长江中下游成矿带及邻区三维Moho面结构:来自人工源宽角地震资料的约束
2015-05-12张明辉徐涛吕庆田白志明武澄泷武振波滕吉文
张明辉, 徐涛, 吕庆田, 白志明, 武澄泷, 武振波, 滕吉文
1 中国科学院地质与地球物理研究所, 岩石圈演化国家重点实验室, 北京 1000292 中国科学院大学, 北京 1000493 中国科学院青藏高原地球科学卓越创新中心, 北京 1001014 中国地质科学院地球物理地球化学勘查研究所, 河北廊坊 0650005 中国地质科学院地球深部探测中心, 北京 100037
长江中下游成矿带及邻区三维Moho面结构:来自人工源宽角地震资料的约束
张明辉1,2, 徐涛1,3, 吕庆田4,5, 白志明1, 武澄泷1,2, 武振波1,2, 滕吉文1
1 中国科学院地质与地球物理研究所, 岩石圈演化国家重点实验室, 北京 1000292 中国科学院大学, 北京 1000493 中国科学院青藏高原地球科学卓越创新中心, 北京 1001014 中国地质科学院地球物理地球化学勘查研究所, 河北廊坊 0650005 中国地质科学院地球深部探测中心, 北京 100037
为深入理解长江中下游地区在中生代成矿的深部动力学过程,对跨越宁芜矿集区地质廊带内的非纵剖面反射/折射地震数据进行动校正和时深转换处理,获得了非纵方向的Moho面深度;联合纵测线和非纵测线上Moho面深度数据,获得了长江中下游成矿带及邻区的三维Moho面深度结构.结果显示宁芜矿集区下方的Moho面整体较浅,约32~34 km,华北块体合肥盆地内Moho面整体较深,约34~35 km.Moho面深度和区域布格重力异常变化趋势对应良好.宁芜矿集区下方Moho面呈上隆特征,支持长江中下游地区成矿模式中增厚岩石圈发生拆沉、软流圈的上隆及底侵作用等动力学过程.Moho面平行于成矿带走向的变化趋势,预示长江中下游成矿带地壳和上地幔在板块边界发生了NE-SW向的切向流动变形.郯庐断裂带两侧,Moho面深度变化较大,表明地表近陡立的郯庐断裂为深大断裂,深部可能切穿Moho面并延伸至上地幔.
长江中下游成矿带; 三维地壳结构;宽角地震资料; 纵剖面; 非纵剖面
1 引言
长江中下游成矿带位于中国东部扬子块体的北缘,地处华北与扬子块体的拼合地带(Pan and Dong, 1999; Mao et al., 2006).该成矿带形成于燕山期,在长期的岩浆作用、构造活动及成矿作用下,形成了丰富的Cu、Fe、Au等金属矿床组合,多金属矿床有 200多个,由七个矿集区组成,自东向西分别为宁镇、宁芜、铜陵、庐枞、安庆—贵池、九瑞、鄂东南矿集区(常印佛等, 1991; Pan and Dong, 1999; Mao et al., 2006).
针对该成矿带为什么会在如此狭窄的区域内发生如此大规模的金属聚集、深部的岩浆活动机制和动力学过程等焦点问题,在国土资源部“长江中下游成矿带及典型矿集区深部结构探测研究专项”(吕庆田等, 2011, 2014; Dong et al., 2013;Lü et al., 2013a, 2013b, 2015)的支持下,启动了NW-SE向横穿成矿带的廊带式多学科深部探测工作,对区域构造模式和成岩、成矿的深部动力学过程提供了新的约束.宽频带地震资料的接收函数结果显示成矿带对应软流圈上隆带(史大年等, 2012; Shi et al., 2013)、上地幔各向异性特征显示沿成矿带方向(NE-SW)存在软流圈物质的流动变形(Shi et al., 2013)、远震层析成像的速度结果证实了岩石圈的拆沉(Jiang et al., 2013; 江国明等, 2014);深地震反射结果显示陆内俯冲或是岩石圈拆沉前增厚的主要机制(Lü et al., 2013b; 梁峰等, 2014);人工源宽角反射/折射地震结果显示宁芜矿集区的下地壳为低速异常,可能与高速下地壳在燕山期的拆沉作用有关(徐涛等, 2014).通过多学科的系列工作及相关成果(滕吉文等, 1985; 王强等, 2001; 张旗等, 2001, 2002; Dong et al., 2004; 吕庆田等, 2004; Wang et al., 2004, 2006; Zhang et al., 2005, 2007; Bai and Wang, 2006; Bai et al., 2007; 侯增谦等, 2007; Ling et al., 2009; 杨振威等, 2012; Shi et al., 2013; Lü et al., 2013b; 梁锋等, 2014; 张永谦等, 2014; 强建科等, 2014),吕庆田等(2014)总结提出燕山期的陆内俯冲、岩石圈拆沉、熔融和底侵作用,是造成长江中下游晚侏罗和早白垩大规模成岩和成矿作用的主导机制.
人工源深地震测深资料是获取地壳和上地幔顶部速度结构信息的重要途径.为了解Moho面及地壳结构沿成矿带方向(NE-SW)的变化,在实施450 km长的“利辛—宜兴”人工源宽角反射/折射纵剖面过程中(徐涛等, 2014),同时开展了400 km长非纵剖面的地震数据采集工作(图1),期望用最小的代价,获得成矿带三维深部结构,并探讨其对成矿带深部动力学过程的约束.
2 构造背景
长江中下游地区位于下扬子板块的北缘,是大别—苏鲁超高压变质带的前陆,北部以北西向的襄樊—广济断裂和北东向的郯-庐断裂带为界,南部以江南断裂为界与江南古陆为邻,总体上呈南西狭窄、北东宽阔的“V”字型地带(图1).扬子块体呈现“一盖多底”的地壳结构特征,盖层的基底由震旦系-三叠系海相碎屑岩及海陆交互相沉积岩石、侏罗系-白垩系陆相碎屑岩和火山岩组成;而长江中下游地区的陆壳基底由晚太古-早元古代和中元古代变质岩系组成,呈“双层结构”(常印佛等, 1991; 1996).成矿带内出露的地层有零星分布的前震旦纪变质基底和震旦纪碎屑岩、白云岩和硅质岩,广泛发育有寒武纪至早三叠世的碎屑岩和碳酸盐岩及侏罗纪-白垩纪陆相火山岩夹碎屑岩(常印佛等, 1991).
图1 长江中下游成矿带人工源深地震测深观测系统
长江中下游地区的岩浆作用和成矿作用主要发生于145~120 Ma(Chen et al., 2001; Sun et al., 2003; Mao et al., 2006; 周涛发等, 2008; 2012),是中国东部中生代大规模成岩成矿作用的典型代表.其形成的岩浆岩主要有高碱钙碱性系列、橄榄安粗岩系列和碱性(A型)花岗岩系列(周涛发等, 2008; 2012).周涛发等(2008; 2012)总结了四种长江中下游成矿带中生代铜铁金多金属矿床成矿系统的基本类型:与高钾钙碱性岩系有关的矽卡岩-斑岩型成矿系统;与橄榄安粗岩系有关的“玢岩铁矿型”成矿系统;与A型花岗岩有关的氧化物-铜-金(铀)矿床成矿系统及与岩浆活动不明显的Ti,Au,Sb,Pb,Zn低温成矿系统.该区的岩浆活动在时空上表现出明显的分区性,主要分布在断隆区(如铜陵地区等)、断凹区(如庐纵盆地、宁芜盆地等)和隆凹过渡区(如鄂东南地区等)等不同的构造单元内,铜陵矿集区等地主要为高钾钙碱性岩石组合,宁芜和庐枞矿集区为高纳钙碱性侵入岩、橄榄安粗岩系火山岩组合,宁芜地区为碱性火山岩组合,以鄂东南为代表的隆凹过渡区以钙碱性-碱钙性岩浆岩为主等(常印佛等, 1991; 周涛发等, 2008),而其成矿具有较明显的阶段性和分带性(周涛发等, 2008).自西向东,该区的成矿时代有变小的趋势(常印佛等, 1991; 周涛发等, 2008).长江中下游地区不同矿集区的成矿时代大致分为145~137 Ma、135~127 Ma、126~123 Ma等三个阶段,其中145~137 Ma的岩浆活动主要发生在断隆区,是铜金矿化的主要时期,135~127 Ma的岩浆活动主要发生在断凹区,是铁矿化的主要时期(常印佛等, 1991; 周涛发等, 2008, 2012).
3 地震资料采集与处理
3.1 地震数据采集
广角反射/折射深部地震探测剖面约850 km,其中纵剖面长450 km,非纵剖面长400 km;沿纵探测剖面设计6个人工源爆破激发点(总数达 13.2 吨TNT),采用多深井组合激发方式,炮点间距 60~90 km;地震观测采用三分量数字地震仪,共450台(纵测线250台,非纵测线200台),道间距为1.5~2.0 km,记录来自地壳上地幔顶部不同深度范围、不同属性的深层地震波信息.
纵测线(图1)为NW-SE走向,起始于宜兴附近,然后跨过江南断裂(JNF)、茅山东侧断裂(MSF)、滁河断裂(CHF)和郯庐断裂(TLF),终止于利辛附近.自东向西依次穿过的构造单元有扬子块体,长江中下游成矿带内的宁芜盆地、滁河盆地,然后进入华北块体.非纵测线(图1)呈NE-SW走向,与纵测线近乎垂直,长约400 km,穿过滁河断裂,与纵测线的交点在Sp03炮附近.
3.2 非纵折合走时剖面
纵剖面折合走时记录的装配过程中,以炮点到每个接收器的距离为偏移距,在炮点的两侧分别定义为正或负方向.而非纵剖面的装配需要以纵剖面和非纵剖面的交点(图1中Sp03炮点附近)作为坐标零点,该点到接收器的距离作为横坐标,接收器到该点两侧定义为正或负方向(本文中定义NE为正方向,SW为负方向).6炮计算得到的剖面如图2所示.由于计算偏移距的参考点一致,因此6炮折合走时剖面的接收器的横坐标(桩号)都一样,为-200~210 km左右.需要注意的是,在图2(a—f)纵坐标折合走时T-X/6.0的计算中,X为炮点到接收器的距离(即偏移距),而非图中的横坐标,这是非纵剖面和纵剖面成图的差异所在.
图2 长江中下游成矿带折合走时非纵观测记录剖面
3.3 非纵剖面数据动校正和时深转换
非纵剖面数据处理包括两个步骤(Cerveny, 2001; 徐涛等, 2004; Xu et al., 2006; 2010; 2014):动校正和时深转换处理.
(1) 动校正和时深转换
非纵剖面地震记录动校正过程与纵剖面记录处理过程类似,都需要基于已有平均地壳速度模型将观测反射到时数据校正为反射点的零偏移距自激自收到时数据.假定地壳平均速度为v,实际观测到时为tobs,接收器炮检距为x,则动校正后反射点的零偏移距自激自收到时t0表示为:
(1)
时深转换的反射点深度为:
(2)
值得注意的是,接收器R得到的Moho面深度最终要归位到炮点S和接收器R的中点M处(图3).
图3 非纵剖面数据动校正和时深转换示意图
上述处理过程中,选择合适的地壳平均速度比较关键.我们利用“利辛—宜兴”剖面的二维速度结构(徐涛等, 2014)得到了该剖面的地壳平均速度结构,具体计算过程如下.
(3)
可以看出,某点下方的地壳平均速度((3)式)是该点下方水平薄层平均慢度的倒数.根据上述过程,便可得到纵剖面的地壳平均速度结构(图4).
图4 利辛—宜兴纵剖面平均速度
由于纵剖面基本上和主要的构造延伸及断裂走向垂直,因此动校正过程中,将三维地壳速度结构近似为垂直于纵剖面的2.5维速度结构,即速度结构沿垂直于纵剖面方向进行均匀延拓.这样的近似处理基本上符合三维速度结构真实情况.
非纵剖面某接收点R(图3)的动校正速度,用纵剖面上的投影点O点与炮点S点之间的速度曲线(图4),求取OS间的平均值来近似.
(2)非纵剖面Moho面深度
经过动校正和时深转换,获得6炮的深度剖面(图5),再在深度剖面上进行人工拾取Moho面深度.可以看出,Sp02-05炮非纵剖面震相信噪比高,测线端点附近的炮点Sp01和Sp06炮信噪比稍低.
4 长江中下游成矿带及邻区Moho深度4.1 Moho面深度
如图3所示,每个接收器R拾取的Moho面深度要归位到炮点和接收器的中点M处.将图5中6条非纵剖面拾取的Moho面深度归位到相应的位置,并联合跨越宁芜矿集区的长450 km的纵剖面的Moho面深度结果(徐涛等, 2014),通过插值及一定程度的平滑获得宁芜矿集区及其邻域的Moho面深度结构(图6).图中只显示了信噪比较高的Moho面深度区域.
Moho面深度结构显示,扬子块体内部宁芜矿集区及华北块体合肥盆地内部,Moho面深度呈现较大的非均匀性.在郯庐断裂的两侧,Moho面深度呈现一定的差异.长江中下游成矿带中的宁芜矿集区内的Moho面存在隆起,深度约32~33 km,华北块体中的合肥盆地内Moho面深度约34~35 km.炮点Sp01和Sp06 附近Moho面深度均比较浅,由于受端点两侧射线覆盖的限制,误差稍大.
4.2 结果比较
图7为卫星布格重力异常分布图.图中的布格重力异常值分布只选取了和Moho面深度范围一致的区域.从图中可以看出,研究区内的重力异常值范围为-30~20 mGal,且和Moho面深度有很好的相关性,如郯庐断裂东侧地区,布格异常值普遍较高,变化范围约为-10~20 mGal;郯庐断裂西侧,异常值相对东侧较低,变化范围约-30~5 mGal;宁芜矿集区下方为正异常,异常值范围大约为0~10 mGal.通常情况下,正的布格重力异常表示地壳物质亏损、Moho面较浅等基本特征,正值越大,Moho面深度越浅,其异常结果和Moho面深度有很好的相关性.比较Moho面深度和布格重力异常结果,可以看出整体特征吻合较好,差异较大的区域主要集中在Sp01和Sp06炮等边缘地区.由于这两炮的地震剖面偏移距较大,信噪比较低,且射线覆盖密度非常低,因此误差相对较大,与该区域的重力异常值特征吻合性差.严加永等(2011)利用区域重力异常反演得到的Moho面深度显示,宁芜火山岩盆地下方的Moho面存在隆起.宽频资料的远震接收函数结果显示宁芜矿集区下方Moho面为隆起特征,郯庐断裂带两侧的Moho面深度存在差异,且西侧较东侧的Moho面要深(Shi et al., 2013).反射地震结果也显示Moho面在宁芜火山岩盆地下方较浅,在合肥盆地下方较深(吕庆田等, 2014).这些结果都与我们的结果特征相一致,显示了结果的可靠性.
5 讨论
根据宽频地震、反射地震、折射地震、大地电磁等多学科地球物理深部探测结果,吕庆田等(2014)提出了长江中下游成矿带成矿地球动力学模型.模型认为发生在研究区的印支运动和燕山运动是两次独立的造山过程.印支运动在长江中下游地区并没有产生强烈的地壳变形(Zhu et al., 2009),但因古太平洋板块NW向低角度俯冲远程效应引起的燕山期造山运动(Chen et al., 2006),是决定研究区构造格局、并产生强烈岩浆活动的根源.燕山运动是一期快速造山过程,不仅造成长江中下游成矿带强烈的地壳变形,同时还发生了陆内俯冲或叠瓦,使岩石圈增厚.增厚的岩石圈在随后的区域应力减弱和自身不稳定性的双重因素作用下,发生拆沉和软流圈的上隆.拆沉岩石圈的熔融(包含下地壳的熔融)、底侵和软流圈上隆的热流作用,导致了长江中下游地区大规模的岩浆作用和成矿作用.
增厚岩石圈发生拆沉、软流圈的上隆及底侵作用等动力学过程,可能会导致宁芜矿集区下方Moho面呈上隆特征,这已经被二维的宽频地震接收函数结果所证实(史大年等,2012; Shi et al., 2013).纵测线的宽角折射地震结果显示矿集区下方Moho呈现整体上隆,局部凹陷的特征(徐涛等, 2014).三维Moho面深度特征同样显示,宁芜矿集区下方Moho面整体偏浅,为32~34 km左右(图6).布格重力异常结果显示,宁芜矿集区下方整体为正异常(图7),约为0~10 mGal,通常情况下对应Moho面隆起特征.区域重力异常反演及反射地震结果等也显示了这样的特征.
图6 联合纵剖面和非纵剖面获得的Moho面深度
图7 Moho面深度区域对应的布格重力异常分布
从Moho面的深度结构可以看出,在郯庐断裂东侧,Moho深度的变化基本上平行于成矿带的NE-SW走向(图6);布格重力异常结果(图7)呈现同样的清晰特征.不仅如此,主要反映上地幔流变特征的SKS分裂特征也显示,成矿带附近快波偏振方向呈现NE-SW向(Shi et al., 2013).上述结果支持了在总体NW-SE挤压下,长江中下游成矿带地壳和上地幔由于受到华北克拉通的阻挡,在板块边界发生了切向(垂直挤压应力方向)流动变形,而上地壳仍然发生NW-SE向的褶皱或冲断变形(吕庆田等, 2014).
郯庐断裂带在中国东部绵延数千公里,中生代以来,上地壳的走滑达500余公里(Zhu et al., 2009).早白垩世岩浆岩的岩石学和地球化学研究,反映它们既有壳源的信息,又有幔源的信息,指示走滑期的郯庐断裂带可能已切入了壳幔边界(牛漫兰等, 2002).新生代中国东部最大规模的玄武岩喷发带的出现, 反映郯庐断裂带此时已切入了上地幔, 构成了幔源玄武岩喷发的通道(朱光等, 2004a, 2004b).垂直反射地震剖面显示郯庐断裂下方Moho存在一定的错断(吕庆田等, 2014; Lü et al., 2015).宽频地震剖面接收函数结果(Shi et al., 2013)和宽角反射/折射地震剖面(徐涛等, 2014)均显示Moho面在郯庐断裂下方深度最深,达36公里左右.宽角折射地震剖面的二维速度结构还显示,在整个地壳内郯庐断裂东西两侧的速度结构相差较大(徐涛等, 2014).不仅如此,研究区内三维Moho面深度(图6)以及布格重力异常结果(图7)同样显示了郯庐断裂两侧的Moho面深度变化较大.因此,我们推测,地表近陡立的郯庐断裂,深部可能切穿到了Moho面深度.
6 结论
(1)联合纵测线和非纵测线宽角反射/折射地震数据,获得了长江中下游成矿带及邻区的Moho面结构.结果显示,宁芜矿集区下方Moho面呈上隆特征,支持长江中下游地区成矿模式中增厚岩石圈发生拆沉、软流圈的上隆及底侵作用等动力学过程.Moho面平行于成矿带走向的变化趋势,显示长江中下游成矿带地壳和上地幔在板块边界发生了NE-SW向的流动变形.郯庐断裂带两侧的Moho面深度变化较大,这表明地表近陡立的郯庐断裂,深部可能切穿到Moho面深度.我们期望通过联合纵剖面和非纵剖面的观测资料,利用最小的代价,实现长江中下游成矿带及邻区的三维地壳结构探测.
(2)本文获得的Moho面的深度结构信息,为进一步的三维速度结构反演提供了初始的Moho面深度约束,是得到精确三维速度结构成像的重要条件.
致谢 谨以此文纪念中国科学院地质与地球物理研究所张忠杰研究员(1964—2013).感谢中国地震局物探中心及中国科学院地质与地球物理研究所参加野外地震数据采集工作的所有人员;感谢王夫运研究员、史大年研究员、田小波研究员、刘宝峰副研究员的指导和帮助.
Bai Z M, Wang C Y. 2006. Crustal P-wave velocity structure in Lower Yangtze region: Reinterpretation of Fuliji-Fengxian deep seismic sounding profile.ChineseScienceBulletin, 51(19): 2391-2400, doi: 10.1007/s11434-006-2115-z.
Bai Z M, Zhang Z J, Wang Y H. 2007. Crustal structure across the Dabie-Sulu orogenic belt revealed by seismic velocity profiles.J.Geophys.Eng., 4(4): 436-442, doi: 10.1088/1742-2132/4/4/009.
Cerveny V. 2001. Seismic Ray Theory. Cambridge University Press.
Chang Y F, Dong S W, Huang D Z. 1996. On tectonics of “Poly-basement with one cover” in Middle-Lower Yangtze Craton China.VolcanologyandMineralResources, 17(1-2): 1-15 (in Chinese with English abstract).
Chang Y F, Liu X P, Wu Y C. 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River (in Chinese). Beijing: Geological Publishing House, 1-379.
Chang Y F, Zhou T F, Fan Y. 2012. Polygenetic compound mineralization and tectionic evolution: Study in the Middle-Lower Yangtze River Valley metallogenic belt.ActaPetrologicaSinica(in Chinese), 28(10): 3067-3075.
Chen J F, Yan J, Xie Z, et al. 2001. Nd and Sr isotopic compositions of igneous rocks from the lower Yangtze region in eastern China: constraints on sources.PhysicsandChemistryoftheEarth,PartA:SolidEarthandGeodesy, 26(9-10): 719-731, doi: 10.1016/S1464-1895(01)00122-3.
Chen J F, Jahn B M. 1998. Crustal evolution of Southeastern China: Nd and Sr isotropic evidence.Tectonophysics, 284(1-2): 101-133, doi: 10.1016/S0040-1951(97)00186-8.
Chen L, Zheng T Y, Xu W W. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration.J.Geophys.Res., 111(B9), doi: 10.1029/2005JB003974.
Dong S W, Gao R, Cong B L, et al. 2004. Crustal structure of the southern Dabie ultrahigh-pressure orogen and Yangtze foreland from deep seismic reflection profiling.TerraNova, 16: 319-324.
Dong S W, Li T D, Lü Q T, et al. 2013. Progress in deep lithospheric exploration of the continental China: A review of the SinoProbe.Tectonophysics, 606: 1-13, doi: 10.1016/j.tecto.2013.05.038.
Hou Z Q, Pan X F, Yang Z M, et al. 2007. Porphyry Cu-(Mo-Au) Deposits no Related to Oceanic-Slab Subduction: Examples from Chinese Porphyry Deposits in Continental Settings.Geoscience, 21(2): 332-351, doi: 10.3969/j.issn.1000-8527.2007.02.019.
Jiang G M, Zhang G B, Lü Q T, et al. 2013. 3-D velocity model beneath the Middle-Lower Yangtze River and its implication to the deep geodynamics.Tectonophysics, 606, 36-47, doi:/10.1016/j.tecto.2013.03.026.
Jiang G M, Zhang G B, Lü Q T, et al. 2014. Deep geodynamics of mineralization beneath the Middle-Lower Reaches of Yangtze River: Evidence from teleseismic tomography.ActaPetrologicaSinica(in Chinese), 30(4): 907-917.
Liang F, Lü Q T, Yan J Y, et al. 2014. Deep structure of Ningwu volcanic basin in the Middle and Lower Reaches of Yangtze River: Insights from reflection seismic data.ActaPetrologicaSinica(in Chinese), 30(4): 941-956.
Ling M X, Wang F Y, Ding X, et al. 2009. Cretaceous ridge subduction along the lower Yangtze river belt, Eastern China.EconomicGeology, 104(2): 303-321, doi: 10.2113/gsecongeo.104.2.303.
Lü Q T, Hou Z Q, Yang Z S, et al. 2004. The underplating and dynamics evolution model of the Mid-Lower Yangtze region: Constraints from geophysical data.ScienceinChina(SeriesD), 34(9): 783-794, doi: 10.3321/j.issn: 1006-9267.2004.09.001.
Lü Q T, Chang Y F, SinoProbe-03 Team. 2011. Crustal structure and three-dimensional deep exploration technology for mineral resources: A introduction to SinoProbe-03 Project.ActaGeoscienticaSinica(in Chinese), 32(Suppl. 1): 49-64, doi: 10.3975/cagsb.2011.s1.04.
Lü Q T, Qi G, Yan J Y. 2013a. 3D geological model of Shizishan ore field constrained by gravity and magnetic interactive modeling: A case history.Geophysics, 78(1): B25-B35.
Lü Q T, Yan J Y, Shi D N, et al. 2013b. Reflection seismic imaging of the Lujiang-Zongyang volcanic basin, YangtzeMetallogenic Belt: An insight into the crustal structure and geodynamicsof an ore district.Tectonophysics, 606: 60-77, dio:10.1016/j.tecto.2013.04.006.
Lü Q T, Dong S W, Shi D N, et al. 2014. Lithosphere architecture and geodynamic model of Middle and Lower Reaches of Yangtze Metallogenic Belt: A review from SinoProbe.ActaPetrologicaSinica(in Chinese), 30(4): 889-906.
Lü Q T, Shi D N, Liu Z D, et al. 2015. Crustal structure and geodynamic of the Middle and Lower Reaches of Yangtze metallogenic belt and neighboring areas: Insights from deep seismic reflection profiling.J.AsianEarthSci., doi: 10.1016/j.jseaes.2015.03.022.
Mao J W, Wang Y T, Lehmann B, et al. 2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications.OreGeologyReviews, 29(3-4): 307-324, doi: 10.1016/j.oregeorev.2005.11.001.
Niu M L, Zhu G, Liu G S, et al. 2002. Tectonic setting and deep processes of Mesozoic magmatic activity in the middle-southern part of the Tan-Lu fault zone.ChineseJ.Geol., 37(4): 393-404, doi: 10.3321/j.issn:0563-5020.2002.04.002 (in Chinese).
Pan Y M, Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits.OreGeologyReviews, 15(4): 177-242, doi: 10.1016/S0169-1368(99)00022-0.
Qiang J K, Tang J T, Wang J Y, et al. 2014. Magnetotelluric structure along Huainan-Liyang profile.ActaPetrologicaSinica(in Chinese), 30(4): 957-965.
Shi D N, Lü Q T, Xu W Y, et al. 2012. Crustal structure beneath the mid-lower yangtze metallogenic belt and its adjacent regions in eastern China-Evidences from P-wave receiver function imaging for a MASH metallization process?ActaGeologicaSinica, 86(3): 389-399, doi: 10.3969/j.issn.0001-5717.2012.03.004 (in Chinese).
Shi D N, Lü Q T, Xu W Y, et al. 2013. Crustal structure beneath the middle-lower Yangtze metallogenic belt in East China: Constraints from passive source seismic experiment on the Mesozoic intra-continental mineralization.Tectonophysics, 606: 48-59, doi: 10.1016/j.tecto.2013.01.012.
Song C Z, Zhang H, Ren S L, et al. 2011. Transform tectonic node of the Middle and Lower Reaches of the Yangtze River and analysis of regional metallogenic setting.ActaGeologicaSinica(in Chinses), 85(5): 778-788.
Song C Z, Zhu G, Wang D X, et al. 2000. Evolution of the Chuhe fault in Jiangsu and Anhui and tectonic setting.RegionalGeologyofChina(in Chinese), 19(4): 367-374, doi: 10.3969/j.issn.1671-2552.2000.04.006.
Sun W D, Ling M X, Yang X Y, et al. 2010. Ridge subduction and porphyry copper gold mineralization:Anoverview.Sci.China(EarthSci.), 53(4): 475-484.
Teng J W, Sun K Z, Xiong S B, et al. 1985. Explosion seismological study for velocity distribution and structure of the crust and upper mantle from Maanshan to Qidong of the southern parts of China.ChineseJournalofGeophysics, 28(2): 155-169 (in Chinese with English abstract).
Wang Q, Xu J F, Zhao Z H, et al. 2004. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent.GeochemicalJournal(in Chinese), 38: 417-434.
Wang Q, Wyman D A, Xu J F, et al. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization.Lithos, 89(3-4): 424-446, doi:10.1016/j.lithos.2005.12.010.
Wang Q, Zhao Z H, Xiong X L, et al. 2001. Melting of the underplated basaltic lower crust: Evidence from the Shaxi adakitic sodic quartz diorite-porphyrites, Anhui Province, China.Geochimica, 30(4): 353-362, doi: 10.3321/j.issn: 0379-1726.2001.04.008.
Wang Y, Deng J F, Ji G Y. 2004. A perspective on the geotectionic setting of early Cretaceous adakite-like rocks in the Lower Reaches of Yangtze River and its significance for copper-gold mineralization.ActaPetrologicaSinica, 20(2): 297-314, doi: 10.3321/j.issn: 1000-0569.2004.02.011.
Xu J F, Shinjo R, Defant M J, et al. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?Geology, 30(12): 1111-1114, doi: 10.1130/0091-7613(2002)030.
Xu J F, Wang Q, Xu Y G, et al. 2001. Geochemistry of Anjishan intermediate-acid intrusive rocks in Ningzhen area: Constraint to origin of the magma with HREE and Y depletion.ActaPetrologicaSinica, 17(4): 576-584, doi: 10.3321/j.issn:1000-0569.2001.04.008.
Xu T, Xu G M, Gao E G, et al. 2004. Block modeling and shooting ray tracing in complex 3-D media.ChineseJ.Geophys. (in Chinese), 47(6): 1118-1126, doi: 10.3321/j.issn: 0001-5733.2004.06.027.
Xu T, Xu G M, Gao E G, et al. 2006. Block modeling and segmentally iterative ray tracing in complex 3D media.Geophysics, 71: T41-T51, doi: 10.1190/1.2192948.
Xu T, Zhang Z J, Gao E G, et al. 2010. Segmentally Iterative Ray Tracing in Complex 2D and 3D Heterogeneous Block Models.Bull.Seismol.Soc.Am., 100(2): 841-850, doi: 10.1785/0120090155.
Xu T, Li F, Wu ZB, et al. 2014. A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models.Tectonophysics, 627: 72-81.
Xu T, Zhang Z J, Tian X B, et al. 2014. Crustal structure beneath the Middle-Lower Yangtze metallogenic belt and its surrounding areas: Constraints from active source seismic experiment along the Lixin to Yixing profile in East China.ActaPetrologicaSinica(in Chinses), 30(4): 918-930.
Yan J Y, Lü Q T, Meng G X, et al. 2011. Tectonic framework research of the Lower and Middle Yangtze metallogenic belt based on gravity and magnetic multi-scale edge detection.ActaGeologicaSinica(in Chinese), 85(5): 900-914.
Yang Z W, Zhang K, Yan J Y, et al. 2012. A preliminary study on deep structure of Ningwu ore district and its western marginal area.ChineseJ.Geophys. (in Chinese), 55(12): 4160-4168, doi: 10.6038/j.issn.0001-5733.2012.12.028.
Zhang Q, Wang Y, Liu W, et al. 2002. Adakite: its characteristics and implications.GeologicalBulletinofChina(in Chinese), 21: 431-435, doi: 10.3969/j.issn.1671-2552.2002.07.012.
Zhang Q, Wang Y, Qian Q, et al. 2001. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eastern China.ActaPetrologicaSinica(in Chinese), 17: 236-244, doi: 10.3321/j.issn:1000-0569.2001.02.008.
Zhang Y Q, Lü Q T, Teng J W, et al. 2014. Discussion on the crustal density structure and deep mineralization background in the middle-lower Yangtze metallogenic belt and its surrounding areas: Constraints from the gravity field.ActaPetrologicaSinica(in Chinese), 30(4): 931-940.
Zhang Z J, Badal J, Li Y K, et al. 2005. Crust-upper mantle seismic velocity structure across Southeastern China.Tectonophysics, 395(1-2): 137-157, doi: 10.1016/j.tecto.2004.08.008.
Zhang Z J, Wang Y H. 2007. Crustal structure and contact relationship revealed from deep seismic sounding data in South China.Phys.EarthPlanet.Int., 165(1-2): 114-126, doi: 10.1016/j.pepi.2007.08.005.
Zhou T F, Fan Y, Yuan F. 2008. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area.ActaPetrologicaSinica(in Chinese), 24(8): 1665-1678.
Zhou T F, Fan Y, Yuan F, et al. 2012. Progress of geological study in the Middle-Lower Yangtze River Valley metallogenic belt.ActaPetrologicaSinica(in Chinese), 28(10): 3051-3066.
Zhu G, Wang D X, Liu G S, et al. 2004a. Evolution of the Tan-Lu fault zone and its responses to plate movements in west Pacific basin.ChineseJournalofGeology(ScientiaGeologicaSinica), 39(1): 36-49, doi: 10.3321/j.issn: 0563-5020.2004.01.005 (in Chinese).
Zhu G, Wang Y S, Niu M L, et al. 2004b. Synorogenic movement of the Tan-Lu fault zone.EarthScienceFrontiers, 11(3): 169-181, doi: 10.3321/j.issn: 1005-2321.2004.03.018.
Zhu G, Wang Y S, Liu G S, et al. 2005.40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China.JournalofStructuralGeology, 27(8): 1379-1398, doi: 10.1016/j.jsg.2005.04.007.
Zhu G, Liu G S, Niu M L, et al. 2009. Syncollisional transform faulting of the Tan-Lu fault zone, East China.Int.J.EarthSci. (GeolRundsch), 98(1): 135-155, doi: 10.1007/s00531-007-0225-8.
附中文参考文献
常印佛, 董树文, 黄德志. 1996. 论中-下扬子“一盖多底”格局与演化. 火山地质与矿产, 17(1-2): 1-15.
常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京:地质出版社, 1-379.
常印佛, 周涛发, 范裕. 2012. 复合成矿与构造转换—以长江中下游成矿带为例. 岩石学报, 28(10): 3067-3075.
侯增谦, 潘小菲, 杨志明等. 2007. 初论大陆环境斑岩铜矿. 现代地质, 21(2): 332-351, doi: 10.3969/j.issn.1000-8527.2007.02.019.
江国明, 张贵宾, 吕庆田等. 2014. 长江中下游地区成矿深部动力学机制: 远震层析成像证据. 岩石学报, 30(4): 907-917.
吕庆田, 侯增谦, 杨竹森等. 2004. 长江中下游地区的底侵作用及动力学演化模式: 来自地球物理资料的约束. 中国科学(D辑), 34(9): 783-794, doi: 10.3321/j.issn: 1006-9267.2004.09.001.吕庆田, 常印佛, SinoProbe-03项目组. 2011. 地壳结构与深部矿产资源立体探测技术实验-SinoProbe-03项目介绍. 地球学报, 32(增刊I): 49-64, doi: 10.3975/cagsb.2011.s1.04.
吕庆田, 董树文, 史大年等. 2014.长江中下游成矿带岩石圈结构与成矿动力学模型-深部探测(SinoProbe)综述. 岩石学报, 30(4): 889-906.
梁锋, 吕庆田, 严加永等. 2014. 长江中下游宁芜火山岩盆地深部结构特征: 来自反射地震的认识. 岩石学报, 30(4): 941-956.
牛漫兰, 朱光, 刘国生.2002. 郯庐断裂带中南段中生代岩浆活动的构造背景与深部过程. 地质科学, 37(4): 393-404.
强建科, 汤井田, 王显莹等. 2014.淮南—溧阳大地电磁剖面与地质结构分析. 岩石学报, 30(4): 957-965.
史大年, 吕庆田, 徐文艺等. 2012. 长江中下游成矿带及邻区地壳结构-MASH成矿过程的P波接收函数成像证据?地质学报, 86(3): 389-399, doi: 10.3969/j.issn.0001-5717.2012.03.004.宋传中, 张华, 任升莲等. 2011. 长江中下游转换构造结与区域成矿背景分析. 地质学报, 85(5): 778-788.
宋传中, 朱光, 王道轩等. 2000. 苏皖境内滁河断裂的演化与大地构造背景. 中国区域地质, 19(4): 367-374, doi: 10.3969/j.issn.1671-2552.2000.04.006.
孙卫东, 凌明星, 杨晓勇等. 2010. 洋脊俯冲与斑岩铜金矿成矿. 中国科学(地球科学), 40(2): 127-137.
滕吉文, 孙克忠, 熊绍柏等. 1985. 中国东部马鞍山—常熟—启东地带地壳与上地幔结构和速度分布的爆炸地震研究. 地球物理学报, 28(2): 155-169.
王强, 赵振华, 熊小林等. 2001. 底侵玄武质下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据. 地球化学, 30(4): 353-362, doi: 10.3321/j.issn: 0379-1726.2001.04.008.
汪洋, 邓晋福, 姬广义. 2004. 长江中下游地区早白垩世埃达克质岩的大地构造背景及其成矿意义. 岩石学报, 20(2): 297-314, doi: 10.3321/j.issn: 1000-0569.2004.02.011.
许继峰, 王强, 徐义刚等. 2001. 宁镇地区中生代安基山中酸性侵入岩的地球化学: 亏损重稀土和钇的岩浆产生的限制. 岩石学报, 17(4): 576-584, doi: 10.3321/j.issn:1000-0569.2001.04.008.徐涛, 徐果明, 高尔根等. 2004. 三维复杂介质的块状建模和试射射线追踪. 地球物理学报, 47(6): 1118-1126, doi: 10.3321/j.issn: 0001-5733.2004.06.027.
徐涛, 张忠杰, 田小波等. 2014. 长江中下游成矿带及邻区地壳速度结构:来自利辛—宜兴宽角地震资料的约束. 岩石学报,30(4): 918-930.严加永, 吕庆田, 孟贵祥等. 2011. 基于重磁多尺度边缘检测的长江中下游成矿带构造格架研究. 地质学报, 85(5): 900-914.
杨振威, 张昆, 严加永等. 2012. 宁-芜矿集区及其西缘深部结构初探. 地球物理学报, 55(12): 4160-4168, doi: 10.6038/j.issn.
0001-5733.2012.12.028.
张旗, 王焰, 钱青等. 2001. 中国东部燕山期埃达克岩的特征及其构造-成矿意义. 岩石学报, 17(2): 236-244, doi: 10.3321/j.issn:1000-0569.2001.02.008.张旗, 王焰, 刘伟等. 2002. 埃达克岩的特征及其意义. 地质通报, 21(7): 431-435, doi: 10.3969/j.issn.1671-2552.2002.07.012.张永谦, 吕庆田, 滕吉文等.2014. 长江中下游及邻区的地壳密度结构与深部成矿背景探讨—来自重力学的约束. 岩石学报,30(4): 931-940.
周涛发, 范裕, 袁峰. 2008. 长江中下游成矿带成岩成矿作用研究进展. 岩石学报, 24(8): 1665-1678.
周涛发, 范裕, 袁峰等. 2012. 长江中下游成矿带地质与矿产研究进展. 岩石学报, 28(10): 3051-3066.
朱光, 王道轩, 刘国生等. 2004a. 郯庐断裂带的演化及其对西太平洋板块运动的响应. 地质科学, 39(1): 36-49, doi: 10.3321/j.issn: 0563-5020.2004.01.005.
朱光, 王勇生, 牛漫兰等. 2004b. 郯庐断裂带的同造山运动. 地学前缘, 11(3): 169-181, doi: 10.3321/j.issn: 1005-2321.2004.03.018.
(本文编辑 刘少华)
3D Moho depth beneath the middle-lower Yangtze metallogenic belt and its surrounding areas: Insight from the wide angle seismic data
ZHANG Ming-Hui1,2, XU Tao1,3, LÜ Qing-Tian4,5, BAI Zhi-Ming1, WU Cheng-Long1,2, WU Zhen-Bo1,2, TENG Ji-Wen1
1StatekeyLaboratoryofLithosphericEvolution,InstituteofGeologyandGeophysics,ChineseAcademyofSciences,Beijing100029,China2UniversityofChineseAcademyofSciences,Beijing100049,China3CASCenterforExcellenceinTibetanPlateauEarthSciences,Beijing100101,China4InstituteofGeophysicalandGeochemicalExploration,ChineseAcademyofGeologicalSciences,HebeiLangfang065000,China5ChinaDeepExplorationCenter-SinoProbeCenter,ChineseAcademyofGeologicalSciences,Beijing100037,China
To understand the formation and the tectonic processes of the Mesozoic Middle Lower Yangtze metallogenic belt(MLYMB), the SinoProbe-03-02 program conducted a 450 km long in-line controlled-source seismic experiment with a 400 km long off-line data collection across the Ning-wu ore-district. We deal with the off-line seismic data using normal moveout correction and time-depth conversion in order to obtain the off-line Moho depth. Using the Moho depth derived both from in-line and off-line seismic data, we construct a Moho depth map in the Middle-Lower Yangtze metallogenic belt and its surrounding areas. The results show that the Moho depth is about 32~34 km beneath the Ning-Wu ore-district, shallower than that beneath the Hefei basin in North China which is about 34~35 km. The variation tendency of Moho depth coincides with the Bouguer gravity anomaly well. The uplifting characteristic of Moho depth in Ning-Wu ore-district supports the model of lithosphere delamination, asthenosphere welling, and mantle-derived magmatic underplating during the formation of MLYMB. The variation of Moho beneath metallogenic belt parallels the strike of the MLYMB. It supports the tangential flow deformation in NE-SW direction in the plate boundary of the crust and mantle. On both sides of Tanlu fault zone, the depth of the Moho changes greatly, which indicates that the Tanlu fault may extend to the mantle.
Middle-lower Yangtze metallogenic belt; Moho depth; Wide angle seismic data; In-line; Off-line
国家深部探测专项第3项目(SinoProbe-03),地质调查项目(1212011220243)和国家自然科学基金(41174075,41274070,41474068)联合资助.
张明辉,女,1990年生,博士研究生,主要从事地震射线理论及壳幔结构成像研究. E-mail: zhangmh1990@mail.iggcas.ac.cn
10.6038/cjg20151203.
10.6038/cjg20151203
P631
2015-05-06,2015-10-18收修定稿
张明辉,徐涛,吕庆田等. 2015. 长江中下游成矿带及邻区三维Moho面结构:来自人工源宽角地震资料的约束.地球物理学报,58(12):4360-4372,
Zhang M H, Xu T, Lü Q T, et al. 2015. 3D Moho depth beneath the middle-lower Yangtze metallogenic belt and its surrounding areas: Insight from the wide angle seismic data.ChineseJ.Geophys. (in Chinese),58(12):4360-4372,doi:10.6038/cjg20151203.