APP下载

750kV双回输电线路架空地线 接地方式分析研究

2015-05-25李燕军孟令增王东育

电气技术 2015年5期
关键词:感应电流单点分段

李燕军 孟令增 王东育 刘 青

(1.陕西省电力公司铜川供电公司,陕西 铜川 727031;2.西安科技大学,西安 710054)

1 架空地线的接地方式

目前我国高压和特高压输电线路的架空地线大多由普通架空地线和OPGW(optical fiber composite overhead ground wire,OPGW)光缆共同组成。OPGW不仅具有输电导线架空地线的防雷作用,还兼具了光纤系统的通信功能[1-3]。OPGW 的结构图如图1所示。同普通地线的接地方式一样,OPGW 也存在着逐塔接地、分段绝缘单点接地和全线绝缘三种方 式[4-5]。

经过长期的探索和借鉴国外的先进经验,目前国内主要存在以下4 种可能的架空地线运行方式[6-7]。

1)普通架空地线分段绝缘、单点接地而OPGW逐塔接地。

图1 OPGW 的结构图

2)普通架空地线和OPGW 均分段绝缘、单点接地。这种接地方式可以通过引入串有放电间隙的耐张金具等特殊元件来实现,在正常的运行情况下,放电间隙应能承受一定的感应电压而不被击穿。

3)普通架空地线和OPGW 均逐塔接地。

4)普通架空地线分段绝缘,而OPGW 全线绝缘。这种接地方式工程上较难实现。

本文以某750kV 输电线路为例,比较架空地线采用上述四种接地方式时地线的感应电压、电流,以及架空地线不同的分段长度对感应值的影响规律。

2 计算模型及参数设置

为了比较几种不同的接地方式,本文选取某典型的750kV 线路,分析各种接地方式下,正常情况的感应电流,感应电压以及单相短路情况下地线的感应电流。750kV 杆塔为SZ102 型杆塔,绝缘子为合成绝缘子,串长8.368m。导线弧垂12.24m。杆塔尺寸参数如图2所示。

图2 杆塔尺寸图

导线采用6×LGJ-500/45 钢芯铝绞线,直流电阻0.05912Ω/km,外径30mm。分裂导线根数为6根,分裂间距40cm。避雷线的型号为GJ70,直流电阻为2.315 Ω/km,计算半径为10.5mm。避雷线的弧垂取为架空线弧垂的0.75 倍,即9.18m。土壤电阻率取为100 Ω·m。输电线路换位方式如图3所示,线路首端母线三相电压为末端母线三相电压为0.9840p.u.。线路全长210km,首端45.56km 为同塔双回线路,其余164.64km 为不同杆线路。本文中改变同塔双回路线路的地线接地方式进行分析计算。

采用ATP 仿真软件中的Line constant 子程序(LCC)计算线路的电阻、电感和电容矩阵。用时控开关和阻值很小的电阻串联来模拟地线的接地情况,开关闭合表示地线在此处接地,开关打开表示地线在此处对地绝缘。

图3 输电线路换位方式

3 正常运行时感应电流、感应电压的分析

正常运行状态下,高压及特高压输电线路的架空地线上会感应出电动势和环路电流,其值的大小由于架空地线接线方式的不同而存在着很大的差异。在地线上产生感应电压的原因有两个:一方面是由于导线之间、导线和地线之间以及地线和地线之间存在分布电容,电容的耦合作用会感应出电压;另一方面,由于导线布置的空间位置不可能完全对称,所以导线周围的电磁场也不平衡,因此存在电磁感应,进而在地线中产生了感应电压。如果地线是逐塔接地的,感应电流经地线、杆塔和大地形成回路,如图4所示,就会由于存在较大的环路电流而造成大量的电能损耗。

图4 地线逐塔接地时产生的环路电流

为了表述方便,将上文提到的四种地线接地方式分别称为方式1、方式2、方式3 和方式4。表1和表2是四种方式下,地线上的感应电压和感应电流的计算结果。

表1 四种方式下地线的感应电压/V

表2 四种方式下地线的感应电流/A

由方式1 的计算结果可见,普通地线上会出现很大的感应电压,当分段长度为40km 时感应电压达到1.585kV,由于OPGW 逐塔接地,所以其上电位几乎为零。这是因为两地线的接地方式不同,导致导线周围的电磁场的不平衡度增加,在未均匀换位的情况下,磁场将在地线上感应出较大的电动势。OPGW 与杆塔、大地形成了闭合的电流通路,出现较大的环路电流。普通地线上电流很小,主要是相间电容耦合产生的。

由方式2 的计算结果可见,在两条地线均采用单点接地的运行方式下,将产生很高的感应电压,达到数千伏,随着线路分段长度的增加,感应电压增大。由于两条地线一端接地,一端通过带放电间隙的绝缘子与大地绝缘,不会构成电流流通的闭合回路,故只有很小的有容性电流。单点接地的接地方式下运行,地线的电能损耗几乎为零。

由方式3 的计算结果可见,当采用两条地线均逐塔接地的接地方式时,由于两条地线均接地,且接地的杆塔、大地的阻值均较小,所以两条地线的电动势均接近于零电位。在这种接地方式下,由于存在很大的感应电流,所以电能损耗很大。

由方式4 的计算结果可见,当采用普通地线单点接地,OPGW 全线绝缘接地方式时,OPGW 中将感应出非常高的感应电压,达到数百千伏。这是由于采用全线绝缘方式的感应电压与导线周围电磁场的平衡度密切相关,一旦电磁场的平衡度被打破感应电压就会达到极高的水平。由于该接线方式下不存在闭合的回路,地线的电能损耗接近于零。

4 单相接地故障时地线的感应电压、感应电流分析

输电线路发生单相短路等故障时会产生很大的短路电流,导线周围的电磁场严重不平衡,地线上将感应出电压,以下计算四种接地方式下,输电线路发生单相接地故障时,地线上出现的感应电流、感应电压,计算结果见表3、表4。短路故障条件为:A 相短路接地,故障点距线路首端2km 处,计算所得的短路电流为14.546kA(幅值)。

表3 单相故障时地线的感应电压/V

表4 单相故障时地线的感应电流/A

由计算结果可知,当输电线路发生单相接地故障时,导线中的短路电流会在单点接地、分段绝缘和全绝缘的地线上产生高达近百千伏的感应电压,可能使地线绝缘端放电间隙击穿。短路电流会使逐塔接地的地线中产生接近10kA 的环路电流,由于地线通过悬垂、耐张等金具与大地相连,环路电流可通过杆塔泄入大地,保护OPGW 和普通地线免受损害。

5 结论

本文选取750kV 典型线路参数,利用ATP 计算了地线采取四种接地方式时,地线上的感应电压和感应电流,经过大量计算初步得到以下结论:

1)线路正常运行时,由于静电耦合和电磁耦合,会在地线上出现感应电压和感应电流,逐塔接地的地线上感应电压最大,且电压随分段长度增加而增加,单点接地、分段绝缘地线上感应电压次之,全线绝缘的地线上感应电压最小。逐塔接地的地线上会出现很大的感应电流,电能损耗较为严重。

2)当发生单相接地短路故障时,对于逐塔接地方式,将在地线上感应出很大的感应电流,由于该 接线方式下存在多条闭合的回路,感应电流可直接泄入大地;对于单点接地、分段绝缘方式,地线上将感应出高达上百千伏的感应电压,可能使绝缘端的间隙击穿。

[1] 张雅婷,高博,施围.750kV 输电线路架空地线损耗的影响因素及降低方法研究[J].电磁避雷器,2008,221.

[2] 王倩,吴田,施荣,等.750kV 输电线路光纤复合架空地线的接线方式[J].高电压技术,2011(37),12.

[3] 胡毅,刘凯.输电线路OPGW 接地方式的分析研究[J].高电压技术,2008,34.

[4] 黄旭峰.光纤复合架空地线接线方式的改进[J].高电压技术,2010(36),2.

[5] 傅宾兰.光纤复合架空地线OPGW 运行状况和防雷[J].中国电力,2005,38.

[6] 张晓东,张栋.高压架空输电线路地线热稳定的计算[J].高电压技术,2005(31),5.

[7] 曾林平,张鹏,冯玉昌,等.750kV 线路架空地线感应电压和感应电流仿真计算[J].电网与清洁能源,2008(24),6.

[8] 吴康平.500kV 线路绝缘地线的设计[J].电力建设,2001(22),11.

猜你喜欢

感应电流单点分段
金属轨道的形状影响感应电流的大小吗
第23和24太阳活动周高纬地磁感应电流分布特性
一类连续和不连续分段线性系统的周期解研究
历元间载波相位差分的GPS/BDS精密单点测速算法
超薄异型坯连铸机非平衡单点浇铸实践与分析
分段计算时间
数字电视地面传输用单频网与单点发射的效果比较
3米2分段大力士“大”在哪儿?
异频法线路参数测试中工频感应电流的影响分析
16吨单点悬挂平衡轴的优化设计