APP下载

长期保护性耕作提高土壤大团聚体含量及团聚体有机碳的作用

2015-06-15吴会军武雪萍蔡典雄姚宇卿吕军杰刘志平

植物营养与肥料学报 2015年2期
关键词:保护性土壤有机耕作

李 景, 吴会军*, 武雪萍*, 蔡典雄, 姚宇卿, 吕军杰, 郑 凯, 刘志平

(1 中国农业科学院农业资源与农业区划研究所, 北京 100081; 2 洛阳市农业科学研究所, 河南洛阳 471022;3 中国农业大学资源与环境学院, 北京 100193)

长期保护性耕作提高土壤大团聚体含量及团聚体有机碳的作用

李 景1, 吴会军1*, 武雪萍1*, 蔡典雄1, 姚宇卿2, 吕军杰2, 郑 凯1, 刘志平3

(1 中国农业科学院农业资源与农业区划研究所, 北京 100081; 2 洛阳市农业科学研究所, 河南洛阳 471022;3 中国农业大学资源与环境学院, 北京 100193)

耕作; 土壤; 团聚体; 有机碳

保护性耕作是以减少土壤扰动和增加秸秆覆盖为主要特点的一种耕作方式,近些年被广泛推广,保护性耕作产生的固碳效应也越来越引起关注。土壤有机碳(SOC)与土壤团聚程度关系密切[1-2],团聚体形成作用被认为是土壤固碳的最重要机制。因此,研究不同耕作措施下土壤团聚体及其有机碳分布特征,对认识土壤碳固定机制和选择合理的耕作措施有重要的理论和实践意义。

土壤团聚体是土壤结构的基本单元,其数量和质量直接决定土壤质量和肥力[3],不同粒级团聚体在养分的保持、供应及转化能力等方面发挥着不同的作用[4-5]。耕作带来的机械扰动破坏了大团聚体,暴露出原先被团聚体保护的土壤有机碳,增加土壤有机碳的分解速率[6-9]。前人在不同耕作措施对团聚体和SOC的影响方面做了很多研究,Dolan等[10]研究表明,长期免耕(23年)与翻耕相比,土壤表层有机碳含量提高了30%。同时,耕作措施可以影响土壤团聚体结构,良好的土壤团聚体结构可以贮存更多SOC[11]。Rouven等[12]的研究结果表明,保护性耕作可显著提高0—5 cm土层的大团聚体数量,同时减少微团聚体数量;Castro等[6]研究表明,免耕能够提高团聚体中有机碳含量,尤其是大团聚体有机碳含量。有关耕作对土壤团聚体有机碳的影响等方面的研究较多,但多为试验当年的土样,缺乏阶段性对比,尤其在对长期试验研究中,缺乏试验当年与试验初期比较。

本文以河南豫西地区13年耕作试验为研究对象,观测和分析了免耕(NT)、深松覆盖(SM)和翻耕(CT)长期试验第3年和第13年的土壤水稳性团聚体特征及团聚体有机碳含量,以明确长期耕作措施对土壤团聚体及其有机碳的影响,为探讨土壤固碳机理,优化黄土高原坡耕地区农田耕作管理措施,实现土壤固碳减排、培肥土壤提供理论依据。

1 材料与方法

1.1 研究区概况

1.2 试验设计

1.3 样品采集与分析

土壤样品分别在2002年和2011年采集,在0—10 cm和10—20 cm两个土层采集样品,取3次重复,每个重复随机取10个点混合成混合土样。土壤样品采集后在室内风干,将风干土过8 mm筛,除去小石块及大于8 mm根系、凋落物等。

团聚体分级参考Cambardella和Elliott的湿筛法[7],用土壤团聚体筛分仪(套筛: 2000 μm,250 μm,53 μm)进行团聚体分级。向土壤团聚体筛分仪的水桶内装入约2/3桶蒸馏水,将2000 μm筛子放在最上面,下面依次套上250 μm和53 μm筛子,并使筛子处于上下震动的最下端,再向水桶中加入适量蒸馏水,使水面淹没约筛子高的2/3处。称取80 g风干土平铺于2000 μm筛子上,浸没5 min。开启测定仪,筛子上下移动幅度为3 cm,频率为30次/min,共上下震荡2 min之后,关闭测定仪。将每一级筛子上的土用蒸馏水冲洗到铁盒内。<53 μm的部分留在水桶内,静置过夜后将上清液倒出,<53 μm的部分转至铁盒。将分离出的各级团聚体放入55℃烘箱内烘干、称重。

土壤及团聚体有机碳的测定采用重铬酸钾-容量法进行测定。

1.4 数据处理

利用各级别团聚体数据,计算土壤团聚体平均质量直径(Mean weight diameter, MWD)[13]。

采用Excel2003进行数据、图表处理,利用SAS9.1软件进行方差分析(ANOVA),用最小显著差数法(LSD)进行显著性检验。

2 结果与分析

2.1 不同耕作下土壤有机碳含量

表1表明,SOC含量在不同土壤层次年际间表现不同演变趋势,在土壤表层(0—10cm),试验初期(2002年)各处理的SOC含量没有显著差异,耕作进行13年后(2011年),NT和SM处理显著提高了SOC含量,较CT处理分别提高33.47%和44.48%。不同处理的SOC含量随耕作年限变化不同。NT和SM处理2011年SOC含量较2002年上升了1.92%和8.59%;CT处理SOC含量随耕作年限呈明显下降趋势,2011年与2002年相比下降了18.97%,下降量为1.37g/kg,年平均下降量为0.15g/kg。耕作处理对在10—20cm土层SOC含量无显著影响。

2.2 不同耕作下土壤团聚体分布状况

表1 不同耕作处理下土壤有机碳含量

注(Note): NT—免耕 No-tillage;SM—深松覆盖 Sub-soiling with mulch;CT—翻耕 conventional tillage. 同列不同字母表示处理间差异达5%显著水平 Values followed by different letters in a column are significant different among the treatments at the 5% level.

图1 不同耕作措施下土壤大团聚体的质量分数Fig.1 Mass percentage of soil macroaggregates under different tillage systems[注(Note): NT—免耕覆盖 No-tillage;SM—深松覆盖 Sub-soiling with mulch;CT—翻耕 conventional tillage. 柱上不同字母表示处理间差异达5%显著水平 Different letters above the bars are significant among the treatments at the 5% level.]

图2 不同耕作措施下土壤微团聚体的质量分数Fig.2 Mass percentage of soil microaggregates under different tillage systems[注(Note): NT—免耕覆盖 No-tillage;SM—深松覆盖 Sub-soiling with mulch;CT—翻耕 Conventional tillage. 柱上不同字母表示处理间差异达5%显著水平 Different letters above the bars are significant among the treatments at the 5% level.]

2.2.4 耕作措施对土壤团聚体稳定性的影响 MWD是反映土壤团聚体稳定性的常用指标[6,13]。长期耕作能够显著影响土壤0—10 cm层土壤团聚体稳定性,对10—20 cm土层无显著影响(表2)。与CT处理相比,长期NT及SM显著提高了表层0—10 cm土壤MWD,分别提高了20.55%和39.68%。同时,MWD随耕作年限变化明显,CT处理下MWD随耕作年限明显下降,2011年较2002年下降了7.10%。

2.3 土壤团聚体有机碳含量

2.3.1 13年不同耕作处理的影响 长期耕作能够显著影响土壤0—10 cm层土壤团聚体有机碳含量,对10—20 cm土层无显著影响(图3、图4)。在0—10 cm层,NT和SM处理提高了各个级别团聚体有机碳含量,尤其以>2000 μm团聚体有机碳含量提高最多,较CT处理分别提高了40.00%和27.60%。

表2 不同耕作措施下土壤微团聚体的稳定性指数

注(Note): NT—免耕覆盖 No-tillage;SM—深松覆盖 Sub-soiling with mulch;CT—传统耕作 Conventional tillage. 不同字母表示处理间差异达5%显著水平 Different letters above the bars are significant among the treatments at the 5% level.

图3 不同耕作下土壤大团聚体有机碳含量状况Fig.3 Organic carbon contents of macroaggregates under different tillage systems[注(Note): NT—免耕覆盖 No-tillage; SM—深松覆盖 Sub-soiling with mulch;CT—翻耕 Conventional tillage. 柱上不同字母表示处理间差异达5%显著水平 Different letters above the bars are significant among the treatments at the 5% level.]

图4 不同耕作下土壤微团聚体SOC含量Fig.4 Organic contents of microaggregates under different tillage systems[注(Note): NT—免耕覆盖 No-tillage; SM—深松覆盖 Sub-soiling with mulch; CT—翻耕 Conventional tillage. 柱上不同字母表示处理间差异达5%显著水平 Different letters above the bars are significant among the treatments at the 5% level.]

3 讨论

3.1 耕作对土壤有机碳含量的影响

国内外许多研究也表明,免耕条件下SOC的积累仅限于土壤表层(<10 cm),秸秆还田对表层的贡献率要大于其对亚表层的贡献[14-18]。本研究同时表明,长期免耕覆盖和深松覆盖均可提高0—10 cm层SOC含量,对10—20 cm层无提升作用,与前人研究结果一致,相反,翻耕条件下10—20 cm土层SOC含量较高,较NT处理提高1.33%,较SM处理提高4.74%,这可能是由于经过翻动,土壤表层的植物残体被翻到地下,从而促进了土壤10—20 cm层SOC的积累[19]。本研究结果同时表明深松覆盖对0—10 cm层SOC含量提升效果好于免耕覆盖,这可能是由于深松作用打破了犁底层,促进了作物生长,提高了秸秆还田量,从而增加了还碳量。

土壤固碳具有明显的滞后效应,梁爱珍等[20]表明,5年免耕覆盖处理下土壤0—30 cm土层SOC含量随耕作年限先降低后增加,说明免耕覆盖有利于SOC的积累,但是这一作用存在滞后效应,5年左右才能发挥作用。王成己等[21]研究结果表明结合秸秆还田的保护性耕作有效固碳期限在旱地可持续23年。本研究表明,在耕作初期(2002年)免耕覆盖和深松覆盖下0—10 cm土层SOC差异并不明显,经过13年的试验后,覆盖在地表的秸秆在SOC增加的过程中已经发挥作用,免耕覆盖和深松覆盖处理对SOC含量的累积效应也逐渐体现出来。

3.2 耕作对团聚体的影响

本研究结果表明,长期免耕覆盖和深松覆盖处理可显著提高0—10 cm土层大团聚体含量与团聚体稳定性,与前人的研究结果一致[22-24]。这可能是由于免耕覆盖和深松覆盖都进行了秸秆还田,植物残体的输入有效的改善了作为团聚体胶结剂的土壤有机质状况,促进了团聚体的形成和稳定。相关研究结果表明,SOC与土壤团聚体关系密切,土壤团聚体的形成和稳定性取决于有机质含量[11,25]。本研究中,土壤大团聚体含量和稳定性指数MWD与SOC的变化趋势一致,验证了前人研究结果。

本研究结果同时表明,免耕覆盖和深松覆盖显著提高了土壤0—10 cm层大团聚体含量,与翻耕相比,2002年提高了14.72%和18.76%,这说明免耕覆盖和深松覆盖在试验初期就可促进大团聚体的形成。翻耕处理下大团聚体含量随耕作年限明显下降,2011年大团聚体含量较2002年下降了8.04%,这可能是由于每年收获后和播种前土壤进行翻动,破坏了原有的大团聚体,同时翻耕条件下秸秆还田量较小,新的大团聚体形成较少。耕作处理对微团聚体含量的影响,表现出与大团聚体含量相反的趋势。Six等[9]认为,大团聚体在新鲜植物残体周围形成,大团聚体破碎后释放出原先被大团聚体包裹的新及老的微团聚体后,微团聚体数量就会相应增加,免耕覆盖后土壤有机物质输入增多,土壤有机碳含量增加,更多的新大团聚体就会增加,而微团聚体相应减少。

3.3 耕作对团聚体有机碳的影响

本研究同时表明,免耕覆盖和深松覆盖处理下0—10 cm土层>2000 μm级水稳性团聚体有机碳随耕作年限明显增加,这可能是由于随着耕作时间的增加,免耕覆盖和深松覆盖下植物残体在表层富集程度加深,从而使更多的有机碳进入>2000 μm团聚体。

4 结论

通过13年的保护性耕作试验,免耕覆盖和深松覆盖显著提高了0—10 cm层土壤有机碳含量,与耕作初期相比,这种促进作用随耕作年限有增加的趋势。免耕覆盖和深松覆盖可显著提高0—10 cm层大团聚体含量和水稳定性,改善了土壤结构。同时,免耕覆盖和深松覆盖提高了0—10 cm层土壤各级别团聚体有机碳的含量,尤其以>2000 μm团聚体有机碳含量的提升最多。与耕作初期相比,免耕覆盖和深松覆盖处理下>2000 μm团聚体有机碳随耕作年限明显增加。综上所述,保护性耕作(包括免耕覆盖和深松覆盖)提高了土壤大团聚体含量和团聚体有机碳含量,具有改善土壤结构、提高土壤肥力的作用,在河南豫西丘陵地区是一种较为合理的耕作方式。

[1] Mrabet R. Stratification of soil aggregation and organic matter under conservation tillage systems in Africa[J]. Soil and Tillage Research, 2002, 66(2): 119-128.

[2] Liu M Y, Chang Q R, Qi Y Betal. Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China[J]. CATENA, 2014, 115: 19-28.

[3] 郑子成, 刘敏英, 李廷轩. 不同植茶年限土壤团聚体有机碳的分布特征[J]. 中国农业科学, 2013, 46(9): 1827-1836. Zheng Z C, Liu M Y, Li T X. Distribution characteristics of organic carbon fractions in soil aggregates under tea plantation of different ages[J]. Scientia Agricultura Sinica, 2013, 46(9): 1827-1836.

[4] Paul B K, Vanlauwe B, Ayuke Fetal. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity[J]. Agriculture, Ecosystems and Environment, 2013, 164: 4-22.

[5] 陈恩凤, 周礼恺, 武冠云. 微团聚体的保肥供肥性能及其组成比例在评断土壤肥力水平中的意义[J]. 土壤学报, 1994, 31(1): 18-25. Chen E F, Zhou L K, Wu G Y. Performances of soil microaggregates in storing and supplying moisture and nutrients and role of their compositional proportion an judging fertility level[J]. Acta Pedologica Sinaca, 1994, 31(1): 18-25.

[6] Castro Filho C, Lourenço A, Guimarães M Fetal. Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil[J]. Soil and Tillage Research, 2002, 65(1): 45-51.

[7] Cambardella C A, Elliott E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1993, 57(4): 1071-1076.

[8] Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982. 33(2): 141-163.

[9] Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000. 32(14): 2099-2103.

[10] Dolan M S, Clapp C E, Allmaras R Retal. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management[J]. Soil and Tillage Research, 2006, 89(2): 221-231.

[11] Gupta C, Sonal S, Ranbir Setal. Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice-wheat cropping system under reclaimed sodic soil[J]. Soil and Tillage Research, 2014, 136: 76-83.

[12] Rouven A, Koch H J, Ludwig B. Effect of long-term tillage treatments on the temporal dynamics of water-stable aggregates and on macro-aggregate turnover at three German sites[J]. Geoderma, 2014, 217: 57-64.

[13] 周虎, 吕贻忠, 杨志臣, 李保国. 保护性耕作对华北平原土壤团聚体特征的影响[J]. 中国农业科学, 2007, 40(9): 1973-1979. Zhou H, Lü Y Z, Yang Z Cetal. Effects of conservation tillage on soil aggregates in Huabei plain, China[J]. Scientia Agricultura Sinica, 2007, 40(9): 1973-1979.

[14] 姜学兵, 李运生, 欧阳竹, 等. 免耕覆盖对土壤团聚体特征以及有机碳储量的影响[J]. 中国生态农业学报, 2012, 20(3): 270-278. Jiang X B, Li Y S, Ouyang Zetal. Effect of no-tillage on soil aggregate and organic carbon storage[J]. Chinese Journal of Eco-Agriculture, 2012, 20(3): 270-278.

[15] Six J, Elliott E T, Paustian K, Doran J W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998. 62(5): 1367-1377.

[16] Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31.

[17] Balesdent J, Chenu C, Balabane M. Relationship of soil organic matter dynamics to physical protection and tillage[J]. Soil and Tillage Research, 2000, 53(3): 215-230.

[18] Franzluebbers A. Soil organic matter stratification ratio as an indicator of soil quality[J]. Soil and Tillage Research, 2002. 66(2): 95-106.

[19] Allmaras R R, Linden D R, Clapp C E. Corn-residue transformations into root and soil carbon as related to nitrogen, tillage, and stover management[J]. Soil Science Society of America Journal, 2004, 68(4): 1366-1375.

[20] 梁爱珍, 杨学明, 张晓平, 等. 免耕覆盖对东北黑土水稳性团聚体中有机碳分配的短期效应[J]. 中国农业科学, 2009, 42(8): 2801-2808. Liang A Z, Yang X M, Zhang X Petal. Short-term impacts of no tillage on soil organic carbon associated with water-stable aggregates in black soil of northeast China[J]. Scientia Agricultura Sinica, 2009, 42(8): 2801-2808.

[21] 王成己, 潘根兴, 田有国. 保护性耕作下农田表土有机碳含量变化特征分析—基于中国农业生态系统长期试验资料[J]. 农业环境科学学报, 2009, 28(12): 2464-2475. Wang C J, Pan G X, Tian Y G. Characteristics of cropland topsoil organic carbon dynamics under different conservation tillage treatments based on long-term agro-ecosystem experiments across mainland China[J]. Journal of Agro-Environment Science, 2009, 28(12): 2464-2475.

[22] 蔡立群, 齐鹏, 张仁陟, 等. 不同保护性耕作措施对麦-豆轮作土壤有机碳库的影响[J]. 中国生态农业学报, 2009, 17(1): 1-6. Cai L Q, Qi P, Zhang R Zetal. Effects of different conservation tillage measures on soil organic carbon pool in two sequence rotation systems of spring wheat and pease[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 1-6.

[23] Elliott E T and Cambardella C A. Physical separation of soil organic matter[J]. Agriculture, Ecosystems & Environment, 1991, 34(1/4): 407-419.

[24] 梁爱珍, 张晓平, 杨学明, 等. 耕作对东北黑土团聚体粒级分布及其稳定性的短期影响[J]. 土壤学报, 2009, 46(1): 154-158. Liang A Z, Zhang X P, Yang X Metal. Short-term effects of tillage on soil aggregate size distribution and stability in black soil in northeast China[J]. Acta Pedologica Sinica, 2009, 46(1): 154-158.

[25] Yang X M, Drury C F, Reynolds W D, Tan C S. Impacts of long-term and recently imposed tillage practices on the vertical distribution of soil organic carbon[J]. Soil and Tillage Research, 2008, 100(1): 120-124.

[26] Puget P, Chenu C, Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregate[J]. European Journal of Soil Science, 2000, 51(4): 595-605.

Impact of long-term conservation tillage on soil aggregate formation and aggregate organic carbon contents

LI Jing1, WU Hui-jun1*, WU Xue-ping1*, CAI Dian-xiong1, YAO Yu-qing2, LU Jun-jie2, ZHENG Kai1, LIU Zhi-ping

(1InstituteofAgriculturalResourceandRegionalPlanning,ChineseAcademyofAgriculturalSciences,Beijing100081,China; 2LuoyangInstituteofAgriculturalSciences,Luoyang,Henan471022,China; 3CollegeofResourceandEnvironmentalScience,ChinaAgriculturalUniversity,Beijing100193,China)

【Objectives】 Conservation tillage is widely applied as its function in improving soil organic carbon (SOC) contents and the stabilization of soil aggregation. The objectives of this study were to reveal changes of SOC and soil aggregate organic carbon under long-term tillage systems, the influences of different tillage treatments on the formation of different sizes of aggregates, and the sustainable tillage system for the loess hilly region of China.【Methods】 A long-term tillage experiment, started in 1999, was used for the study. The tillage treatments included: no-tillage (NT), sub-soiling and mulch tillage (SM), and conventional tillage (CT). Soil samples were collected at depths of 0-10 cm and 10-20 cm in 2002 and 2011, soil aggregates were separated into>2000 μm, 250-2000 μm, 53-250 μm and<53 μm using wet sieving method. The SOC concentrations were measured by potassium bichromate titrimetric method. 【Results】 The tillage treatments affect SOC contents more significantly in surface soil (0-10 cm) than in sub-surface (10-20 cm). Compared with CT, SOC contents in the 0-10 cm soil layer are significantly increased by 33.47% and 44.48% in the NT and SM treatments after 13 years, respectively. Compared with 2002, the SOC contents in NT and SM in 2011 are increased by 1.92% and 8.59% respectively, while that in CT decreased by 18.97%. The NT and SM play a role in improving soil structure which could improve the contents of soil macroaggregates and water stability of aggregate in surface soil. Compared with CT, the contents of water-stable macroaggregates (>2000 μm) in NT and SM are significantly increased by 40.71% and 106.75% respectively, and the soil aggregate mean weight diameters (MWD) by 20.55% and 39.68% respectively, while the contents of microaggregates (53-250 μm) are significantly decreased by 19.72% and 22.53% respectively. NT and SM significantly improve soil aggregate organic carbon contents in surface soil, especially those in macroaggregates of >2000 μm in size. Compared with CT, the organic carbon contents in macroaggregates of >2000 μm in NT and SM are significantly increased by 40.00% and 27.60%. Macroaggregates organic carbon contents in NT and SM are increased with time, and microaggregates organic carbon contents are decreased reversely. Macroaggregates (>2000 μm) organic carbon contents in the year of 2011 in NT and SM are increased by 23.93% and 7.12% respectively compared with the year of 2002, and microaggregates (53-250 μm) organic carbon contents in NT and SM are decreased inversely by 19.58% and 13.27%. 【Conclusions】 The long-term no-tillage and sub-soiling and mulch tillage, significantly improve surface soil structures through increasing water-stable macroaggregates contents, and improve aggregate organic carbon contents in all sizes aggregates. The macroaggregates organic carbon contents in the conservation tillage are increased with the elongation of experiment, these might explain the higher SOC content in the conservation tillage. In conclusion, the long-term conservation tillage improves soil structure along with SOC content and is a more sustainable tillage system for the loess hilly region of China.

tillage; soil aggregate; organic carbon

2014-01-24 接受日期: 2014-07-09 网络出版日期: 2015-01-28

国家科技支撑计划课题(2015BAD22B03);国家“863”计划项目(2013AA102901);公益性行业(农业)科研专项经费项目(201203030、201203077);中央级公益性科研院所基本科研业务费专项资金(2011-7)资助

李景(1988—), 女, 河北石家庄人, 博士研究生,主要从事保护性耕作研究。E-mail: lijing315666@163.com * 通信作者 E-mail: hjwu@caas.ac.cn;xpwu@caas.ac.cn

S341.1

A

1008-505X(2015)02-0378-09

猜你喜欢

保护性土壤有机耕作
宁夏保护性耕作的必要性及技术模式探讨
保护性开发利用高铝煤炭资源的必要性及相关建议
耕作深度对紫色土坡地旋耕机耕作侵蚀的影响
玉米保护性耕作的技术要领
西双版纳橡胶林土壤有机碳分布特征研究
秸秆还田的土壤有机碳周转特征
土壤有机碳转化研究及其进展
草地耕作技术在澳大利亚的应用
AMDIS在土壤有机污染物鉴别中表征性统计量的探究
保护性耕作机具选型中注意事项