒江和雅鲁藏布江缝合带(图1a)。

作为青藏高原重要组成部分的拉萨地体,东西长2500km,南北宽100~300km,并被分为北拉萨地体、中拉萨地体及南拉萨地体3 个部分(图1a)(Pan et al.,2004;Zhu et al.,2012)。北拉萨地体由中三叠-白垩纪的沉积岩、大量早白垩世的火山岩和火山-沉积地层,以及白垩纪的花岗岩岩基组成(Pan et al.,2004;Zhu et al.,2011,2012)。中拉萨地体由前寒武纪的结晶基底(Lin et al.,2013;Xu et al.,2013)、寒武纪-二叠纪的沉积岩、晚侏罗世-早白垩世含丰富火山岩的沉积地层组成(Liu et al.,2004;Pan et al.,2004;Zhu et al.,2012;Chen et al.,2014),局部还有中、新生代的变质岩(Kapp et al.,2005;Dong et al.,2011a,b)。南拉萨地体以存在新生地壳(Mo et al.,2008;Ji et al.,2009;Zhu et al.,2011)和少量前寒武纪的结晶基底(Zhu et al.,2012)为特征,主要由白垩纪-第三纪的冈底斯岩基、第三纪的林子宗火山岩及少量在东部地区出露的三叠纪-白垩纪的火山-沉积岩组成(Pan et al.,2004;Zhu et al.,2012)。

研究区位于申扎县东约50km 的扎扛附近,构造上位于中拉萨地体北部(图1b)。研究区出露一套奥陶纪-早白垩世的地层,古生代地层为连续沉积地层,所研究的早白垩世地层与古生代石炭纪地层呈断层接触。区域上,白垩纪地层与晚古生代地层呈断层或不整合接触(Coulon et al.,1986;潘桂棠等,2006;朱弟成等,2008b;Chen et al.,2014)。研究区白垩纪地层由流纹岩、粗面英安岩、火山碎屑岩、砂岩及少量安山玄武岩组成。所研究的白垩纪火山岩包括安山玄武岩、粗面英安岩和流纹岩。安山玄武岩呈斑状结构,斑晶为斜长石和辉石,基质呈间隐间粒结构,细小的板条状斜长石搭成格架、内充填玻璃(已脱玻化为长英质矿物)及微粒状矿物(辉石和磁铁矿),基质中的辉石已部分蚀变为绿泥石(图2a)。粗面英安岩为斑状结构,斑晶为斜长石,基质为石英、黑云母及斜长石,斜长石无规则排列,可见双晶及环带结构(图2b)。流纹岩为斑状结构,斑晶为石英和斜长石,石英多被熔蚀,周围常见球粒环绕,球粒由放射状长英质矿物组成,基质由细小的长石、石英及少量由放射状长英质矿物组成的球粒组成(图2c,d)。

图2 火山岩显微镜下照片(a)安山玄武岩样品;(b)粗面英安岩样品;(c、d)流纹岩Fig.2 Photomicrographs of the studied volcanics(a)andesitic basalt;(b)trachydacite;(c,d)rhyolite

3 分析方法

锆石U-Pb 同位素定年在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。测试仪器为LA-ICP-MS,激光剥蚀系统为GeoLas 2005,ICP-MS 为Agilent 7500a。激光剥蚀斑束直径为32μm,激光剥蚀深度为20~40μm。对分析数据的离线处理采用软件ICPMSDataCal 完成。详细的仪器操作条件见Liu et al.(2010),同位素数据结果处理使用ISOPLOT 软件(Ludwig,2003)完成。

锆石Hf 同位素测试在中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室Neptune 多接收等离子质谱和Newwave UP213 紫外激光剥蚀系统LA-MCICP-MS 上进行,分析采用的激光束斑直径为55μm。实验过程中采用氦气作为剥蚀物质载气,锆石标准GJ-1 作为参考,锆石Lu-Hf 同位素测试点位于锆石U-Pb 年龄测试点附近,采样方式为单点剥蚀。相关仪器运行条件及详细分析流程见侯可军等(2007)。分析过程中锆石标准GJ-1 的176Hf/177Hf 测试加权平均值为0.282008 ± 25,与Elhlou et al.(2006)及侯可军等(2007)所报道的参考值在误差范围内一致。

所选的地球化学样品是在详细的野外地质研究的基础上,选择无脉体、无蚀变(或蚀变弱)的样品。样品无污染地粉碎至200 目以下。全岩化学成分分析在国家地质实验测试中心完成。主量元素分析采用X-ray 荧光光谱法(Rigaku-3080),分析精度优于0.5%。微量元素Zr、Nb、V、Cr、Sr、Ba、Zn、Ni、Rb 和Y 使 用 与 测 试 主 量 元 素 不 同 的XRF 设 备(Rigaku-2100)进行分析,分析精度优于3%~5%。其他微量元素和稀土元素使用电感藕合等离子体质谱进行分析,当元素含量大于1 ×10-6时,分析精度优于1%~5%,当元素含量小于1 ×10-6时,分析精度优于5%~10%。

4 锆石U-Pb 年代及Hf 同位素特征

4.1 锆石U-Pb 年代

3 个粗面英安岩和7 个流纹岩的锆石LA-ICP-MS 定年结果见表1,U-Pb 谐和图和代表性锆石的阴极发光图像见图3。

粗面英安岩中的锆石为无色透明,自形-半自形短柱状,长约50~120μm,长宽比约1∶1~2.2∶1。阴极发光图像显示,锆石具典型的韵律环带(图3a-c),属于岩浆结晶成因。锆石的Th/U 比值为0.41~1.60(表1),也显示出岩浆成因锆石的特征(Hoskin and Schaltegger,2003;Corfu et al.,2003;吴元保和郑永飞,2004)。3 个样品获得了近一致的锆石U-Pb 年龄,分别为109.9 ±0.9Ma、110.2 ±1.1Ma 和109.2 ±0.9Ma(图3a-c)。

图3 粗面英安岩和流纹岩的锆石U-Pb 谐和图及代表性锆石阴极发光图像圆圈为U-Pb 年龄和Hf 同位素分析点Fig.3 Zircon U-Pb age concordia plots of the studied trachydacites and rhyolites,showing CL images of the representing zircon grainsThe circles indicate the locations of U-Pb dating and Hf isotopic analyses

表1 粗面英安岩与流纹岩LA-ICPMS 锆石U-Pb 定年结果Table 1 LA-ICPMS zircon U-Pb data of the trachydacites and rhyolites

续表1Continued Table 1

续表1Continued Table 1

续表1Continued Table 1

图4 粗面英安岩与流纹岩的锆石εHf(t)与U-Pb 年龄图Fig.4 Plots of εHf(t)versus zircon U-Pb ages of the studied trachydacites and rhyolites

图5 岩石主量与微量元素成分图(a)SiO2-Zr/TiO2图(据Winchester and Floyd,1977);(b)Th-Co 图(据Hastie et al.,2007);(c)Fe-number[Fe2O3T/(Fe2O3T +MgO)]-SiO2图解(修改自Frost et al.,2001;Rajesh,2007);(d)(Na2O+K2O-CaO)-SiO2图解(据Frost et al.,2001)Fig.5 Compositional variation diagrams of the studied rocks(a)SiO2 vs.Zr/TiO2(after Winchester and Floyd,1977);(b)Th vs.Co (after Hastie et al.,2007)diagrams;(c)Fe-number[Fe2O3T/(Fe2 O3T +MgO)]vs.SiO2(modified after Frost et al.,2001;Rajesh,2007);(d)modified alkali lime index (MALI)(Na2O+K2O-CaO)vs.SiO2 plots (after Frost et al.,2001)

流纹岩中的锆石为浅黄色-无色,自形短柱-长柱状,长约50~200μm,长宽比约1∶1~4∶1,可见韵律环带(图3d-j),属于岩浆结晶成因。锆石的Th/U 比值为0.29~1.76(大多为0.45~0.90)(表1),也显示出岩浆成因锆石的特征。7个样品获得的锆石U-Pb 年龄近于一致,分别为106.1 ±0.8Ma、107.9 ±0.8Ma、109.1 ±0.8Ma、108.3 ±0.4Ma、108.2±1.0Ma、107.7 ±0.7Ma 和109.6 ±0.9Ma(图3d-j)。

4.2 Hf 同位素特征

粗面英安岩和流纹岩中代表性锆石原位Hf 同位素分析结果见表2。3 个粗面英安岩中锆石的34 个分析点获得的(176Hf/177Hf)i值为0.282422~0.282812,εHf(t)为-10.2~+3.7(图4),相对应的Hf 二阶段模式年龄(tDM2)为923~1799Ma。7 个流纹岩中锆石的108 个分析点获得的(176Hf/177Hf)i值为0.282465~0.282908,εHf(t)为-8.7~+6.7(图4),相应的Hf 二阶段模式年龄(tDM2)为708~1702Ma。

5 岩石化学

所研究的安山玄武岩样品及1 个粗面英安岩样品具有高的CO2和H2O 含量(表3),表明这些样品很可能经历了蚀变作用。因此在对这些样品进行岩石分类和成因讨论中没有使用易活动元素(如Rb、Ba、Sr、Na、K 等),并将主量元素含量去CO2和H2O 后换算到100%。在SiO2-Zr/TiO2图上,所研究的岩石分别落入安山岩、英安岩与粗面岩和碱性流纹岩过渡区、以及流纹岩区(图5a)。综合显微镜下观察结果,我们认为所研究的岩石应分别为安山玄武岩、粗面英安岩和流纹岩。

续表2Continued Table 2

表3 全岩化学成分分析结果表(主量元素:wt%;稀土和微量元素:×10 -6)Table 3 Chemical compositions of the studied rocks (major elements:wt%;trace elements:×10 -6)

图6 岩石原始地幔标准化微量元素蛛网图(a、c、e)和球粒陨石标准化稀土元素模式图(b、d、f)(标准化值据Sun and McDonough,1989)Fig.6 Primitive mantle-normalized trace element patterns (a,c,e)and chondrite-normalized REE patterns (b,d,f)of the studied rocks (normalized values after Sun and McDonough,1989)

安山玄武岩的SiO2、TiO2、Al2O3、MgO、Cr 和Ni 含量以及Mg#分别为51.42%、1.40%、16.33%、5.67%、87.4 ×10-6、38.5 ×10-6和57,为钙碱性岩石(图5b)。在微量元素原始地幔标准化模式图上,安山玄武岩富集Th、U 和Pb,且具有Nb 和Ta 负异常的特征(图6a)。在稀土元素球粒陨石标准化模式图上,安山玄武岩的稀土元素配分曲线表现为较缓的右倾曲线(图6b),轻重稀土元素分馏不明显((La/Yb)N=3.17),Eu 负异常不明显(δEu 为0.93)。

粗面英安岩的SiO2、TiO2和Al2O3含量分别为62.56%~67.92%、0.41%~0.63%、14.66%~15.13%,具有较低的MgO(0.33%~0.61%)、Cr(1.44 ×10-6~10.1 ×10-6)和Ni(0.35 ×10-6~2.50 ×10-6)含量及Mg#(13~14),较高的K2O(3.15%~4.79%)和Zr 含量(365 ×10-6~567 ×10-6)。岩石的铝饱和指数(A/CNK)为0.95~1.13,为偏铝-过铝质岩石。在Frost et al.(2001)提出的花岗质岩石分类图解上,岩石为铁质(图5c)和碱钙性-碱性岩石(图5d)。在微量元素原始地幔标准化模式图上,粗面英安岩富集Th、U、Pb、Zr和Hf,且具有Nb、Ta、P 和Ti 负异常的特征(图6c)。在稀土元素球粒陨石标准化模式图上,所研究岩石的轻重稀土元素分馏明显((La/Yb)N=7.11~9.41),表现为明显富集轻稀土,重稀土相对平坦,具弱的正Eu 异常(δEu 为1.11~1.19)(图6d)。

流纹岩具有较高的SiO2(75.19%~77.87%)和K2O(3.93%~5.26%)含量及高的K2O/Na2O(0.91~1.58)、分异指数(DI 为96~98)和铝饱和指数(A/CNK 为0.99~1.19),为高分异的偏铝-过铝质岩石。基于Frost et al.(2001)提出的花岗质岩石分类图解,所研究的岩石为铁质(除1 个样品为镁质)(图5c)和钙碱性-碱钙性岩石(图5d)。在微量元素原始地幔标准化模式图上,流纹岩样品富集Rb、Th、U、K、Pb、Zr 和Hf,且具有强烈Ba、Nb、Ta、Sr、P、Eu 和Ti负异常的特征(图6e)。在稀土元素球粒陨石标准化模式图上,流纹岩具有弱-明显的轻重稀土元素分馏特征((La/Yb)N=2.39~6.83),Eu 负异常明显(δEu 为0.02~0.08;图6f)。

6 岩石成因

6.1 安山玄武岩

由于研究区多为第四纪覆盖,致使在野外调查时难以观察到不同岩石之间的相互关系。但Zhu et al.(2009b)对区域上白垩纪火山岩的研究表明,酸性岩产于上部,而基性岩产于下部。Chen et al.(2014)认为研究区附近的玄武岩具有与同时期中、酸性岩相似的年龄。因此,我们推测所研究的安山玄武岩与粗面英安岩和流纹岩也应具有相同的结晶年龄,为早白垩世晚期。所研究的安山玄武岩与Chen et al.(2014)所报道的研究区附近同时期的玄武岩具有相似的地球化学特征(图5b、图6a,b),表明它们可能具有相似的源区,因此将其与所研究的安山玄武岩一并讨论。

所研究的安山玄武岩和同时代的邻区玄武岩具有较高的Sm/Yb 和La/Sm 值,明显高于地幔值(Aldanmaz et al.,2000),且与石榴石+ 尖晶石二辉橄榄岩源区低-中等程度(~5%~30%)的部分熔融一致(图7)。此外,这些岩石具有较低的Mg#(44~66),以及低的Cr(27.2 ×10-6~529 ×10-6,仅有两个样品大于400 ×10-6)和Ni(14.9 ×10-6~152×10-6)含量,明显偏离原生玄武质岩浆范围(Cr:300 ×10-6~500 ×10-6,Ni:300 ×10-6~400 ×10-6;Frey et al.,1978;Hess,1992),表明它们的母岩浆经历了明显的镁铁质矿物的分离结晶作用。从Cr 与Ni 和V 图解上可以看出,这些岩石的母岩浆经历了以斜方辉石为主的分离结晶作用(图8a,b)。

研究区岩石具有岛弧岩浆的性质(图6a),且具有较高的Th/Ce(0.14)和Th/Nb 值(0.60),与Sui et al.(2013)所报道的北拉萨地体玄武岩的特征一致。并且Sui et al.(2013)认为这些岩石来自于受俯冲沉积物交代的地幔源区。在(Hf/Sm)PM-(Ta/La)PM图解上(图9),所研究的岩石具有从OIB 到含水地幔来源的火山弧玄武岩的演变趋势,也表明其源区与俯冲流体的交代作用有关(La Flèche et al.,1998;Li et al.,2009)。因此,我们认为所研究的安山玄武岩很可能来源于交代岩石圈地幔源区(石榴石+尖晶石二辉橄榄岩)中等程度的部分熔融,并经历了以斜方辉石为主的分离结晶作用。

图7 Sm/Yb 与La/Sm 图解(据朱弟成等,2008a)Fig.7 Plot of Sm/Yb versus La/Sm (after Zhu et al.,2008a)

6.2 粗面英安岩和流纹岩

所研究的粗面英安岩和流纹岩为铁质(除1 个流纹岩样品为镁质)、钙碱性-碱性岩石,与A 型花岗质岩石特征一致(图5c,d;Frost et al.,2001;Frost and Frost,2010)。而且它们富集高场强元素(如Zr),在10000Ga/Al 与(Zr +Nb +Ce+Y)和Zr 图解上落入A 型花岗质岩石区域(图10a,b;Whalen et al.,1987)。

地壳物质的熔融是产生A 型花岗岩的一个重要方式,如英云闪长岩和花岗质岩石的部分熔融(Creaser et al.,1991;Patiño Douce,1997;Frost and Frost,1997)或碱交代地壳物质的部分熔融(Martin,2006)。Eyb(1992)根据A 型花岗岩的源区和构造环境特征把它们分成2 种类型(A1和A2),认为A1型来自洋岛玄武岩(OIB-like)源区,A2型由大陆地壳熔融产生。在Yb/Ta-Y/Nb 及Ce/Nb-Y/Nb 图解上,研究区样品均落入A2型岩石区域(图10c,d)。而且,所研究的粗面英安岩和流纹岩具有较低的Nb/Ta(分别为13~14 和12~13)和较高的Th/U 值(分别为4 和5~7),与大陆地壳值相近(Nb/Ta=12~13,Barth et al.,2000 和Th/U=6,Rudnick and Gao,2003),表明这些岩石是壳源岩石部分熔融的产物。

粗面英安岩和流纹岩的εHf(t)值分别为-10.2~+3.7和-8.7~+6.7,相对应的Hf 二阶段模式年龄(tDM2)为923~1799Ma 和708~1702Ma,表明源区为古老的地壳岩石。所研究的岩石均为准铝质-过铝质的钙碱性-碱钙性岩石(除1个英安岩样品为碱性,图5d),Frost and Frost (2010)通过总结前人的岩石学实验成果认为,具有该特征的A 型花岗质岩石可以由英云闪长岩和花岗闪长岩部分熔融产生。因此我们认为所研究的粗面英安岩和流纹岩的源岩应为英云闪长质和花岗闪长质的岩石。另外,这些岩石的εHf(t)变化范围较大,很可能是幔源岩浆加入的结果。

图8 安山玄武岩和流纹岩的分离结晶图解(a)Ni-Cr 图解和(b)V-Cr 图解(据Chen et al.,2014);(c)Ba-Eu/Eu* 图解(据Ding et al.,2014)Fig.8 Plots showing crystal fractionation trends in the petrogenesis of andesitic basalt and andesitic basalt and rhyolites(a)Ni vs.Cr and (b)V vs.Cr (after Chen et al.,2014);(c)Ba vs.Eu/Eu* (after Ding et al.,2014)

图9 安山玄武岩的(Hf/Sm)PM与(Ta/La)PM图解(据La Flèche et al.,1998;标准化值据Sun and McDonough,1989)Fig.9 Plot of (Hf/Sm)PM vs.(Ta/La)PM(after La Flèche et al.,1998;normalized values after Sun and McDonough,1989)of the andesitic basalt and basalt

另外,所研究的流纹岩具有较高的SiO2(75.19%~77.87%)含量和DI(96~98),以及极低的δEu(0.02~0.08),在微量元素和稀土元素模式图上,显示出明显Ba、Nb、Ta、Sr、P、Eu 和Ti 的负异常(图6e,f)以及在δEu-Ba 图上,样品点呈水平展布的特征(图8c),表明研究区的流纹岩为高分异的A 型花岗质岩石,经历了斜长石、含Ti 矿物(钛铁矿和金红石等)和磷灰石的分离结晶作用。

总之,我们认为所研究的粗面英安岩和流纹岩来源于古老基底岩石(英云闪长质和花岗闪长质岩石)的部分熔融并有幔源岩浆的注入,流纹岩母岩浆形成后又经历了强烈分离结晶作用。

7 构造背景

所研究的安山玄武岩与拉萨地体同时期的玄武岩(康志强等,2008;Sui et al.,2013;Chen et al.,2014;隋清霖,2014)富集Th、U 和Pb,具有Nb 和Ta 的负异常(图6a),显示出岛弧岩浆岩的特征(McCullochet and Gamble,1991;Pearce and Peate,1995;Tatsumi and Eggins,1995)。而且,这些岩石均具有较高的(La/Nb)PM(1.84~4.93),也与岛弧玄武岩特征一致(>1;Kerr et al.,2000)。此外,在拉萨地体发育有早白垩世晚期钙碱性的火山岩组合,包括玄武岩(康志强等,2010;Chen et al.,2014;本文),安山岩(康志强等,2008,2010;隋清霖,2014),英安岩(Zhu et al.,2011;Chen et al.,2014;本文)和流纹岩(Chen et al.,2014;本文)。现有研究认为这种钙碱性火山岩组合一般形成在汇聚板块边界(路凤香和桑隆康,2002)。

图10 A 型花岗岩判别图解(a、b,据Whalen et al.,1987;c、d,据Eby,1992)Fig.10 Discrimination diagrams of A-type granites (a,b,after Whalen et al.,1987;c,d,after Eby,1992)

图11 构造环境判别图解(a)Zr/Y 与Zr 判别图解(据Pearce and Norry,1979),IAB-岛弧玄武岩,MORB-洋中脊玄武岩,WPB-板内玄武岩;(b)Ta/Hf 与Th/Hf 图解(据汪云亮等,2001),Ⅱ-板块汇聚边缘(Ⅱ1-大洋岛弧玄武岩,Ⅱ2-陆缘岛弧及陆缘火山弧玄武岩区),Ⅲ-大洋板内玄武岩(洋岛、海山玄武岩区及T-MORB、E-MORB 区),Ⅳ-大陆板内玄武岩(Ⅳ1-陆内裂谷及陆缘裂谷拉斑玄武岩区,Ⅳ2-陆内裂谷碱性玄武岩区,Ⅳ3-大陆拉张或初始裂谷玄武岩区),Ⅴ-地幔柱玄武岩区Fig.11 Discrimination diagram for tectonic(a)Zr/Y vs.Zr discrimination diagram (after Pearce and Norry,1979):IAB =island-arc basalts;MORB =mid-ocean ridge basalts;and WPB =within-plate basalts;(b)Ta/Hf vs.Th/Hf diagram (after Wang et al.,2001):Ⅱ= Plate convergent margin basalts (Ⅱ1 = ocean island-arc basalts;Ⅱ2 = Continental margin island-arc + continental margin volcanic-arc basalts);Ⅲ= Oceanic within-plate basalts (oceanic island + sea mountain basalt+T-MORB+E-MORB);Ⅳ=Continental within-plate basalts (Ⅳ1 =Intracontinental rift+continental margin rift tholeiites;Ⅳ2 =Intracontinental rift alkali basalts;Ⅳ3 =Continental extensional zone/initial rift basalts);and Ⅴ=Mantle plume basalts

所研究的安山玄武岩具有较高的Zr/Y,与板内玄武岩特征相似(图11a)。从Th/Hf-Ta/Hf 图解上可以看出,这些岩石形成于伸展环境(图11b)。而且,所研究的粗面英安岩和流纹岩具有A 型花岗岩的特征,尽管研究表明A 型花岗岩可以形成于多种构造环境中,但是现今普遍认为在汇聚板块边缘出现的A 型花岗质岩石形成于安第斯型造山作用过程中的伸展机制下(如,Smith et al.,1977;Stein et al.,1992;Bonin,2007;Zhao et al.,2008;Chen et al.,2014;Ding et al.,2014)。结合拉萨地体中北部地区出现的大量早白垩世晚期的岩浆岩以及有相关幔源物质加入(Zhu et al.,2009b,2011)等事实,很可能说明在早白垩世晚期存在与板片断离、回转、或拆沉有关的地幔热异常事件(Kay and Mahlburg Kay,1993;隋清霖,2014)。

早白垩世时期,在拉萨地体的南北两侧分别有新特提斯洋和班公-怒江洋存在(Yin and Harrison,2000)。现有研究表明,新特提斯洋在侏罗纪时期已开始沿拉萨地体南缘北向俯冲(Yin and Harrison,2000;Chu et al.,2006;Zhang et al.,2012),Zhang et al.(2012)认为拉萨地体普遍发育的早白垩世-晚白垩世早期(135~100Ma)的岩浆作用与新特提斯洋板片回转、断离以及岩石圈拆沉作用有关。最近,Sui et al.(2013)和Chen et al.(2014)基于北拉萨地体和中拉萨地体早白垩世岩浆岩的εHf(t)值从北向南变小的趋势(Zhu et al.,2011),以及结合拉萨地体与羌塘地体碰撞时间与板片断离的时空联系,认为拉萨地体中北部早白垩世晚期的岩浆作用与班公-怒江大洋岩石圈板片南向俯冲过程中发生的板片断离有关。两种模型均可以导致软流圈物质上涌和岩石圈伸展,诱发被交代的岩石圈地幔部分熔融形成玄武岩,同时幔源岩浆底侵造成古老地壳的熔融形成中酸性岩浆岩。

总之,我们认为拉萨地体中北部的早白垩世岩浆岩形成在安第斯型造山作用过程中的伸展机制下,可能与新特提斯洋岩石圈板片沿拉萨地体南缘北向俯冲过程中发生的板片回转、断离以及岩石圈拆沉作用有关,也可能与班公-怒江大洋板片沿拉萨地体北缘南向俯冲过程中发生的板片断离有关。

8 结论

(1)拉萨地体北部普遍发育早白垩世的安山玄武岩、粗面英安岩和流纹岩,其结晶年龄为106~113Ma。

(2)安山玄武岩为钙碱性岩石,具有岛弧玄武岩的特征。大部分粗面英安岩和流纹岩具有A 型花岗岩特征。粗面岩和流纹岩的锆石εHf(t)分别为-10.2~+3.7 和-8.7~+6.7,相对应的Hf 二阶段模式年龄(tDM2)分别为923~1799Ma 和708~1702Ma。

(3)安山玄武岩为交代岩石圈地幔源区中等程度的部分熔融的产物,并经历了以斜长辉石为主的结晶分离作用。粗面英安岩和流纹岩来源于古老基底岩石的部分熔融,并且有幔源岩浆的注入。流纹岩母岩浆形成后又经历了强烈分离结晶作用。

(4)拉萨地体中北部早白垩世岩浆岩形成于安第斯型造山作用过程中的伸展机制下,可能与新特提斯洋岩石圈板片沿拉萨地体南缘北向俯冲过程中发生的板片回转、断离以及岩石圈拆沉作用有关,也可能与班公-怒江洋岩石圈板片沿拉萨地体北缘南向俯冲过程中发生的板片断离有关。

致谢 郭亮讲师和马绪宣博士对本文提出了宝贵意见;中国科学技术大学中国科学院壳幔物质与环境重点实验室侯振辉老师在锆石U-Pb 定年测试及分析过程中提供了帮助;姜洪颖、李旺超参与了锆石U-Pb 定年和Hf 同位素分析测试工作;在此一并感谢!

Aldanmaz E,Pearce JA,Thirlwall MF and Mitchell JG.2000.Petrogenetic evolution of Late Cenozoic,post-collision volcanism in western Anatolia,Turkey.Journal of Volcanology and Geothermal Research,102(1-2):67-95

Allègre CJ,Courtillot V,Tapponnier P et al.1984.Structure and evolution of the Himalaya-Tibet orogenic belt.Nature,307(5946):17-22

Barth MG,McDonough WF and Rudnick RL.2000.Tracking the budget of Nb and Ta in the continental crust.Chemical Geology,165(3-4):197-213

Bonin B.2007.A-type granites and related rocks:Evolution of a concept,problems and prospects.Lithos,97(1-2):1-29

Chen JS,Huang BC and Sun LS.2010.New constraints to the onset of the India-Asia collision: Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block,China.Tectonophysics,489(1-4):189-209

Chen Y,Zhu DC,Zhao ZD,Meng FY,Wang Q,Santosh M,Wang LQ,Dong GC and Mo XX.2014.Slab break off triggered ca.113Ma magmatism around Xainza area of the Lhasa Terrane,Tibet.Gondwana Research,26(2):449-463

Chiu HY,Chung SL,Wu FY,Liu DY,Liang YH,Lin IJ,Iizuka Y,Xie LW,Wang YB and Chu MF.2009.Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet.Tectonophysics,477(1-2):3-19

Chu MF,Chung SL,Song B,Liu DY,O’Reilly YS,Pearson NJ,Ji JQ and Wen DJ.2006.Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet.Geology,34(9):745-748

Copeland P,Harrison TM,Pan Y,Kidd WSF,Roden M and Zhang YQ.1995.Thermal evolution of the Gangdese batholith,southern Tibet:A history of episodic unroofing.Tectonics,14(2):223-236

Corfu F,Hanchar JM,Hoskin PWO and Kinny P.2003.Atlas of zircon textures.Reviews in Mineralogy and Geochemistry,53(1):469-500

Coulon C,Maluski H,Bollinger C and Wang S.1986.Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar/40Ar dating,petrological characteristics and geodynamical significance.Earth and Planetary Science Letters,79(3-4):281-302

Creaser RA,Price RC and Wormald RJ.1991.A-type granites:Assessment of a residual source model.Geology,19(2):163-166 Ding HX,Zhang ZM,Dong X,Yan R,Lin YH and Jiang HY.2014.Cambrian ultrapotassic rhyolites from the Lhasa terrane,south Tibet:Evidence for Andean-type magmatism along the northern active margin of Gondwana.Gondwana Research,doi:10.1016/j.gr.2014.02.003

Dong X,Zhang ZM,Santosh M,Wang W,Yu F and Liu F.2011a.Late Neoproterozoic thermal events in the northern Lhasa terrane,south Tibet:Zircon chronology and tectonic implications.Journal of Geodynamics,52(5):389-405

Dong X,Zhang ZM,Liu F,Wang W,Yu F and Shen K.2011b.Zircon U-Pb geochronology of the Nyainqêntanglha Group from the Lhasa terrane:New constraints on the Triassic orogeny of the south Tibet.Journal of Asian Earth Sciences,42(4):732-739

Eby GN.1992.Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications.Geology,20(7):641-644

Elhlou S,Belousova E,Griffin WL,Pearson NJ and O’Reilly SY.2006.Trace element and isotopic composition of GJ red zircon standard by laser ablation.Geochimica et Cosmochimica Acta,70(18):A158

Frey FA,Green DH and Roy SD.1978.Integrated models of basalt petrogenesis:A study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data.Journal of Petrology,19(3):463-513

Frost BR,Arculus RJ,Barnes CG,Collins WJ,Ellis DJ and Frost CD.2001.A geochemical classification for granitic rocks.Journal of Petrology,42(1):2033-2048

Frost CD and Frost BR.1997.Reduced rapakivi-type granites:The tholeiite connection.Geology,25(7):647-650

Frost CD and Frost BR.2010.On ferroan (A-type)granitoids:Their compositional variability and modes of origin.Journal of Petrology,52:39-53

Guan Q,Zhu DC,Zhao ZD,Zhang LL,Liu M,Li XW,Yu F,Liu MH and Mo XX.2010.Late Cretaceous adakites from the eastern segment of the Gangdese Belt,Southern Tibet:Products of Neo-Tethyan mid-ocean ridge subduction?Acta Petrologica Sinica,26(7):2165-2179 (in Chinese with English abstract)

Guo L,Zhang HF,Harris N,Pan FB and Xu WC.2013.Late Cretaceous (~81Ma) high-temperature metamorphism in the southeastern Lhasa terrane:Implication for the Neo-Tethys ocean ridge subduction.Tectonophysics,608:112-126

Hastie AR,Kerr AC,Pearce JA and Mitchell SF.2007.Classification of altered volcanic island arc rocks using immobile trace elements:Development of the Th-Co discrimination diagram.Journal of Petrology,48(12):2341-2357

Hébert R,Bezard R,Guilmette C,Dostal J,Wang CS and Liu ZF.2012.The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology,geochemistry,and geochronology with incidences on geodynamic reconstructions of Neo-Tethys.Gondwana Research,22(2):377-397

Hess PC.1992.Phase Equilibria Constraints on the Origin of Ocean Floor Basalts.In:Morgan JP,Blackman DK and Sinton JM (eds.).Mantle Flow and Melt Generation at Mid-Ocean Ridges.American Geophysical Union,Geophysical Monograph,71:67-102

Hoskin PWO and Schaltegger U.2003.The composition of zircon and igneous and metamorphic petrogenesis.In:Manchar JM and Hoskin PWO (eds.).Zircon.Reviews of Mineralogy and Geochemistry,53(1):27-62

Hou KJ,Li YH,Zou TR,Qu XM,Shi YR and Xie GQ.2007.Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications.Acta Petrologica Sinica,23(10):2595-2604 (in Chinese with English abstract)

Ji WQ,Wu FY,Chung SL,Li JX and Liu CZ.2009.Zircon U-Pb chronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith,southern Tibet.Chemical Geology,262(3-4):229-245

Jiang ZQ,Wang Q,Li ZX,Wyman DA,Tang GJ,Jia XH and Yang YH.2012.Late Cretaceous (ca.90Ma)adakitic intrusive rocks in the Kelu area,Gangdese Belt (southern Tibet):Slab melting and implications for Cu-Au mineralization.Journal of Asian Earth Sciences,53:67-81

Jiang ZQ,Wang Q,Wyman DA,Li ZX,Yang JH,Shi XB,Ma L,Tang GJ,Gou GN,Jia XH and Guo HF.2014.Transition from oceanic to continental lithosphere subduction in southern Tibet:Evidence from the Late Cretaceous-Early Oligocene (ca.91~30Ma)intrusive rocks in the Chanang-Zedong area,southern Gangdese.Lithos,196-197:213-231

Kang ZQ,Xu JF,Dong YH and Wang BQ.2008.Cretaceous volcanic rocks of Zenong Group in north-middle Lhasa Block:Products of southward subducting of the Slainajap ocean?Acta Petrologica Sinica,24(2):303-314 (in Chinese with English abstract)

Kang ZQ,Xu JF,Wang BD and Chen JL.2010.Qushenla formation volcanic rocks in north Lhasa block:Products of Bangong Co-Nujiang Tethys southward subduction.Acta Petrologica Sinica,26(10):3106-3116 (in Chinese with English abstract)

Kapp JLD,Harrison TM,Kapp P,Grove M,Lovera OM and Ding L.2005.Nyainqêntanglha Shan:A window into the tectonic,thermal,and geochemical evolution of the Lhasa block,southern Tibet.Journal of Geophysical Research,110 (B8):B08413

Kapp P,DeCelles PG,Gehrels GE,Heizier M and Ding L.2007.Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet.Geological Society of America Bulletin,119(7-8):917-933

Kay RW and Mahlburg Kay S.1993.Delamination and delamination magmatism.Tectonophysics,219(1-3):177-189

Kerr AC,White RV and Saunders AD.2000.LIP reading:Recognizing oceanic plateau in the geological record.Journal of Petrology,41(7):1041-1056

La Flèche MR,Camiré G and Jenner GA.1998.Geochemistry of post-Acadian,Carboniferous continental intraplate basalts from the Maritimes Basin,Magdalen islands,Québec,Canada.Chemical Geology,148(3-4):115-136

Li XH,Li WX,Li ZX,Lo CH,Wang J,Ye MF and Yang YH.2009.Amalgamation between the Yangtze and Cathaysia blocks in South China:Constraints from SHRIMP U-Pb zircon ages,geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks.Precambrian Research,174(1-2):117-128

Lin YH,Zhang ZM,Dong X,Shen K and Lu X.2013.Precambrian evolution of the Lhasa terrane,Tibet:Constraint from the zircon UPb geochronology of the gneisses.Precambrian Research,237:64-77

Liu QS,Wu ZH,Hu DG,Ye PS,Jiang W,Wang YB and Zhang HC.2004.SHRIMP U-Pb zircon dating on Nyainqentanglha granite in central Lhasa block.Chinese Science Bulletin,49(1):76-82

Liu YS,Hu ZC,Zong KQ,Gao CG,Gao S,Xu J and Chen HH.2010.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS.Chinese Science Bulletin,55(15):1535-1546

Lu FX and Sang KL.2002.Petrology.Beijing:Geological Publishing House,1-399 (in Chinese)

Ludwig KR.2003.Isoplot/Ex Version 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley:Berkeley Geochronology Center Special Publications,1-73

Ma L,Wang Q,Li ZX,Wymand DA,Jiang ZQ,Yang JH,Gou GN and Guo HF.2013.Early Late Cretaceous (ca.93Ma)norites and hornblendites in the Milin area,eastern Gangdese:Lithosphereasthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca.100~80Ma)magmatic“flare-up”in southern Lhasa (Tibet).Lithos,172-173:17-30

Maluski H,Proust F and Xiao XC.1982.39Ar/40Ar dating of the trans-Himalayan calc-alkaline magmatism of southern Tibet.Nature,298(5870):152-154

Martin RF.2006.A-type granites of crustal origin ultimately result from open system fenitization-type reactions in an extensional environment.Lithos,91(1-4):125-136

McCullochet MT and Gamble JA.1991.Geochemical and geodynamical constraints on subduction zone magmatism.Earth and Planetary Science Letters,102(3-4):358-374

Meng FY,Zhao ZD,Zhu DC,Mo XX,Guan Q,Huang Y,Dong GC,Zhou S,DePaolo DJ,Harrisone TM,Zhang ZC,Liu JL,Liu YS,Hu ZC and Yuan HL.2014.Late Cretaceous magmatism in Mamba area,central Lhasa subterrane:Products of back-arc extension of Neo-Tethyan Ocean?Gondwana Research,26(2):505-520

Mo XX,Zhao ZD,DePaolo DJ,Zhou S and Dong GC.2006.Three types of collisional and post-collisional magmatism in the Lhasa block,Tibet and implications for India intra-continental subduction and mineralization:Evidence from Sr-Nd isotopes.Acta Petrologica Sinica,22(4):795-803 (in Chinese with English abstract)

Mo XX,Niu YL,Dong GC,Zhao ZD,Hou ZQ,Zhou S and Ke S.2008.Contribution of syncollisional felsic magmatism to continenta

l crust growth:A case study of the Paleogene Linzizong volcanic succession in southern Tibet.Chemical Geology,250(1-4):49-67

Pan GT,Ding J and Yao DS.2004.Guidebook of 1∶1500000 Geologic Map of the Qinghai-Xizang (Tibet)Plateau and Adjacent Areas.Chengdu:Chengdu Cartographic Publishing House,1-48

Pan GT,Mo XX,Hou ZQ,Zhu DC,Wang LQ,Li GM,Zhao ZD,Geng QR and Liao ZL.2006.Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution.Acta Petrologica Sinica,22(3):521-533 (in Chinese with English abstract)

Patiño Douce AE.1997.Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids.Geology,25(8):743-746

Pearce JA and Norry MJ.1979.Petrogenetic implications of Ti,Zr,Y and Nb variations in volcanic rocks.Contributions to Mineralogy and Petrology,69(1):33-47

Pearce JA and Houjun M.1988.Volcanic Rocks of the 1985 Tibet Geotraverse:Lhasa to Golmud.Philosophical Transact ions of the Royal Society of London,Series A,Mathematical and Physical Sciences,327(1594):169-201

Pearce JA and Peate DW.1995.Tectonic implications of the composition of volcanic arc magmas.Annual Review of Earth and Planetary Sciences,23:251-286

Rajesh HM.2007.The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains:A case study from southern India.Contributions to Mineralogy and Petrology,154(5):591-606

Rudnick RL and Gao S.2003.Composition of the continental crust.In:Rudnick RL (ed.).The Crust:Treaties on Geochemistry.Oxford:Elsevier Pergamon,1-64

Smith IEM, Chappell BW, Ward GK and Freeman RS.1977.Peralkaline rhyolites associated with andesitic arcs of the Southwest Pacific.Earth and Planetary Science Letters,37(2):230-236

Stein G,Lapierre H and Charvet J.1992.Magmatisme alcalin“intraplaque”en contexte d’arc insulaire:Le massif plutonique d’Ashizuri (Japon SO).Comptes Rendus des Séances de l’Académie des Sciences,Paris,315(12):1501-1508

Sui QL,Wang Q,Zhu DC,Zhao ZD,Chen Y,Santosh M,Hu ZC,Yuan HL and Mo XX.2013.Compositional diversity of ca.110Ma magmatism in the northern Lhasa Terrane,Tibet:Implications for the magmatic origin and crustal growth in a continent-continent collision zone.Lithos,168-169:144-159

Sui QL.2014.The Geochronology,petrogenesis and tectonic significance of the Early Cretaceous magmatic rocks from Yanhu,the Lhasa terrane,Tibet.Master Degree Thesis.Beijing:China University of Geosciences

Sun SS and McDonough WF.1989.Chemical and isotopic systematics of oceanic basalts:Implication for mantle composition and process.In:Saunders AD and Norry MJ (eds.).Magmatism in Ocean Basins.Geological Society of London,Special Publication,42(1):313-345

Tan XD,Gilder S,Kodama KP,Jiang W,Han YL,Zhang H,Xu HH and Zhou D.2010.New paleomagnetic results from the Lhasa block:Revised estimation of latitudinal shortening across Tibet and implications for dating the India-Asia collision.Earth and Planetary Science Letters,293(3-4):396-404

Tapponnier P,Xu ZQ,Rogers F,Meyer B,Arnaud N,Wittlinger G and Yang JS.2001.Oblique stepwise rise and growth of the Tibet Plateau.Science,294(5547):1671-1677

Tatsumi Y and Eggins S.1995.Subduction Zone Magmatism.Cambridge:Blackwell,1-200

Wang YL,Zhang CJ and Xiu SZ.2001.Th/Hf-Ta/Hf identification of tectonic setting of basalts.Acta Petrologica Sinica,17(3):413-421 (in Chinese with English abstract)

Wen DR,Liu DY,Chung SL,Chu MF,Ji JQ,Zhang Q,Song B,Lee TY,Yeh MW and Lo CH.2008.Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet.Chemical Geology,252(3-4):191-201

Whalen JB,Currie KL and Chappell BW.1987.A-type granites:Geochemical characteristics, discrimination and petrogenesis.Contributions to Mineralogy and Petrology,95(4):407-419

Winchester JA and Floyd PA.1977.Geochemical discrimination of different magma series and their differentiation products using immobile elements.Chemical Geology,20:325-343

Wu H,Li C,Hu PY and Li XK.2014.Early Cretaceous (100~105Ma)Adakitic magmatism in the Dachagou area,northern Lhasa terrane, Tibet: Implications for the Bangong-Nujiang Ocean subduction and slab break-off.International Geology Review,doi:10.1080/00206814.2014.886152

Wu H,Li C,Xu MJ and Li XK.2015.Early Cretaceous adakitic magmatism in the Dachagou area,northern Lhasa terrane,Tibet:Implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean.Journal of Asian Earth Sciences,97A:51-66

Wu YB and Zheng YF.2004.Genesis of zircon and its constraints on interpretation of U-Pb age.Chinese Science Bulletin,49(15):1554-1569

Xu RH,Schärer U and Allègre CJ.1985.Magmatism and metamorphism in the Lhasa block (Tibet):A geochronological study.Journal of Geology,93(1):41-57

Xu WC,Zhang HF,Harris N,Guo L,Pan FB and Wang S.2013.Geochronology and geochemistry of Mesoproterozoic granitoids in the Lhasa terrane,South Tibet:Implications for the early evolution of Lhasa terrane.Precambrian Research,236:46-58

Yin A and Harrison TM.2000.Geologic evolution of the Himalayan-Tibetan orogeny.Annual Review of Earth and Planetary Sciences,28:211-280

Zhang KJ,Zhang YX,Tang XC and Xia B.2012.Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision.Earth-Science Reviews,114(3-4):236-249

Zhang LL,Zhu DC,Zhao ZD,Dong GC,Mo XX,Guan X,Liu M and Liu MH.2010.Petrogenesis of magmatism in the Baerda region of northern Gangdese, Tibet: Constraints from geochemistry,geochronology and Sr-Nd-Hf isotopes.Acta Petrologica Sinica,26(6):1871-1888 (in Chinese with English abstract)

Zhang ZM,Zhao GC,Santosh M,Wang JL,Dong X and Shen K.2010.Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith,southeastern Tibet:Evidence for Neo-Tethyan mid-ocean ridge subduction?Gondwana Research,17 (4):615-631

Zhao XF,Zhou MF,Li JW and Wu FY.2008.Association of Neoproterozoic A-and I-type granites in South China:Implications for generation of A-type granites in a subduction-related environment.Chemical Geology,257(1-2):1-15

Zhu DC,Pan GT,Chun SL,Liao ZL,Wang LQ and Li GM.2008.SHRIMP zircon age and geochemical constraints on the origin of Early Jurassic volcanic rocks from the Yeba Formation,southern Gangdese in south Tibet.International Geology Review,50(5):442-471

Zhu DC,Mo XX,Wang LQ,Zhao ZD and Liao ZL.2008a.Hotspotridge interaction for the evolution of Neo-Tethys:Insights from the Late Jurassic-Early Cretaceous magmatism in southern Tibet.Acta Petrologica Sinica,24(2):225- 237 (in Chinese with English abstract)

Zhu DC,Mo XX,Zhao ZD,Xu JF,Zhou CY,Sun CG,Wang LQ,Chen HH, Dong GC and Zhou S.2008b.Zircon U-Pb geochronology of Zenong Group volcanic rocks in Coqen area of the Gangdese,Tibet and tectonic significance.Acta Petrologica Sinica,24 (3):401-412 (in Chinese with English abstract)

Zhu DC,Pan GT,Zhao ZD,Lee HY,Kang ZQ,Liao ZL,Wang LQ,Li GM,Dong GC and Liu B.2009a.Early Cretaceous subductionrelated adakite-like rocks in the Gangdese,South Tibet:Products of slab melting and subsequent melt-peridotite interaction?Journal of Asian Earth Sciences,34(3):298-309

Zhu DC,Mo XX,Niu Y,Zhao ZD,Wang LQ,Liu YS and Wu FY.2009b.Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane,Tibet.Chemical Geology,268(3-4):298-312

Zhu DC,Zhao ZD,Niu YL,Mo XX,Chung SL,Hou ZQ,Wang LQ and Wu FY.2011.The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth.Earth and Planetary Science Letters,301(1-2):241-255

Zhu DC,Zhao ZD,Niu YL,Dilek Y,Wang Q,Ji WH,Dong GC,Sui QL,Liu YS,Yuan HL and Mo XX.2012.Cambrian bimodal volcanism in the Lhasa Terrane,southern Tibet:Record of an Early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin.Chemical Geology,328:290-308

附中文参考文献

管琪,朱弟成,赵志丹,张亮亮,刘敏,李小伟,于枫,莫宣学.2010.西藏南部冈底斯带东段晚白垩世埃达克岩:新特提斯洋脊俯冲的产物?岩石学报,26(7):2165-2179

侯可军,李延河,邹天人,曲晓明,石玉若,谢桂青.2007.LA-MCICP-MS 锆石Hf 同位素的分析方法及地质应用.岩石学报,23(10):2595-2604

康志强,许继峰,董彦辉,王保弟.2008.拉萨地块中北部白垩纪则弄群火山岩:Slainajap 洋南向俯冲的产物?岩石学报,24(2):303-314

康志强,许继峰,王保弟,陈建林.2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?岩石学报,26(10):3106-3116

路凤香,桑隆康.2002.岩石学.北京:地质出版社,1-399

莫宣学,赵志丹,Depaolo DJ,周肃,董国臣.2006.青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示:Sr-Nd 同位素证据.岩石学报,22(4):795-803

潘桂棠,莫宣学,侯增谦,朱弟成,王立全,李光明,赵志丹,耿全如,廖忠礼.2006.冈底斯造山带的时空结构及演化.岩石学报,22(3):521-533

隋清霖.2014.西藏拉萨地块盐湖地区早白垩世岩浆岩年代学、岩石成因及构造意义.硕士学位论文.北京:中国地质大学

汪云亮,张成江,修淑芝.2001.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf 图解判别.岩石学报,17(3):413-421

吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb 年龄解释的制约.科学通报,49(16):1589-1604

张亮亮,朱弟成,赵志丹,董国臣,莫宣学,管琪,刘敏,刘美华.2010.西藏北冈底斯巴尔达地区岩浆作用的成因:地球化学、年代学及Sr-Nd-Hf 同位素约束.岩石学报,26(6):1871-1888

朱弟成,莫宣学,王立全,赵志丹,廖忠礼.2008a.新特提斯新特提斯演化的热点与洋脊相互作用:西藏南部晚侏罗世-早白垩世岩浆作用推论.岩石学报,24(2):225-237

朱弟成,莫宣学,赵志丹,许继峰,周长勇,孙晨光,王立全,陈海红,董国臣,周肃.2008b.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb 年代学格架及构造意义.岩石学报,24(3):401-412

猜你喜欢

安山玄武岩锆石
玄武岩纤维微表处在高速公路预养护中的应用
锆石的成因类型及其地质应用
玄武岩纤维长径比对混凝土力学性能的影响
玄武岩纤维可用于海水淡化领域
河北承德玄武岩绿色矿山典型——承德市围场县舍土沟玄武岩矿调研报告
疫情下的笔试
俄成功试射“锆石”高超音速巡航导弹
锆石 谁说我是假宝石
“红爷”魏安山
“红爷”魏安山