APP下载

建南气田志留系天然气地球化学特征及气源探讨

2015-06-23李爱荣李净红张金功宋立军

石油实验地质 2015年4期
关键词:志留系烷烃气田

李爱荣,李净红,张金功,宋立军

(1.西安石油大学 地球科学与工程学院,西安 710065; 2.西北大学 大陆动力学国家重点实验室/地质学系,西安 710069; 3.武汉工程科技学院 地质科学与工程学部,武汉 430200)

建南气田志留系天然气地球化学特征及气源探讨

李爱荣1,2,李净红3,张金功2,宋立军1

(1.西安石油大学 地球科学与工程学院,西安 710065; 2.西北大学 大陆动力学国家重点实验室/地质学系,西安 710069; 3.武汉工程科技学院 地质科学与工程学部,武汉 430200)

根据建南气田及邻区的天然气组分、烷烃碳同位素等资料,结合区域烃源岩研究资料,研究了该区志留系天然气的地球化学特征及其气源特征。结果表明,建南气田志留系天然气为干气,非烃气体总含量低且无H2S气体;烷烃气碳同位素均小于-40‰,属于油型气成因,其母源为腐泥型干酪根。ln(C1/C2)-ln(C2/C3)相关性表明现今的志留系气藏以原油二次裂解贡献为主。结合该气藏地质特征综合分析认为,建南气田志留系天然气来源于志留系龙马溪组碳质页岩,烷烃气碳同位素局部倒转为同源不同期的天然气混合所致,即晚期原油裂解气与早期干酪根降解气混合。中上扬子区广泛分布且已成熟的志留系龙马溪组页岩预示志留系和石炭系的天然气勘探前景良好。

天然气;地球化学特征;气源;志留系;建南气田;川东地区

建南气田位于川东褶皱带东缘的石柱复向斜中部(图1)。经过长期勘探,纵向上已发现6个工业气层,(嘉陵江组、飞仙关组、长兴组、黄龙组、韩家店组及龙马溪组)。2006年,建南气田中国石化海相重点探井——Js1井于志留系韩家店组及小河坝组获得工业气流,韩家店组砂岩天然气流达5.13×104m3/d[1-2]。Js1井是中国南方志留系第一口投入正规开发的致密砂岩气井[3],表明鄂西渝东区志留系天然气勘探具有良好的潜力,标志着建南气田下古生界良好的天然气资源前景。

鄂西渝东区古生界发育多套烃源岩(震旦系陡山沱组、寒武系牛蹄塘组、奥陶系五峰组、龙马溪组页岩、二叠系生屑灰岩、泥灰岩、煤系),且都达到了高成熟、高—过成熟,都具备良好的供气潜力[4-9]。天然气的气源类型、成熟度、成因类型及运移过程导致天然气组分、碳氢同位素发生分馏,决定了现今天然气的地球化学面貌。目前,对中上扬子区志留系天然气地球化学特征及气源研究报道甚少。因此,根据目前已发现的Js1井志留系天然气地球化学资料,结合前人已发表的川东及建南地区天然气地球化学数据,系统分析志留系天然气地球化学特征,探讨其气源及成因类型,对中、上扬子区志留系及上覆含气层的天然气勘探具有重要意义。

图1 川东地区建南气田大地构造位置及构造分区

1 天然气组分特征

1.1 烃类气体组分

Js1井韩家店组(S2hj)天然气以甲烷为主,甲烷含量在93.87%~95.13%,重烃气(C2-5)含量极少;C1/C1-5在0.979 1~0.982 2,C1/C2+3为0.473 3~0.555 4,为明显的干气;龙马溪组(S1l)甲烷含量在38.59%~43.23%,含量相对较低,C1/C1-5在0.97左右,C1/C2+3为0.299 1~0.337 7,也为干气(表1)。干燥系数C1/C1-5和C1/C2+3能较好地反映天然气的成熟度和运移效应。随着埋藏深度的增加,Js1井志留系天然气的干燥系数逐渐降低(表1),C1/C1-5由0.982 2降至0.967 4,C1/C2+3则由0.555 4降至0.299 1,反映了垂向运移的特点。

1.2 非烃气体组分

非烃气体含量低,包括CO2、N2、H2S。韩家店组天然气中CO2含量极低,在0.06%~0.45%;N2含量为2.37%~4.58%,属低氮气藏。龙马溪组天然气因被污染,导致非烃气体中氮气含量过高。龙马溪组和韩家店组的天然气组分特征参数都相近,表明两者是同源,且两者紧邻,氮气含量一般不会出现如此大差距。因此,龙马溪组天然气藏中非烃气体应与韩家店组相似,属于低氮气藏的范畴。

表1 川东地区建南气田Js1井志留系天然气组分对比

2 天然气碳同位素特征

志留系韩家店组气藏的δ13C1数值为-40.2‰,其值很低,一般甲烷δ13C1在-55‰~-30‰,都属于油型气的范围(图2)。该层天然气烷烃碳同位素存在倒转现象,烷烃气δ13C值连线束呈“M”型,具有δ13C1>δ13C2<δ13C3>δ13iC4<δ13nC4的多碳倒转特征,但其值很轻,应与早期伴生气和晚期原油裂解气混合密切相关。

3 天然气的成因

3.1 天然气有机相类型

天然气的甲烷碳同位素通常受到源岩母质类型和成熟度的双重影响,以致中国的煤型气(腐殖型气)与油型气(腐泥型气)的δ13C1分布区间有重叠,难以用来区分腐殖型与腐泥型气。乙烷等重烃气的碳同位素则要稳定得多,主要反映成气母质类型。根据总结我国塔里木盆地、四川盆地及中扬子区的海相天然气地球化学特征[10-26],首先采用烷烃气同位素系列区分有机成因(正系列:δ13C1<δ13C2<δ13C3<δ13C4)和无机成因(负系列:δ13C1>δ13C2>δ13C3>δ13C4),然后按δ13C2大于或小于-28‰划分为腐殖型气或腐泥型气。

从表2中可以看出,Js1井中志留统韩家店组天然气干燥系数C1/C1-5≥98%,δ13C1值均小于-30‰,烷烃气系列不属于标准的负碳同位素系列,与其共生的CO2气体的碳同位素小于-10‰,即有机成因。烷烃气碳同位素中δ13C2值小于-28‰,具典型油型气特征。

图2 川东地区建南气田Js1井 志留系韩家店组天然气烷烃碳同位素分布

表2 川东地区建南气田Js1井 及邻区志留系天然气碳同位素数据

Table 2 Carbon isotopes of Silurian natural gas from well Js1 and adjacent areas, eastern Sichuan Basin ‰

井号层位δ13C1δ13C2δ13C3δ13C4δ13CO2Js1井长芯1井S2hj-40.2-44.6-42.4-43.7-14.7S2hj-40.2-44.9-42.1-43.0-12.2S1l-40.2S1l-50.3

注:长芯1井数据源自王社教[27]。

根据δ13C2-δ13C1与δ13C2两项指标可以很好的划分有机气的成因类型。将建南气田与邻区(川东北、川西北、威远)的天然气碳同位素测试结果投到δ13C2与Δ(δ13C2-δ13C1)相关图上,Js1井志留系落在油型气区(图3)。

3.2 天然气有机成因类型

国内外学者[14,21-22,28-33]常用Behar的实验模型区分干酪根降解气和原油二次裂解气。本研究中,Js1井韩家店组中天然气的ln(C1/C2)值变化范围小,为3.82~4.18;而ln C2/C3值明显增大,为1.62~2.05,具原油裂解气特征(图4)。建南气田石炭系天然气变化与志留系相似,但ln(C1/C2)值变化范围较宽,可能为干酪根降解气和原油二次裂解气混合导致。该气区二叠—三叠系天然气的ln(C1/C2)-ln(C2/C3)相关性较差,且干酪根降解气的贡献较大。

4 气源探讨

上述综合分析表明,韩家店组和龙马溪组天然气组分、干燥系数及甲烷碳同位素都十分相似,具有同源的特征。根据前人对中上扬子古生界烃源岩研究成果分析,中上扬子区下震旦统陡山沱组页岩、寒武系牛蹄塘组(水井沱组)页岩及上奥陶统五峰组—下志留统龙马溪页岩组属于腐泥型,后两者属于区域性烃源岩,也是区域性盖层。建南气田所处的鄂西渝东区志留系烃源岩十分发育,为Ⅰ型干酪根,且都达到高—过成熟阶段,具有良好的供烃条件[1-2,33-34]。Js1井志留系气藏具有超压特征,气藏底部为五峰组—龙马溪组厚层页岩,顶部为韩家店组厚层泥岩,封闭性好,志留系下伏天然气和上覆部分煤系天然气充注难以实现。因此,志留系天然气为自生自储自盖型,与前人[35-37]研究认为的超压流体封存箱成藏模式相匹配。

图3 川东地区建南气田及川东气区不同层位 天然气同位素δ13C2与Δ(δ13C2-δ13C1)相关图

图4 川东地区建南气田及川东不同层位 天然气的ln(C1/C2)-ln(C2/C3)相关图

烷烃存在多项性碳同位素倒转,常受多因素复杂条件的影响。不同地质环境中同位素倒转的原因也是不同,导致同位素倒转的因素一般以某1个或某2个因素主导。戴金星对天然气碳同位素倒转研究认为有多种因素[38]:(1)有机烷烃气和无机烷烃气相混合;(2)煤成气和油型气的混合;(3)同型不同源气或同源不同期气的混合;(4)天然气的某一或某些组分被细菌氧化;(5)地温增高;(6)后生δ13C扩散速率或地层水对烷烃气溶解等因素引起分馏。

地质结构分析表明,建南气区深部断裂并不发育,无机气的混入可能性不大。气藏地质结构排除了上部煤成气混入的可能性。同时,近4 km的超压气藏中细菌氧化的可能性较小。

根据烷烃气同位素特征参数ln(C1/C2)-ln (C2/C3)相关性分析,Js1井志留系天然气以原油裂解气为主。而烷烃气同位素中δ13C1>δ13C2部分倒转且δ13C2特别轻,该现象主要是受同源不同期气混合所致。志留系龙马溪组优质烃源岩在生油阶段会产生大量的湿气,而重烃气中乙烷含量最高且同位素较轻。另外,早期原油后生过程产生裂解气也比干酪根晚期裂解气要轻。

从已发表的关于建南气田及川东地区石炭系天然气地球化学资料来看,中上扬子石炭系天然气地球化学特征(CH4含量为93.47%,N2含量为4.12%,CO2含量为0.79%,C1/C1+为98.31,δ13C1为-35.0‰~-37.9‰,δ13C2为32.76‰~-41.44‰)[19,27,39]与志留系天然气相似度甚高,都具有原油裂解气特征(图4)。戴金星曾指出,四川盆地黄龙组天然气来自志留系,同位素倒转为早期伴生气与晚期裂解气混合造成的[39]。中上扬子区石炭系天然气来源于志留系也指示志留系天然气同位素倒转可能也受到后生δ13C扩散速率或地层水对烷烃气溶解等因素引起分馏影响。另外,地球化学数据证实建南气田石炭系天然气原始母源为志留系烃源岩,与早期从地质结构方面得到的认识一致,中扬子鄂西渝东区志留系烃源岩广泛分布且生烃潜力大,石炭系天然气的勘探潜力甚好。

[1] 马文辛,刘树根,黄文明,等.鄂西渝东志留系储层特征及非常规气勘探前景[J].西南石油大学学报:自然科学版,2012,34(6):27-37.

Ma Wenxin,Liu Shugen,Huang Wenming,et al.Reservoir rocks characters of Silurian and its unconventional gas prospection in Western Hubei-Eastern Chongqing[J].Journal of Southwest Petroleum University:Science & Technology Edition,2012,34(6):27-37.

[2] 肖开华,李双建,汪新伟,等.中、上扬子区志留系油气成藏特点与勘探前景[J].石油与天然气地质,2008,29(5):589-596.

Xiao Kaihua,Li Shuanjian,Wang Xinwei,et al.Hydrocarbon accumulation features and exploration direction in the Silurian of the Middle-Upper Yangtze Platform[J].Oil & Gas Geology,2008,29(5):589-596.

[3] 荣延善,沈金才.鄂西渝东JZl井志留系致密砂岩气层解释[J].江汉石油职工大学学报,2013,26(1):18-20.

Rong Yanshan,Shen Jincai.Interpretation of tight sandstone gas reservoirs of Silurian system of well-JZl in Western Hubei and Eastern Chongqing[J].Journal of Jianghan Petroleum University of Staff and Workers,2013,26(1):18-20.

[4] 冯冲,邹华耀,郭彤楼,等.川东北及邻区上二叠统吴家坪组烃源岩评价[J].地球科学与环境学报,2013,35(4):18-29.

Feng Chong,Zou Huayao,Guo Tonglou,et al.Evaluation of source rocks in Upper Permian Wujiaping Formation of northeast Sichuan and its adjacent area[J].Journal of Earth Sciences and Environment,2013,35(4):18-29.

[5] 王志刚.涪陵页岩气勘探开发重大突破与启示[J].石油与天然气地质, 2015, 36(1): 1-6.

Wang Zhigang.Breakthrough of Fuling shale gas exploration and development and its inspiration[J].Oil & Gas Geology,2015,36(1):1-6.

[6] 张琴,王红岩,拜文华,等.南方海相志留系页岩有机质类型恢复研究[J].断块油气田,2013,20(2):154-156.

Zhang Qin,Wang Hongyan,Bai Wenhua,et al.Restoration of organic matter type in Silurian marine shale,South China[J].Fault-Block Oil & Gas Field,2013,20(2):154-156.

[7] 韩克猷,孙玮.四川盆地海相大气田和气田群成藏条件[J].石油与天然气地质,2014,35(1):10-18.

Han Keyou,Sun Wei.Conditions for the formation of large marine gas fields and gas field clusters in Sichuan Basin[J].Oil & Gas Geology,2014,35(1):10-18.

[8] 何丽娟,黄方,刘琼颖,等.四川盆地早古生代构造—热演化特征[J].地球科学与环境学报,2014,36(2):10-17.

He Lijuan,Huang Fang,Liu Qiongying,et al.Tectono-thermal evolution of Sichuan Basin in Early Paleozoic[J].Journal of Earth Sciences and Environment,2014,36(2):10-17.

[9] 张庆峰,郜瑭珺,刘雁婷,等.米仓山前缘长兴—飞仙关组油气成藏特征分析[J].断块油气田,2014,21(6):697-700.

Zhang Qingfeng,Gao Tangjun,Liu Yanting,et al.Analysis on hydrocarbon accumulation characteristics of Changxing-Feixianguan Formation in Micang Montain leading edge[J].Fault-Block Oil and Gas Field,2014,21(6):697-700.

[10] 刘文汇,徐永昌.天然气成因类型及判别标志[J].沉积学报,1996,14(1):110-115.

Liu Wenhui,Xu Yongchang.Genetic indicators for natural gases[J].Acta Sedimentologica Sinica,1996,14(1):110-115.

[11] 张水昌,朱光有.中国沉积盆地大中型气田分布与天然气成因[J].中国科学:D辑:地球科学,2007,37(增刊2):1-11.

Zhang Shuichang,Zhu Guangyou.Natural gas origins of large and medium-scale gas fields in China sedimentary basin[J].Science In China:Series D:Earth Sciences,2008,37(S2):1-11.

[12] 戴金星.天然气中烷烃气碳同位素研究的意义[J].天然气工业,2011,31(12):1-6.

Dai Jinxing.Significance of the study on carbon isotopes of alkane gases[J].Natural Gas Industry,2011,31(12):1-6.

[13] 戴金星,于聪,黄士鹏,等.中国大气田的地质和地球化学若干特征[J].石油勘探与开发,2014,41(1):1-13.

Dai Jinxing,Yu Cong,Huang Shipeng,et al.Geological and geochemical characteristics of large gas fields in China [J].Petroleum Exploration and Development,2014,41(1):1-13.

[14] 钱志浩,陈正辅.塔里木盆地北部天然气成因类型研究[J].石油实验地质,1992,14(3):217-226.

QianZhihao,ChenZhenfu.On the origin of the natural gas in the northern Tarim basin[J].Experimental Petroleum Geology,1992,14(3):217-226.

[15] 郭建军,陈践发,朱雷,等.塔里木盆地塔中天然气的地球化学特征及其成因[J].石油实验地质,2007,29(6):577-582.

Guo Jianjun,Chen Jianfa,Zhu Lei,et al.Geochemical characteristics and genesis of the natural gas in the Tazhong Uplift,the Tarim Basin[J].Petroleum Geology & Experiment,2007,29(6):577-582.

[16] 吴小奇,陶小晚,刘景东.塔里木盆地轮南地区天然气地球化学特征和成因类型[J].天然气地球科学,2014,25(1):53-61.

Wu Xiaoqi,Tao Xiaowan,Liu Jingdong.Geochemical characteristics and genetic types of natural gas from Lunnan area in Tarim Basin[J].Natural Gas Geoscience,2014,25(1):53-61.

[17] 刘全有,金之钧,王毅,等.塔里木盆地天然气成因类型与分布规律[J].石油学报,2009,30(1):46-50.

Liu Quanyou,Jin Zhijun,Wang Yi,et al.Genetic type and distribution of natural gas in Tarim Basin[J].Acta Petrolel Sinica,2009,30(1):46-50.

[18] 王祥,张敏,刘玉华.塔里木盆地塔中地区天然气成因及其差异[J].石油与天然气地质,2010,31(3):335-342.

Wang Xiang,Zhang Min,Liu Yuhua.Origins of natural gas in Tazhong area,the Tarim Basin and their differences[J].Oil & Gas Geology,2010,31(3):335-342.

[19] 王顺玉,戴鸿鸣,王海清,等.四川盆地海相碳酸盐岩大型气田天然气地球化学特征与气源[J].天然气地球科学,2000,11(2):10-17.

Wang Shunyu,Dai Hongming,Wang Haiqing,et al.Natural gas geochemistry characters and origin of large gas field in marine carbonates of the Sichuan Basin[J].Natural Gas Geoscience,2000,11(2):10-17.

[20] 戴金星,夏新宇,卫延召,等.四川盆地天然气的碳同位素特征[J].石油实验地质,2001,23(2):115-121.

Dai Jinxing,Xia Xinyu,Wei Yanzhao,et al.Carbon isotope cha-racteristics of natural gas in the Sichuan Basin ,China[J].Petroleum Geology & Experiment,2001,23(2):115-121.

[21] 刘光祥,陶静源,潘文蕾,等.川东北及川东区天然气成因类型探讨[J].石油实验地质,2002,24(6):512-516.

Liu Guangxiang,Tao Jingyuan,Pan Wenlei,et al.Genetic types of the natural gas in the northeast and the east of Sichuan basin[J].Petroleum Geology & Experiment,2002,24(6):512-516.

[22] 朱光有,张水昌,梁英波,等.四川盆地天然气特征及气源[J].地学前缘,2006,13(2):234-248.

Zhu Guang you,Zhang Shui chang,Liang Ying bo,et al.The cha-racteristics of natural gas in Sichuan basin and its sources[J].Earth Science Frontiers,2006,13(2):234-248.

[23] 马永生.普光气田天然气地球化学特征及气源探讨[J].天然气地球科学,2008,19(1):1-7.

Ma Yongsheng.Geochemical characteristics and origin of natural gases from Puguang gas field on eastern Sichuan Basin[J].Natural Gas Geoscience,2008,19(1):1-7.

[24] 王强,徐立恒,陈践发.川东北地区大中型气藏天然气特征及气源[J].石油与天然气地质,2011,32(54):867-872.

Wang Qiangl,Xu Liheng,Chen Jianfa.Characteristics and origin of natural gas in large-and medium-sized gas reservoirs in northeast Sichuan Basin[J].Oil & Gas Geology,2011,32(54):867-872

[25] 郭少斌,黄磊.页岩气储层含气性影响因素及储层评价:以上扬子古生界页岩气储层为例[J].石油实验地质,2013,35(6):601-606.

Guo Shaobin,Huang Lei.Gas-bearing influential factors and evaluation of shale gas reservoir:A case study of Paleozoic shale gas reservoir in Upper Yangtze region[J].Petroleum Geology & Experiment,2013,35(6):601-606.

[26] 魏国齐,谢增业,白贵林,等.四川盆地震旦系—下古生界天然气地球化学特征及成因判识[J].天然气工业,2014,34(3):44-49.

Wei Guoqi,Xie Zengye,Bai Guilin,et al.Organic geochemical characteristics and origin of natural gas in the Sinian-Lower Paleozoic reservoirs,Sichuan Basin[J].Natural Gas Industry,2014,34(3):44-49.

[27] 王社教,王兰生,黄金亮,等.上扬子区志留系页岩气成藏条件[J].天然气工业,2009,29(5):45-50.

Wang Shejiao,Wang Lansheng,Huang Jinliang,et al.Accumulation conditions of shale gas reservoirs in Silurian of the Upper Yangtze region[J].Natural Gas Industry,2009,29(5):45-50.

[28] Behar F,Ungerer P,Kressmann S,et al.Thermal evolution of crude oils in sedimentary basins:experimental simulation in a confined system and kinetic modeling[J].Oil & Gas Science and Technology-Rev. IFP,1991,46(2):151-181.

[29] Prinzhofer A A,Huc A Y.Genetic and post-genetic molecular and isotopic fractionations in natural gases[J].Chemical Geology,1995,126(3/4):281-290.

[30] 赵孟军,卢双舫.原油二次裂解:天然气重要的生成途径[J].地质论评,2000,46(6):646-650.

Zhao Mengjun,Lu Shuangfang.Natural gas from secondary cracking of crude oil :an important pattern of gas generation[J].Geological Review,2000,46(6):646-650.

[31] 尹长河,王廷栋,王顺玉,等.威远、资阳震旦系干酪根与油裂解气的鉴别[J].沉积学报,2001,19(1):156-160.

Yin Changhe,Wang Tingdong,Wang Shunyu,et al.Differences between kerogen- and oil-cracked gases in Sinian reservoirs of Weiyuan and Ziyang area[J].Acta Sedimentologica Sinca,2001,19(1):156-160.

[32] 郭利果,肖贤明,田辉.原油裂解气与干酪根裂解气差异实验研究[J].石油实验地质,2011,33(4):428-436.

Guo Liguo,Xiao Xianming,Tian Hui.Laboratory studies of dif-ferences between oil-derived and kerogen maturation gases[J].Petroleum Geology & Experiment,2011,33(4):428-436.

[33] 李艳霞,李净红.中扬子区上震旦统—志留系页岩气勘探远景[J].新疆石油地质,2010,31(6):659-664.

Li Yanxia,Li Jinghong.Exploration prospects of shale gas of Upper Sinian-Silurian in Mid-Yangtze region[J].Xinjiang Petroleum Geology,2010,31(6):659-664.

[34] 李艳霞,林娟华,龙幼康,等.中扬子地区下古生界海相泥—页岩含气勘探远景[J].地质通报,2011,30(2-3):349-356.

Li Yanxia,Lin Juanhua,Long Youkang,et al.Exploration prospect of gas-bearing marine mudstone-shale in Lower Palaeozoic in the Central Yangtze area[J].Geological Bulletin of China,2011,30(2/3):349-356.

[35] 徐国盛,曹竣锋,朱建敏,等.鄂西渝东地区典型构造流体封存箱划分及油气藏的形成与演化[J].成都理工大学学报:白然科学版,2009,36(6):621-630.

Xu Guosheng,Cao Junfeng,Zhu Jianmin,et al.Division of fluid compartments and the formation and evolution of oil and gas accumulation in the typical structures of Western Hubei-Eastern Chongqing area,China[J].Journal Of Chengdu University Of Technology :Science & Technology Edition,2009,36(6):621-630.

[36] 胡晓凤,丁青.鄂西渝东区志留系流体封存箱的演化与天然气成藏[J].海相油气地质,2011,16(3):38-44.

Hu Xiaofeng,Ding Qing.Evolution of Silurian fluid compartments and gas accumulation in Western Hubei-Eastern Chongqing area[J].Marine Origin Petroleum Geology,2011,16(3):38-44.

[37] 王韶华,万云强,林娟华.建南气田海相天然气藏成因类型探讨[J].石油天然气学报,2008,30(4):37-72.

Wang Shaohua,Wan Yuqiang,Lin Juanhua.Genetic type of na-tural gas of marine facies in Jiannan gas field[J].Journal of Oil and Gas Technology,2008,30(4):37-42.

[38] 戴金星,夏新宇,秦胜飞,等.中国有机烷烃气碳同位素系列倒转的成因[J].石油与天然气地质,2003,24(1):1-6.

Dai Jinxing,Xia Xingyu,Qin Shengfei,et al.Causation of partly reversed orders ofδ13C in biogenic alkane gas in China[J].Oil & Gas Geology,2003,24(1):1-6.

[39] 戴金星,倪云燕,黄士鹏.四川盆地黄龙组烷烃气碳同位素倒转成因的探讨[J].石油学报,2010,31(5):710-717.

Dai Jinxing,Ni Yunyan,Huang Shipeng.Discussion on the carbon isotopic reversal of alkane gases from the Huanglong Formation in the Sichuan Basin,China[J].Acta Petrolei Sinica,2010,31(5):710-717.

(编辑 黄 娟)

Geochemical characteristics and origin of natural gas from the Silurian in Jiannan gas field

Li Airong1,2, Li Jinghong3, Zhang Jingong2, Song Lijun1

(1.SchoolofEarthScienceandEngineering,Xi’anShiyouUniversity,Xi’an,Shaanxi710065,China;2.StateKeyLaboratoryofContinentalDynamics/DepartmentofGeology,NorthwestUniversity,Xi’an,Shaanxi710069,China;3.GeologyScienceandEngineeringDepartment,WuhanUniversityofEngineeringScience,Wuhan,Hubei430200,China)

The geochemical characteristics and origin of the gas are studied according to gas composition and carbon isotope data from the Jiannan and adjacent areas and combined with regional hydrocarbon source rock data. Results show that the Silurian natural gas in the Jiannan gas field is dry. The content of non-hydrocarbon gas is low, and no H2S exists. The carbon isotopes ofn-alkanes are lower than -40‰, indicating a petroliferous gas origin from sapropel kerogens. The correlation between ln(C1/C2) and ln(C2/C3) shows that the present day Silurian gas mainly comes from the secondary cracking of crude oil. The analyses of geologic features indicate that the Silurian gas in the Jiannan gas field source from the carbonate shale in the Longmaxi Formation. The local reversal of alkane carbon isotopes can be explained by the mixing of late stage crude oil cracking gas and early stage kerogen degradation gas. The Longmaxi shale is mature and widespread in the middle and upper Yangtze region, indicating it is a good prospect for natural gas exploration in Silurian and Carboniferous.

natural gas; geochemical characteristics; gas source; Silurian; Jiannan gas field; eastern Sichuan Basin

1001-6112(2015)04-0500-06

10.11781/sysydz201504500

2014-09-04;

2015-05-20。

李爱荣(1976—),女,博士,讲师,从事油藏描述、油气田地质与开发的教学与研究工作。E-mail:lar9503@163.com。

李净红(1985—),男,硕士,讲师,从事油气成藏地球化学研究。E-mail:oil-and-gas@sohu.com。

国家自然科学基金项目(41072096)资助。

TE122.1

A

猜你喜欢

志留系烷烃气田
气相色谱六通阀在正构烷烃及碳数分布测定中的应用
江南断裂带周边地区志留系层序地层特征及页岩气勘探前景
顺北5-8井志留系破裂性地层提高承压能力技术
高苯原料油烷烃异构化的MAX-ISOM技术
气田水回注方式探讨
烷烃油滴在超临界二氧化碳中溶解的分子动力学模拟
气田开发试采井口流程探讨
塔里木盆地志留系热液碎屑岩储层:证据、矿物组合及油气地质意义
苏里格气田低含醇气田采出水处理剖析
南方海相志留系页岩有机质类型恢复研究