基于OD数据校验的交通流量检测数据修正方法
2015-05-08靳引利
靳引利 李 阳 王 琳
(1.长安大学电子与控制工程学院 西安710064;2.长安大学交通系统工程研究所 西安710064)
0 引 言
车检器是1种交通流数据检测设备,它能检测高速公路过往车辆的车型、车速、车流量、道路占有率等参数,可以实时获取各路段交通流信息,便于高速公路运营与管理部门分析各路段运行状况,及时采取控制管理措施,并有效地利用实时的交通数据预测未来的交通状况,是实现有效的交通控制和交通诱导的关键所在[1]。
车检器还能与限速标志、情报板、摄像机等设备配合,协调全局或局部交通的控制和诱导,从而改善交通秩序、增加现有交通设施的通行能力、减少交通事故,对交通控制、事件检测、交通规划及交通安全等方面具有重要意义,最终可获得可观的社会经济效益。车检器的流量检测数据是进行交通状态估计、预测及评价的重要数据基础,也是交通管理和公众出行信息服务等的重要数据来源[2]。但是,由于设备故障、通信系统故障、环境因素异常等原因,流量检测数据存在着错误、缺失等问题,影响了车检器检测数据的精度及稳定性。这些问题的存在一定程度上影响了车辆检测数据的管理和有效应用。因此,对车辆检测数据进行修正及对车检器稳定性的评估是十分必要的。
国外特别是美国的高速公路交通流数据的校验方法发展较为成熟。比较典型的是Turochy等及美国德克萨斯交通研究所(Texas Transportation Institute)提出的基于交通参数阈值检测和基于交通流理论检测的ITS数据有效性检验规则,并将二者结合起来对数据进行判断[3-4]。该方法具有简单实用、可实时实施等优点,在美国的高速公路交通流数据有效性检验中已经得到了广泛应用。
我国在交通流数据有效性检验方面也有一定的研究。与国外主要针对高速公路交通流数据不同,我国当前的交通流数据有效性检验规则研究主要基于城市道路交通流数据[5-8],对高速公路上的交通流数据有效性研究还不够。笔者结合国内外研究成果,探究出1套判断高速公路车检器的流量检测数据的有效性并对其进行修正的方法。与传统方法不同的是,采用的方法不是针对单点数据的判别和修正,而是以天为单位进行整体的数据修正,这种微观转宏观的方法实现,大大减少了工作的复杂性,并在对研究时间跨度较长的情况下,算法优越性更突出。将分车型和总自然量的车检器断面流量检测数据分别与OD数据得出的断面流量数据[9]进行比较分析,得到相应车型的对比系数,然后通过对对比系数的处理与分析,修正各车型的流量检测数据,并对高速公路车检器的稳定性进行评估。
1 研究思路
1.1 研究思路概要
假设某车检器某车型的日流量检测数据为A,通过OD数据得出的断面流量数据为A′,则它们之间的对比系数为
将若干天数的对比系数ki进行分析,选取对比系数的平均水平k′来修正车检器未来的流量检测数据。k′的值可表示为
假设未来某天(为了消除车检器的检测精度随时间和外界环境的影响而改变较大的情况、加强k′的可用性,未来的某天应取距离k′的分析日期较近且环境因素较类似的天数)车检器此车型的日检测数据B已知,则修正后的数值^B(准确的流量检测数据的估计值)为
在修正方法和修正值确定后,对方法的有效性进行验证:将估计值^B与断面流量的实际值B′进行相对误差分析,则可验证此修正方法的有效性。绝对误差可表示为
当相对误差e小于某值时,则可认为此方法有效。
引入标准差的概念,计算修正系数k′与对比系数ki的差异程度来对车检器的稳定性进行判断,并通过同型号不同车检器的稳定性计算,得到此类车检器的稳定性总体水平。
1.2 研究步骤
包括对流量检测数据的修正及车检器稳定性的评估2方面,具体实现步骤如图1所示。
图1 车检器检测数据的处理过程Fig.1 Process of vehicle detectors′detection data
1)将车检器检测数据(包括流量、占有率、速度等)中的流量检测数据抽取出来,以天为单位进行整合,得到车检器每天的流量检测数据。
2)由于车检器某天的有效工作时间没有覆盖全天的所有时段,此情况导致日流量检测数据的不准确(检测值偏小)。为了解数据的缺失程度,需要得到车检器每天有效工作时长,并经过数据清洗过滤掉有效工作时间低的检测数据,保留有效工作时间高的检测数据。
3)设计算法将有效工作时间较高的流量检测数据经过修补得到全天的流量检测数据。
4)将全天的流量检测数据与断面流量数据进行对比,得到对比系数,将车检器不同天数的对比系数进行计算,得出车检器的修正系数,实现对车检器流量检测数据的修正,并对此修正方法的有效性进行验证。
5)设计算法求出对比系数与修正系数的差异程度,完成对车检器流量检测数据稳定性的评估,并通过对同型号不同车检器稳定性的比较,分析某一型号车检器稳定性的平均水平。
2 车检器流量检测数据的修正方法
车检器由于自身或外界(环境因素异常、交通状况变化特征明显)因素的影响,造成检测精度普遍不高的问题。为了清楚了解到某厂家某型号车检器流量检测数据与实际断面流量的差异,并将其还原到最接近实际流量的状态,本研究提供了以OD历史数据为基础来推导出修正车检器流量检测数据的方法。运用此方法,可以保证车检器检测数据的准确性和有效性。
2.1 车检器数据预处理
1)车检器流量检测数据抽取。用穷举法,将某车检器全年的检测数据进行数据抽取和计算,得到以天为单位的流量检测数据。本研究需要的数据种类有车检器编号、所处路段名称、车检器位置桩号、日期、小型车检测数、中型车检测数、大型车检测数、自然量总数、每日工作时长等。
2)车检器流量检测数据清洗规则。由于车检器自身故障或通信故障等问题,1d中某时段的检测数据存在上传失败或上传错误的情况[10],导致车检器某天的工作时长一般小于24h,检测数据的覆盖时间范围由此也低于24h。由于车检器一般具有固定的数据采集周期,将车检器某天的记录条数进行统计,即可得到车检器检测数据的覆盖时间,即车检器的有效工作时长(假设某车检器的数据采集周期为5min,某天有效记录数共有200条,则有效工作时长为1 000min即16.7h)。根据每天的有效工作时长,筛选出有效工作时间比例(1d工作时长占1d总时长的百分比)高的天数作为研究对象。有效工作时间比例可表示为:
式中:n为天数的编号,n=1~365;t(n)为车检器在第n天的有效工作时长,h;d(n)为车检器在第n天工作的有效工作时间比例。
当某车检器某天的有效工作时间比例d(n)≥D%(D取有效工作时间比例的众数)时,此条记录保留,可作为研究对象继续研究;否则,此天数据的缺失度过大,数据还原后的可靠性及真实性较低,影响后续分析结果的真实性,此条数据不作为研究对象[11]。
3)补齐成全天的检测数据。将保留下来的车检器流量检测数据(包括小、中、大型车和总流量的检测数据)根据有效工作时间,补齐成整天工作时的数值,作为车检器全天正常工作时检测到的数据。本研究将车检器1d中缺失数据的时段对应的每类车型的前15d的有效检测数据与后15d有效检测数据(有效检测数据是指完整可用的检测数据,如果遇到数据不完整的天数,跳过此天,日期向前或向后顺延,直到取到30条数据为止)求平均值作为相应车型的流量填补值,补充到当天缺失数据的时段中。按照此方法,将车检器流量检测数据补齐成全天的检测数据。
2.2 对比系数的计算
对比系数表示车检器流量检测数据与实际的断面流量数据的比值,即车检器流量检测数据的准确度。对比系数与1越接近,则准确度越高。假定车检器所在桩号位置的分车型日断面流量已知,将车检器全天检测数据与对应日期的日断面流量数据进行比例计算,得出每个车检器每天的对比系数。
对比系数可表示为:
式中:j为区分小、中、大型车及总自然量的标号,j=1~4;m为天的标号,由于部分天数的记录被清洗,m一般小于365;fj(m)为车检器第m天第j型车的对比系数;Qj(m)为车检器第m天第j型车的全天检测数据;Sj(m)为车检器第m天第j型车的断面流量。
2.3 修正系数的确定
代表某车检器对比系数的平均水平的值即为修正系数。设某车检器每天分车型的对比系数为fj(m)(j=1,2,3,4),则每类车型的修正系数为每类车型对比系数的平均值,由公式(7)得出:式中:珚Fj表示车检器第j型车的修正系数。
2.4 车检器数据修正
车检器分车型的修正系数珚Fj已通过上述步骤算出,通过修正系数可以将车检器数据修正到与实际情况相符的值。假设某路段有X厂家XX型号的车检器a,某天的检测数据、有效工作时间比例d(d≥众数D)、数据丢失的时段已知,则流量检测数据的修正方法为:将车检器检测数据缺失时段的数据根据2.1节中数据还原的方法补齐,还原成全天的检测数据,然后根据公式(8),将全天的检测数据修正到最符合实际的值:
式中:Dj为车检器第j型车的日流量修正值,j=1~4;珚Fj为车检器第j型车的修正系数;qj为车检器第j型车某天的检测数据。
2.5 修正方法有效性检验
按车检器检测数据修正的方法,将某月的分车型流量检测数据修正结果与实际的断面流量数据进行相对误差的计算,然后对相对误差进行分析,验证此方法的有效性。相对误差可表示为:
式中:t为代表天数的标号,一般t≤31;ej(t)为车检器第t天第j型车的相对误差;Dj(t)为车检器第t天第j型车的日流量修正值;Sj(t)为车检器第t天第j型车的断面流量。
当某类车型的相对误差ej(t)均小于±5%时,说明修正结果与实际流量值之间的相对误差较小,证明此修正方法有效。
3 车检器稳定性分析
车检器稳定性表示车检器的实际检测结果与修正后的结果相符和的程度。车检器稳定性取值在0~1之间,值越大,则每个对比数据与修正系数的差异越小且趋于稳定。通过对比某型号不同车检器的稳定性,可得出此型号车检器个体精度的差异程度及该类车检器对抗外界因素的能力。车检器对比系数的标准差如式(10)所示,车检器的稳定性计算如式(11)所示:
式中:fj(m)为车检器第m天第j型车的对比系数;珚Fj为车检器第j型车的修正系数;Sj为车检器第j型车的对比系数的标准差;Kj(j=1,2,3,4)表示车检器检测第j型车对应的稳定性。
4 实例分析
本研究以某路段同一型号的车检器作为实例测试对象,对车检器的对比系数、稳定性和修正结果的误差进行分析,论证理论研究的可行性和有效性。下文为实例验证的结果。
4.1 车检器流量检测对比系数分析
本研究中,对比系数值为1,则与实际断面流量相符程度为100%,与值1差别越大则检测误差越大。同一型号不同车检器流量检测数据的对比系数有可能不同,本例选取同一路段上布设的均为×厂××型号的车检器9月份的对比系数进行对比分析,对比结果如图2、3所示,其中f1,f2,f3,f4分别表示小、中、大型车及总自然量的对比系数。
由图2可以看出001号车检器的总自然量与中型车的对比系数与1最接近,因此检测结果准确度较高,其次是小型车与大型车的检测结果准确度。大型车的对比系数普遍高于1,说明检测值比实际的断面流量值普遍偏大。
由图3可以看出004号车检器的中型车、大型车和总自然量的对比系数与1差距较大,检测结果准确度都比较低,而小型车的对比系数与1接近,检测结果准确度相对较高。
将图2与图3对比得001号车检器的中型车和总自然量的对比系数平均水平均达到0.9,而004号车检器的中型车和总自然量的对比系数平均水平只达到0.6,所以对此2种车型而言,001号车检器的检测结果准确度高于004号车检器。此外,001号车检器的小型车和004号车检器小型车的对比系数的平均水平均为0.8,说明二者的小型车检测结果准确度大致相等;而001号和004号车检器的大型车检测结果准确度均较低。
图2 ××路段001号车检器分车型对比系数Fig.2 Contrast coefficient of different models of 001vehicle detector
图3 ××路段004号车检器分车型对比系数Fig.3 Contrast coefficient of different models of 004vehicle detector
4.2 车检器稳定性分析
选取陕西省某3条路段上均为×厂××型号的12个车检器2013年9月的日检测流量数据进行分析,得出各车检器稳定性分布规律如图4所示,其中 w1,w2,w3,w4分别为小、中、大型车及总自然量的车检器稳定性。
图4 9月份各车检器稳定性对比分布图Fig.4 Stability contrast distribution of each vehicle device in September
由图4可见,前10个车检器和第12个车检器分车型稳定性均在0.98左右,说明这11个车检器较稳定。第11个车检器中型车稳定性在0.88左右,稳定性较差,应及时对该车检器及其相关设备进行检修或提高检修频率,以保证车检器的稳定工作。
4.3 流量检测数据修正方法有效性验证
本例中,对某路段001号车检器2013年11月的日流量检测数据进行修正,修正方法采用的基础数据为2013年001号车检器全年的车检器检测数据。修正步骤为:①将全年的001号车检器基础数据以天为单位进行整合,并根据每天的记录条数计算有效工作时长;②计算每天的有效工作时间比例,并求出众数(本例中求得的众数为0.8),将有效工作时间比例大于0.8的天数进行数据补齐,剩余天数被清洗掉;③将补齐的数据与断面流量数据进行对比,求得对比系数;④对比系数求平均值得到修正系数;⑤用修正系数将11月不同天数的车检器数据进行修正。由于11月大部分天数的有效工作时间比例均在0.8以上,而有5d的数据缺失较多,均在0.8以下,因此这5d的数据不予修正;⑥修正完毕,得出修正结果的相对误差。相对误差分布范围如图5所示,其中e1,e2,e3,e4分别表示小、中、大型车和总自然量检测数据的修正结果的相对误差。
图5 11月份流量检测数据修正结果相对误差分布图Fig.5 Relative error distribution map of correction results of flow test data in Nov.
由图5可以看出,小型车和总流量的误差均在±4%之内,且大部分分布在±2%之内,说明通过修正系数对车检器流量检测数据的修正方法可行,误差较小。而中型车误差大部分在±5%之内且为负值,说明修正结果较实际断面流量普遍偏小;大型车误差在10%之内且为正值,说明误差较大且修正结果较实际断面流量偏大,这种现象可能是由于车检器将一部分中型车判定为大型车而导致的。
5 结束语
笔者提出了修正车检器流量检测数据与评估其稳定性的方法,并通过实例分析对修正方法的有效性进行了验证,对同型号不同车检器的稳定性进行了对比分析。研究结果表明不同车检器的检测结果与实际的断面流量之间存在不同的稳定的差异,而修正方法对小型车及总流量的流量检测数据有效。本研究对中型车与大型车检测数据的修正结果还不够精确,需要对其余型号的车检器再进行试验分析,总结规律,探究原因,对算法进行进一步改进。本研究提出的方法对修正车检器流量检测数据具有现实意义,为车检器的稳定性评估方法提供了新的思路。
[1] 彭春华,刘建业.车辆检测传感器综述[J].传感器与微系统,2007,26(6):4-7.PENG Chunhua,LIU Jianye.Review of Vehicle Detection Sensors[J].Transducer and Microsystem Technologies,2007,26(6):4-7.(in Chinese)
[2] 秦玲,齐彤岩,吴鹏.断面交通检测数据清洗技术及其应用研究[J].公路交通科技,2007(1):159-161.QIN Ling,QI Tongyan,WU Peng,Technology and Application of Traffic Detection section data cleaning[J].Journal of Highway and Transportation Research and Development,2007(1):159-161.(in Chinese)
[3] AlDeek H Chandra.New algorithms for filtering and imputation of real-time and archived Dual-Loop detector data in I-4data warehouse[J].Transportation Re-search Record,2004(1867):116-126.
[4] LOMAX T,TURNER S,MARGIOTTA R.Monitoring urban roadways in 2002:using archived operations data for reliability and mobility measurement[R].Washington D.C.:Federal Highway Administration,2002.
[5] 秦玲,郭艳梅,吴鹏,等.断面交通检测数据检验及预处理关键技术研究[J].公路交通科技,2006(11):39-41.QIN Ling,GUO Yanmei,WU Peng,et al.Key techniques research for station traffic data screening and pre-processing[J].Journal of Highway And transportation Research and Development,2006(11):39-41.(in Chinese)
[6] 姜桂艳,江龙晖,张晓东,等.动态交通数据故障识别与修复方法[J].交通运输工程学报,2004,4(1):121-125.JIANG Guiyan,JIANG Longhui,ZHANG Xiaodong,et al.Approach to dynamic traffic data identification and imputation[J].Journal of Traffic and Transportation Engineering,2004,4(1):121-125.(in Chinese)
[7] 朱雷雷,张韦华,聂庆慧.干线公路交通流数据有效性检验规则[J].东南大学学报:自然科学版,2011,41(1):184-198.ZHU Leilei,ZHANG Weihua,NIE Qinghui.Traffic data screening rules for highways[J].Journal of Southeast University:Natural Science Edition,2011,41(1):184-198.(in Chinese)
[8] 陈大山,孙 剑,李克平,张瑜.基于van Aerde模型的快速路交通流特征参数辨识[J].武汉理工大学学报:交通科学与工程版,2013(37)6:1251-1254.CHEN Dashan,SUN Jian,LI Keping,ZHANG Yu.Recognition of expressway traffic flow characteristic parameter based on the van Aerde model[J].Journal of Wuhan University of Technology:Transportation Science & Engineering,2013(37)6:1251-1254.(in Chinese)
[9] 靳引利,张英,韩雪婷.基于OD的高速公路断面交通流量推算方法[J].交通信息与安全,2015,33(1):47-52.JIN Yinli,ZHANG Ying,HAN Xueting.Estimation Method of Expressway Section Traffic Flow Based on OD Data[J].Joarnal of Transport Information and Safety 2015,33(1):47-52.(in Chinese)
[10] 范兆军,郑海起,戚洪海.基于信息融合技术的机械系统故障诊断框架研究[J].科学技术与工程,2006,6(23):4709-4713.FAN Zhaojun,ZHENG Haiqi,QI Honghai.Fault diagnosis system based on data fusion algorithm[J].Science Technology and Engineering,2006,6(23):4709-4713.(in Chinese)
[11] 李阳.高速公路流量检测数据的预处理方法研究[J].物联网技术,2015,5(2):22-23.LI Yang.preprocessing method to highway traffic detection data[J].Internet of Things Technologies.2015,5(2):22-23.(in Chinese)