关于电气自动化在水电站中的应用①
2015-07-02马振强
马振强
摘 要:水电站的有效运转离不开电气自动化技术的支撑。该文首先概括了电气自动化对水电站日常生产的作用,接着详述电气自动化在水电站中的各种应用场合,特别是PLC技术的应用情况,最后对电气自动化的发展瓶颈作了适当前瞻,以期为提升水电站自动化水平而抛砖引玉。
关键词:电气自动化 水电站 应用
中图分类号:TP29 文献标志码:A 文章编号:1672-3791(2015)03(b)-0039-01
水电站运营水平和现代化水平的高低主要取决于其内部电气自动化的实现程度。而电气自动化是指生产过程中的控制、操作及监视等重要步骤可以在无人(或少人)情况下按预设程序完成。可见,电气自动化能在不降低安全保证的情况下提升水电站运行的工作效率及经济性,是水电领域的研究重点。
1 水电站采用电气自动化的目的
电气自动化以计算机为基础,综合了数字控制、可编程逻辑控制等先进技术,是水力发电智能化发展的必由模式。在现阶段,广泛推行电气自动化,能达到以下目的。
⑴确保电能质量。随着时代的发展,公众对电力的需求不仅表现在数量上,更体现在质量上。表示电能质量好坏的指标主要是频率和电压,前者由系统的有功功率平衡决定,后者由系统的无功功率平衡决定。显然,仅仅依靠人工的手动操作很难使随时变化的发电电荷满足人们对电能质量的要求,而采用自动装置则可以及时又准确地调节系统的有功及无功出力,达到保持频率和电压稳定的目的。
⑵提升水电工作的安全性。采用电气自动化后,所有的生产设备能够准确、快速启动,实现数据分析和事故判断的实时辅助,这样一方面能防止事故出现时故障面扩大(通过自动装置控制相关开关并报警),另一方面也使水电生产不中断(通过自动启用备用设备等)。另外,将自控装置引入各关键流程,可显著降低因人工误操做风险。
⑶实现发电机组运行经济性。众所周知,水轮机组满负荷工作是一种理想状态,而实际由于水流量、机组故障等各方面因素使得这一状态较难实现。在利用自控装置后,系统能在结合当前水利条件的情况下,计算出最佳运行组数,即使最少的水产生出最多的电能。
⑷提高水电站运行效率。采用电气自动化,无疑可大大减少运行人员数量,并降低实际操作人员的劳动强度和工作量。
2 水电站中电气自动化的应用场合
水电站的类型、级别、电气主接线、机组规格及安置方式等因素会影响到电气自动化的具体应用。但总体来说,以下几个层面是共有的。
2.1 水轮发电机组的自动控制
应用过程:机组监控设备将监测数据传送至控制室计算机,计算机启动预先设定的运行程序并判断机组运行状况,然后再依照相关逻辑规则发出控制(或调整)指令。
应用内容:⑴实现机组开、关,调相转发电,发电转调相等项目的智能化控制。⑵实时计算最佳运行机组数并自动控制,在机组间智能分配负荷(包括自主调节有功和无功),从而维系水轮发电机的低成本运行。⑶当机组出现意外或者外部系统发生事故而导致频率降低,预设程序通过启动备用机组来维持系统稳定;反之,汛期来临频率过高时,预设程序会关闭一些机组。
2.2 主要辅助设备运行状态的监控
在水电站中,围绕发电机组有一些主要的辅助设备,这些设备的运行工况同样影响着电站的稳定生产。电气自动化在这里有了广泛的应用。
应用过程:通过“监测设备——控制设备——控制节点”的方式,将辅助设备运行数据发送至计算机,计算机通过数据库和预设规则比对,判断辅助设备的健康状态并相应控制设备的电气参数。
应用内容:⑴检测定子和转子回路是否正常;⑵检测定子绕组的铁芯温度是否正常;⑶检查机组润滑度及变速系统、制冷系统等是否正常;⑷以上无论哪部分出现问题,电气自动化系统都会迅速启动应急程序和保护措施,同时将故障信息上传警报。
2.3 主要电气设备的监控和保护
水力发电的输出离不开变压器、母线、开关柜、输电线路等主要电气设备。对这些设备的监控和保护成了水电站电气自动化应用的必然内容。
应用过程:通过PT、CT等设备采集到的电气量,判断设备是否有故障,并视故障情况作出反应。
应用表现:⑴对不立即危害发电机组的异常情况(如机组冷却水源中断、机组温度超限、油槽油面异常、推力轴承或者导轴承温度升高等),只发警告以引起运行人员的注意;⑵对于超过保护整定限值的故障情况(如机组过速且调速器失灵、导水叶剪断、铜管爆破等),电气自动化系统不但跳开断路器和,还同时关闭机组进水闸门。
2.4 机组外辅助设备的监控
完整的水电站拥有数量众多的水泵、空压机、油泵等机组外电气设备,以及浩大的水工建筑物。电气自动化在这一块的应用为:⑴控制水泵等设备的运行状态,故障时及时投入备用设备;⑵检测大坝闸门是否可正常启动,检测拦污栅是否堵塞,当水位过高过低时引发自动报警。
3 PLC技术应用展开
PLC即可编程控制器。在水电站电气自动化中,可应用PLC来控制几乎所有设备的生产过程。
⑴在轴流桨式水轮机调速器中的应用。
轴流浆式水轮机厂家一般会提供所谓“协联曲线”(即描述不同水头下浆叶转角与导叶开度的关系的曲线),以指导电站生产。但实际运行时,上下游水位及水轮机水头处于不断变化之中,某些情况下会远离厂家参数,因此按协联曲线运行不一定能达到最佳状态。采用PLC技术后,可先针对不同上、下游水位及水头情况,手动协联浆叶和导叶,在获得最佳协联曲线后修改原厂家曲线并输人至PLC控制器,从而使机组能时时处在最佳状态。
⑵在水库式电站调速器中的应用。
水库式电站的运行水头波动范围较大,其调速器与启动开度一般按水轮机设计水头确定。但当水头降低或水头远高于设计标准时,为保证机组额定转速,往往需要更换调速器控制芯片,改变开度指示仪电阻(串接或移除),工作量较大。在采用PLC技术后,则可依据水头高低设计出相应程序,依照程序来自动改变启动开度。
4 电气自动化瓶颈
虽然电气自动化给水电站自动运行带来了方便,但其自身发展存在一定瓶颈,主要体现在:因电气自动化的基础是实现对设备的全面监测,因此整个自动化系统的监控模块非常之多,这样就导致通信网络较为复杂且通信速度、通信质量面临挑战。随着新技术(如光纤通信技术)的推进,相信电气自动化瓶颈能够得到解决。
5 结语
水电站实施电气自动化,一方面可提高工作效率、减少人力投入,另一方面也能保证上网电能的质量,是新时期水电发展的必然趋势。虽然电气自动化在应用中存在一定的技术瓶颈,但随着智能电网技术、信息化技术的日新月异,所有问题将得到有效解决。
参考文献
[1] 孙惠.电气自动化技术在水电站中的应用[J].机电信息,2012(2):38-39.
[2] 李锦华.对电气自动化在水电站中的应用及分析[J].科技视界,2013(3):48-50.
[3] 刘海波.水电站电气自动化技术探究[J].技术与市场,2013(9):173-174.