心肌梗死相关微RNA的研究进展
2015-04-17综述审校
王 宁(综述) 文 平(审校)
(1大连医科大学附属大连市儿童医院心脏中心 大连 116012;2第四军医大学生物医学工程系 西安 710032)
心肌梗死相关微RNA的研究进展
王 宁1,2(综述) 文 平1△(审校)
(1大连医科大学附属大连市儿童医院心脏中心 大连 116012;2第四军医大学生物医学工程系 西安 710032)
微RNA(microRNAs,miRs)是一类非编码RNA,能够调控基因组中大部分基因的表达。心肌梗死(myocardid infarction,MI)常伴随基因表达谱的改变和相关信号通路的失调。miRs在MI中扮演重要角色,其对心肌细胞的存活及缺血后血管生成有着多方面的调控作用。MI后miRs表达升高或下降可能参与心脏整体功能的调节。本文总结了MI相关miRs的最新进展,并讨论了miRs应用于MI治疗中的前景和局限性。
微RNA; 心肌梗死; 纤维化; 血管生成
【Abstraet】 MicroRNAs(miRs)are noncoding RNAs that control a large fraction of the genome. Myocardial infarction(MI)is characterized by strongly altered gene expression,deregulation of underlying signaling pathways and crucial participation of several miRs.miRs plays an important role in MI,and have multiple effects on the survival of cardiomyocytes and post ischemic angiogenesis.After MI miRs induction or repression might regulate overall cardiac function.In this review,we summarize the current knowledge about several miRs after MI and discuss briefly the application and limitations of miRs in treating MI.
【Kcy words】 microRNA; myocardial infaction; fibrosis; angiogenesis
心肌梗死(myocardial infarction,MI)是冠状动脉急性、持续性缺血缺氧所引起的心肌坏死,可进一步导致心脏重构而直接影响心脏的内部结构[1]。长期的心脏重构是造成心功能失代偿的重要原因,但相关分子机制目前尚未完全明确[2]。心肌缺血可诱发心脏炎性应答和转录组学的改变,微RNA(micro RNAs,miRs)与MI之间的关联日益成为心血管疾病研究的焦点[3]。据报道,心脏特异性敲除miRs合成酶Dicer可诱导失代偿性心脏重构和心力衰竭,提示miRs的合成通路对于心脏功能有着极其重要的意义[4]。此外,miRs组装过程中的核心因子Argonaute 2经转录后修饰可增强低氧刺激后miRs的基因沉默效应[5]。多项研究表明,miRs在调控 MI后心脏纤维化[6]、血管生成[7]和心肌肥大[8]等病理生理过程中扮演重要角色,提示miRs表达的改变与 MI存在紧密关联。因此,调控miRs为治疗MI引起的心功能不全提供了新策略,这在心脏缺血预适应的保护机制中得到了证实[9]。本文将逐一介绍MI相关miRs的功能,并讨论其在临床治疗MI的应用前景。
miR-1miR-1具有心肌细胞特异性,能够抵抗新生大鼠胰岛素样生长因子1(insulin-like growth factor 1,IGF-1)缺陷诱导的心肌细胞肥大[10]。miR-1表达增高能够抑制钠钙交换体1(sodiumcalcium exchanger 1,NCX1)的表达,后者在衰竭心脏中表达显著增高[11]。内质网钙离子-三磷酸腺苷(adenosine triphosphate,ATP)酶2a(sarco/ endoplasmic reticulum Ca2+-ATPase 2a,SERCA2a)活性降低是心力衰竭的重要特征[12]。由腺伴随病毒9 (adeno-associated virus 9,AAV9)介导的SERCA2a能增加衰竭心脏中miR-1的表达,并逆转心脏重构[11]。
值得注意的是,血浆miR-1水平升高对于MI后心力衰竭的发生有一定提示意义[13]。Shan等[14]报道,miR-1在MI后表达增高,可通过转录后抑制IGF-1来增强心肌细胞内的促凋亡通路。此外,miR-1具有致心律失常效应[15]。β受体阻滞剂普萘洛尔可有效抑制miR-1在缺血心肌内的表达,改善心脏传导功能,从而保护缺血心肌[16]。总之,miR-1 与MI相关的心力衰竭关系密切,虽可作为生物标志物和治疗靶点,但其在心脏中扮演的角色积极与否仍待进一步研究。
miR-15据报道,miR-15在猪和小鼠MI模型梗死区和边界区内表达增高,其内源性沉默能降低细胞应激水平。应用基于锁核酸(locked nucleic acid,LNA)的miR疗法能够显著抑制在体miR-15的表达,从而减小梗死面积。相关机制涉及其下游分子丙酮酸脱氢酶激酶同工酶4(pyruvate dehydrogenase lipoamide kinase isozyme 4 mitochondrial 4,PDK4)和血清/糖皮质激素调节激酶1(serum and glucocorticoid-regulated kinase 1,SGK1)参与的线粒体功能和心肌细胞凋亡[17]。此外,miR-15可抑制转化生长因子-β(transforming growth factor-β,TGF-β)信号通路,从而调控心肌肥大和间质纤维化,促进心脏重构向心力衰竭转变[18]。
miR-21研究表明,miR-21在衰竭心脏内表达增高,可促进成纤维细胞增殖[19]。梗死区内miR-21升高能够特异性抑制其下游的磷酸酶-张力蛋白同系物(phosphatase and tensin homolog,PTEN),导致成纤维细胞的金属蛋白酶2表达增高,进而激活成纤维细胞的生存信号通路,加剧梗死灶的纤维化重构[20]。通过抑制miR-21可以有效减轻MI后组织的炎性损伤[21],降低处于增殖期的成纤维细胞的数量,从而减轻心脏整体的纤维化水平并维持心功能[22]。虽然miR-21具有显著的抗纤维化效果,但该效应未能在全身敲除miR-21的动物模型中得到证实[23]。该分歧可能是使用不同长度的miR-21拮抗剂所造成的,二十二聚体反义miR-21比八聚体反义miR-21的心脏保护效应更强[24]。
miR-24miR-24可影响心肌细胞和成纤维细胞的生物学特性,其在 MI后表达下降[25]。慢病毒介导的miR-24过表达能够阻碍心肌细胞的促凋亡通路,抑制一系列成纤维细胞标志物,如Ⅰ型胶原蛋白、Ⅲ型胶原蛋白、纤连蛋白和α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA),从而减轻心肌损伤[25-26]。
然而,另有研究发现miR-24在低氧和缺血诱导的小鼠内皮细胞内表达升高[27]。miR-24过表达还可促进体外内皮细胞的凋亡,抑制发育期斑马鱼的血管生成。在小鼠MI模型中治疗性拮抗miR-24可直接促进心脏内皮细胞的存活,从而改善心脏重构[27]。上述结果表明miR-24在心脏成纤维细胞、心肌细胞和内皮细胞中发挥多方面作用。
miR-29miR-29在成纤维细胞中也高度表达,并在MI后的心脏重构中扮演重要角色[28]。miR-29可抑制胶原蛋白、原纤维蛋白和弹性蛋白等一系列纤维化相关蛋白的表达,而MI后抑制miR-29能够诱导细胞培养物和小鼠体内的胶原等细胞外基质蛋白的表达[29]。不仅如此,miR-29对其他脏器的纤维化进程也有抑制作用[30-31]。Port等[32]从信使RNA(messenger RNA,mRNA)和miRs水平上证实了miR-29在纤维化中的作用。值得注意的是,在心脏缺血再灌注损伤中,通过药物抑制miR-29可减轻心肌细胞凋亡并发挥心脏保护作用[33]。因此,miR-29过表达有望成为治疗MI相关纤维化的靶点,但其在 MI不同时相中对心脏表现出的不同效应应当慎重考虑。
miR-92amiR-92a过表达可阻断内皮细胞的血管生成通路,继而引发出芽能力降低等一系列血管生成缺陷,加重缺血组织的损伤[34],而全身给予miR-92a拮抗剂能够阻断内皮细胞血管生成通路的恶化[35]。抑制miR-92a可增加信号转导分子7 (mothers against decapentaplegic homolog 7,SMAD7)的表达,从而减轻低氧/复氧诱导的心肌细胞凋亡[36]。此外,miR-17~92基因簇的其他成员也具有较强的抗血管生成特性,为调控缺血损伤后的血管生成提供了强劲工具。
miR-101miR-101包括miR-101a和miR-101b两个异构体。大鼠冠状动脉结扎4周后,梗死周边区的miR-101表达下调。腺病毒介导的miR-101a过表达可降低c-Fos及其下游的TGF-β的水平,从而减轻MI后的间质纤维化并改善左心室顺应性[37]。然而,Wu等[38]发现miR-101可通过诱导自噬来减轻低氧/复氧所致的H9c2心肌细胞凋亡。因此,我们仍需开展更多的研究去论证miR-101的表达在心脏疾病治疗中需增强还是抑制。
miR-126miR-126具有内皮细胞特异性,其在正常血管发育以及维持MI后内皮细胞的正常功能和完整性中扮演重要角色[39]。miR-126在内皮细胞中表达降低会减弱血管生成通路的活性[40]。血管内皮生长因子(vascular endothelial growth factor,VEGF)和成纤维细胞生长因子等趋化因子在miR-126缺失时并不能发挥它们在MI后新生血管化当中的重要作用[41]。此外,富含于内皮细胞源性的凋亡小体miR-126可介导C-X-C模体趋化因子12(C-X-C motif chemokine 12,CXCL12)的生成从而发挥血管保护效应[41]。
miR-199研究表明,miR-199可抑制许多细胞周期的负性调控因子,包括Homer蛋白同系物1和唯同源域蛋白,其异位表达能够增强新生大鼠心肌细胞的增殖能力[42]。此外,腺伴随病毒9介导的miR-199过表达可诱导成年小鼠心肌细胞的增殖并刺激 MI后的心肌再生[42]。值得注意的是,转录因子Twist相关蛋白1(Twist-related protein 1,TWIST1)的下调能够降低miR-199的表达,进而激活心脏中泛素-蛋白酶体系统的表达,并最终导致心力衰竭[43]。因此,miR-199在通过促进心肌细胞再生以治疗 MI方面有一定研究价值,但其在心力衰竭终末状态中所参与的分子机制仍待进一步研究。
miR-214与正常小鼠相比,miR-214敲除小鼠的缺血再灌注损伤更为严重。miR-214能抑制钠钙交换体1(sodium/calcium exchanger 1,NCX1),调节心肌细胞的钙稳态,从而保护缺血心肌抵御钙超载引发的细胞死亡[44]。miR-214还可降低PTEN的表达,从而减轻过氧化氢诱导的心肌细胞凋亡[45]。
Duan等[46]发现miR-214于心力衰竭后表达上调,miR-214过表达可通过与X盒结合蛋白1(X-box binding protein 1,XBP1)作用降低人脐静脉内皮细胞的血管生成,其沉默可减轻异丙肾上腺素诱导的心功能障碍和血管生成损害。miR-214还能通过抑制zeste基因增强子同源物2(enhancer of zeste homolog 2,EZH2)促进心肌肥大。因此,miR-214在心脏中的作用是多方面的。
miR-378miR-378是主要表达于心肌细胞内的负性调控心肌肥厚的内源性因子[47],其在人衰竭的心脏和多种不同心肌肥大模型中的表达水平是降低的[48]。miR-378过表达可通过干扰活化T细胞核因子(nuclear factor of activated T cells,NFAT)在核内的积累与胎儿基因程序的表达,从而阻止心肌细胞的肥大,并防止压力负荷诱导的小鼠心功能障碍[47]。Nagalingam等[48]报道,miR-378的抑制可通过旁分泌的方式诱导TGF-β的表达并促进小鼠心脏内成纤维细胞的分化,从而加剧血管紧张素Ⅱ诱导的心肌肥大和纤维化。
研究表明,miR-378能够抑制caspase-3从而减少H9c2心肌细胞的凋亡[49]。然而,Knezevic等[50]发现,过表达miR-378可作用于胰岛素样生长因子1受体(insulin-like growth factor 1 receptor,IGF1R)以降低蛋白激酶B(protein kinase B,Akt)信号通路活性,从而促进心肌细胞凋亡。另一方面,利用反义miR抑制miR-378能够保护心肌细胞免受过氧化氢和缺氧复氧诱导的凋亡。这种分歧可能与不同研究所采用的模型及研究对象所处的生长阶段不同有关,但以上研究提示miR-378可在多层面调控MI所涉及的病理生理机制。
结语目前,miRs在MI中的研究虽已取得很大进展,但miRs应用于临床亦面临诸多挑战。许多可治疗MI的靶miRs同时也参与癌症等其他疾病进程。例如,抑制miR-34虽能促进心脏修复,但却有诱导肿瘤形成的危险[51]。但MI后miR-34的短期抑制是否增加肿瘤发生的风险仍待进一步研究。值得注意的是,仅有少数miRs特异性表达于一种细胞类型,如miR-208仅表达于心肌细胞[52]。大多数miRs广泛或普遍表达于多种不同组织细胞,这将导致全身应用miRs治疗时会产生不同程度的脱靶效应,而规避脱靶效应的主要策略是实现miRs的组织或细胞特异性定位。一种方法是通过导管将反义miRs或对miRNA的成熟体设计并合成的小片段双链miR(miR mimics)递送至心脏,然而无论是通过顺行还是逆行实施导管递送,反义miRs或miR mimics在其他组织的效应均不能被完全阻止[36]。对于miR-24等具有不同血管和心脏效应的miRs甚至可能需要为其设计细胞特异性的递送工具。例如,微球包被的miR-92a拮抗剂经冠状动脉内给药便可靶向定位至毛细血管[53]。规避脱靶效应的另一种方法是采取能够靶向作用于心肌细胞的腺伴随病毒9[54],这在一定程度上能解决细胞特异性给药的问题。此外,考虑到许多miRs之间具有协同作用,联合应用反义miRs或miR mimics可实现最佳的治疗效果。然而,这种组合疗法有可能增加脱靶效应和不良反应,从而使临床效果的调控复杂化。迄今为止,只有miR-15[17]和miR-92a[36]的治疗性抑制在猪中研究过,大多数miRs在投入临床试验前依然需要在更大的动物模型中验证效果并完成相应的毒理学、药物代谢动力学以及药效学测试。
总之,MI的诊断和治疗是需谨慎对待的艰巨任务,miRs在调控MI后心肌细胞的存活与凋亡、血管生成、心肌肥大和心脏纤维化等病理生理过程中扮演重要角色。miRs疗法在MI处理的常规手段之外提供了新的途径,诸多miRs有望成为实现MI后心脏再生修复的治疗靶点。目前,我们仍需开展更多的基础研究和临床试验去验证其可行性,最终将miRs疗法发展成为诊断和治疗MI的有效策略。
[1] Frangogiannis NG.The inflammatory response in myocardial injury,repair,and remodelling[J].Nat Rev Cardiol,2014,11(5):255-265.
[2] Braunwald E.The war against heart failure:the Lancet lecture[J].Lancet,2015,385(9970):812-824.
[3] Lee SH,Wolf PL,Escudero R,et al.Early expression of angiogenesis factors in acute myocardial ischemia and infarction[J].N Engl J Med,2000,342(9):626-633.
[4] da Costa Martins PA,Bourajjaj M,Gladka M,et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling[J]. Circulation,2008,118(15):1567-1576.
[5] Hale A,Lee C,Annis S,et al.An Argonaute 2 switch regulates circulating miR-210 to coordinate hypoxic adaptation across cells[J].Biochim Biophys Acta,2014,1843(11):2528-2542.
[6] Tao H,Yang JJ,Shi KH.Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis[J].Expert Opin Ther Targets,2015,19 (5):707-716.
[7] Yang Q,Wang X,Cui J,et al.Bidirectional regulation of angiogenesis and miR-18a expression by PNSin the mouse model of tumor complicated by myocardial ischemia[J]. BMC Complement Altern Med,2014,14:183.
[8] Wu C,Dong S,Li Y.Effects of miRNA-455 on cardiac hypertrophy induced by pressure overload[J].Int J Mol Med,2015,35(4):893-900.
[9] Varga ZV,Zvara A,Farago N,et al.MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic pre-and postconditioning:protectomiRs[J].Am J Physiol Heart Circ Physiol,2014,307(2):H216-227.
[10] Hua Y,Zhang Y,Ren J.IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction:role of micro RNA-1 and micro RNA-133a[J].J Cell Mol Med,2012,16(1):83-95.
[11] Kumarswamy R,Lyon AR,Volkmann I,et al.SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/Fox O3A-dependent pathway[J].Eur Heart J,2012,33(9):1067-1075.
[12] Bouyon S,Roussel V,Fromes Y.SERCA2a gene therapy can improve symptomatic heart failure in deltasarcoglycan-deficient animals[J].Hum Gene Ther,2014,25(8):694-704.
[13] Zhang R,Niu H,Ban T,et al.Elevated plasma microRNA-1 predicts heart failure after acute myocardial infarction[J].Int J Cardiol,2013,166(1):259-260.
[14] Shan ZX,Lin QX,Fu YH,et al.Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction [J].Biochem Biophys Res Commun,2009,381(4):597 -601.
[15] Chen Y,Wakili R,Xiao J,et al.Detailed characterization of microRNA changes in a canine heart failure model:Relationship to arrhythmogenic structural remodeling[J]. J Mol Cell Cardiol,2014,77:113-124.
[16] Lu Y,Zhang Y,Shan H,et al.MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction:a new mechanism for ischaemic cardioprotection[J].Cardiovasc Res,2009,84(3):434-441.
[17] Hullinger TG,Montgomery RL,Seto AG,et al.Inhibition of miR-15 protects against cardiac ischemic injury[J].Circ Res,2012,110(1):71-81.
[18] Tijsen AJ,van der Made I,van den Hoogenhof MM,et al.The microRNA-15 family inhibits the TGFbeta-pathway in the heart[J].Cardiovasc Res,2014,104(1):61-71.
[19] Thum T,Gross C,Fiedler J,et al.MicroRNA-21 contributes to myocardial disease by stimulating MAPkinase signalling in fibroblasts[J].Nature,2008,456 (7224):980-984.
[20] Roy S,Khanna S,Hussain SR,et al.MicroRNA expression in response to murine myocardial infarction:miR-21 regulates fibroblast met alloprotease-2 via phosphatase and tensin homologue[J].Cardiovasc Res,2009,82(1):21-29.
[21] Toldo S,Das A,Mezzaroma E,et al.Induction of microRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice[J]. Circ Cardiovasc Genet,2014,7(3):311-320.
[22] Dong S,Ma W,Hao B,et al.microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by upregulating Bcl-2[J].Int J Clin Exp Pathol,2014,7(2):565-574.
[23] Patrick DM,Montgomery RL,Qi X,et al.Stressdependent cardiac remodeling occurs in the absence of microRNA-21 in mice[J].J Clin Invest,2010,120(11):3912-3916.
[24] Thum T,Chau N,Bhat B,et al.Comparison of different miR-21 inhibitor chemistries in a cardiac disease model [J].J Clin Invest,2011,121(2):461-462;author reply 462-463.
[25] Wang J,Huang W,Xu R,et al.MicroRNA-24 regulates cardiac fibrosis after myocardial infarction[J].J Cell Mol Med,2012,16(9):2150-2160.
[26] Qian L,Van Laake LW,Huang Y,et al.miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes[J]. J Exp Med,2011,208(3):549-560.
[27] Fiedler J,Jazbutyte V,Kirchmaier BC,et al.MicroRNA-24 regulates vascularity after myocardial infarction[J]. Circulation,2011,124(6):720-730.
[28] Abonnenc M,Nabeebaccus AA,Mayr U,et al. Extracellular matrix secretion by cardiac fibroblasts:role of microRNA-29b and microRNA-30 c[J].Circ Res,2013,113(10):1138-1147.
[29] van Rooij E,Sutherland LB,Thatcher JE,et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis[J].Proc Natl Acad Sci U S A,2008,105(35):13027-13032.
[30] Yu JW,Duan WJ,Huang XR,et al.Micro RNA-29b inhibits peritoneal fibrosis in a mouse model of peritoneal dialysis[J].Lab Invest,2014,94(9):978-990.
[31] Cushing L,Kuang P,LüJ.The role of miR-29 in pulmonary fibrosis[J].Biochem Cell Biol,2015,93(2):109-118.
[32] Port JD,Walker LA,Polk J,et al.Temporal expression of miRNAs and mRNAs in a mouse model of myocardial infarction[J].Physiol Genomics,2011,43(19):1087-1095.
[33] Ye Y,Hu Z,Lin Y,et al.Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury [J].Cardiovasc Res,2010,87(3):535-544.
[34] Bonauer A,Carmona G,Iwasaki M,et al.MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice[J].Science,2009,324(5935):1710-1713.
[35] Doebele C,Bonauer A,Fischer A,et al.Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells[J].Blood,2010,115 (23):4944-4950.
[36] Zhang B,Zhou M,Li C,et al.MicroRNA-92a inhibition attenuates hypoxia/reoxygenation-induced myocardiocyte apoptosis by targeting Smad7[J].PLoS One,2014,9 (6):e100298.
[37] Pan Z,Sun X,Shan H,et al.MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/ transforming growth factor-beta1 pathway[J]. Circulation,2012,126(7):840-850.
[38] Wu D,Jiang H,Chen S,et al.Inhibition of microRNA-101 attenuates hypoxia/reoxygenationinduced apoptosis through induction of autophagy in H9c2 cardiomyocytes [J].Mol Med Rep,2015,11(5):3988-3994.
[39] van Solingen C,Bijkerk R,de Boer HC,et al.The role of microRNA-126 in vascular homeostasis[J].Curr Vasc Pharmacol,2015,13(3):341-351.
[40] Harris TA,Yamakuchi M,Kondo M,et al.Ets-1 and Ets-2 regulate the expression of microRNA-126 in endothelial cells[J].Arterioscler Thromb Vasc Biol,2010,30(10):1990-1997.
[41] Zernecke A,Bidzhekov K,Noels H,et al.Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection[J].Sci Signal,2009,2 (100):ra81.
[42] Wang J,Martin JF.Macro advances in microRNAs and myocardial regeneration[J].Curr Opin Cardiol,2014,29 (3):207-213.
[43] Baumgarten A,Bang C,Tschirner A,et al.TWIST1 regulates the activity of ubiquitin proteasome system via the miR-199/214 cluster in human end-stage dilated cardiomyopathy[J].Int J Cardiol,2013,168(2):1447 -1452.
[44] Aurora AB,Mahmoud AI,Luo X,et al.MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca(2)(+)overload and cell death[J].J Clin Invest,2012,122(4):1222-1232.
[45] Lv G,Shao S,Dong H,et al.MicroRNA-214 protects cardiac myocytes against H2O2-induced injury[J].J Cell Biochem,2014,115(1):93-101.
[46] Duan Q,Yang L,Gong W,et al.MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis[J].J Cell Physiol,2015,230(8):1964-1973.
[47] Nagalingam RS,Sundaresan NR,Gupta MP,et al.A cardiac-enriched microRNA,miR-378,blocks cardiac hypertrophy by targeting Ras signaling[J].J Biol Chem,2013,288(16):11216-11232.
[48] Nagalingam RS,Sundaresan NR,Noor M,et al.Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor beta(TGFbeta1)-dependent paracrine mechanism[J].J Biol Chem,2014,289(39):27199-27214.
[49] Fang J,Song XW,Tian J,et al.Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes[J]. Apoptosis,2012,17(4):410-423.
[50] Knezevic I,Patel A,Sundaresan NR,et al.A novel cardiomyocyte-enriched microRNA,miR-378,targets insulin-like growth factor 1 receptor:implications in postnatal cardiac remodeling and cell survival[J].J Biol Chem,2012,287(16):12913-12926.
[51] Hermeking H.The miR-34 family in cancer and apoptosis [J].Cell Death Differ,2010,17(2):193-199.
[52] Ji X,Takahashi R,Hiura Y,et al.Plasma miR-208 as a biomarker of myocardial injury[J].Clin Chem,2009,55 (11):1944-1949.
[53] Bellera N,Barba I,Rodriguez-Sinovas A,et al.Single intracoronary injection of encapsulated antagomir-92a promotes angiogenesis and prevents adverse infarct remodeling[J].J Am Heart Assoc,2014,3(5):e000946.
[54] Bish LT,Morine K,Sleeper MM,et al.Adeno-associated virus(AAV)serotype 9 provides global cardiac gene transfer superior to AAV1,AAV6,AAV7,and AAV8 in the mouse and rat[J].Hum Gene Ther,2008,19(12):1359-1368.
Progrcss of mieroRNAs rclatcd to myoeardial infaretion
WANG Ning1,2,WEN Ping1△
(1Department of Cardiovascular Surgery,Dalian Children's Hospital,Dalian Medical University,Dalian 116012,Liaoning Province,China;2Department of Biomedical Engineering,Fourth Military Medical University,Xi'an 710032,Shaanxi Province,China)
R 542.2+2
B
10.3969/j.issn.1672-8467.2015.06.018
2015-04-16;编辑:王蔚)
国家自然科学基金(81102687)
△Corresponding author E-mail:13504115999@163.com
上海市科学技术委员会资助项目(12JC1402100)
△Correspondingauthor E-mail:zhoulent@126.com
*This work was supportcd by thc National Natural Seicnec Foundation of China(81102687).