东秦岭160 ~140Ma Cu(Mo)和Mo(W)成矿作用的差异性:来自成矿岩体的地球化学及其岩浆源区的证据*
2015-04-13陈雷闫臻王宗起王瑞廷宁磊甘昌简代军治
陈雷 闫臻 王宗起 王瑞廷 宁磊 甘昌简 代军治
CHEN Lei1,YAN Zhen2,WANG ZongQi1,WANG RuiTing3,NING Lei4,GAN ChangJian4 and DAI JunZhi3
1. 中国地质科学院矿产资源研究所,国土资源部成矿作用与资源评价重点实验室,北京 100037
2. 中国地质科学院地质研究所,大陆构造与动力学国家重点实验室,北京 100037
3. 西北有色地质勘查局地质勘查院,西安 710054
4. 中国地质大学,北京 100083
1. MLR Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources,Chinese Academy of Geological Sciences,Beijing 100037,China
2. State Key Laboratory for Continental Tectonics and Dynamics,Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China
3. Geological Exploration Institution of Northwest Mining and Geological Exploration Bureau for Nonferrous Metals,Xi’an 710054,China
4. China University of Geosciences,Beijing 100083,China
2014-11-13 收稿,2015-02-28 改回.
秦岭造山带是华北板块和扬子板块长期聚合而形成的复合造山带(Mattauer et al.,1985;Kröner et al.,1993;Meng and Zhang,2000;张国伟等,2001),大地构造位置上以商丹断裂带为界,北部为北秦岭,南部为南秦岭(图1a,b);在地理上则大致以宝成铁路为界,西侧称为西秦岭,而东侧称为东秦岭。秦岭造山带经历了新元古代、古生代和中生代构造岩浆热事件和造山作用,发育有完整的3 次构造岩浆活动和造山事件(张国伟等,2001),形成了复杂多样的多期构造变形、强烈而广泛的岩浆活动和丰富的矿产资源(王宗起等,2009;王东生等,2009)。在商丹断裂带以北的北秦岭和华北板块南缘地区,在古生代俯冲-增生造山作用的基础上叠加了中生代碰撞造山作用,岩浆活动强烈,形成了金堆城、南泥湖-三道庄、上房沟和东沟等超大型斑岩、斑岩-矽卡岩型钼(钨)矿床及十几个大中型钼矿床(图1c),使得该区域成为世界第一大钼成矿带(李诺等,2007)。
这些大型、超大型钼矿床的出现,吸引了众多的学者(罗铭玖等,1991;黄典豪等,1994;陈衍景等,2000,2009;卢欣祥等,2002,2011;李永峰等,2005;叶会寿,2006;李诺等,2007;Mao et al.,2008;毛景文等,2009;胡海珠等,2013 及其参考文献)对该区域进行了长期、细致的研究和总结,结果表明东秦岭地区的钼矿床不仅成矿类型多样,成矿时代也十分复杂,既有中生代成矿作用,也有元古代成矿作用(如龙门店钼矿床,魏庆国等,2009),而且中生代成矿作用又可分为晚三叠纪(~220Ma)和晚侏罗世-早白垩世(160~110Ma)(图1c),其中晚侏罗世-早白垩世成矿作用进一步可分为160 ~140Ma 和130 ~100Ma 两期成矿作用,不同时期的钼矿化在成矿物质来源和成矿岩体特征等方面均具有一定的差异(Mao et al.,2008)。正是由于这些大型、超大型钼矿床的存在,使得众多研究者的注意力长期集中于商丹断裂带以北的区域,而对商丹断裂带以南区域内与中生代岩浆活动有关的成矿作用并未引起过多的关注。
商丹断裂带以南的区域,尤其是山阳-柞水地区,出露有大量晚三叠纪和晚侏罗世-早白垩世岩浆岩,部分晚侏罗世-早白垩世岩浆岩周边及其内部发育强烈的热液蚀变,并形成小规模铜矿床(张本仁等,1989;张银龙,2002;陈雷等,2014a)。近年来的找矿勘查工作在该区域内陆续发现一系列与晚侏罗世-早白垩世岩体有关的铜矿床,显示该区域内晚侏罗世-早白垩世岩体具有很大的寻找铜矿潜力(任涛等,2009)。已有学者对区域内晚侏罗世-早白垩世岩体及其成矿作用进行了研究(张本仁等,1989;罗德正,1995;张银龙,2002;朱华平和祁思敬,1997;朱华平等,2003;谢桂青等,2012;陈雷等,2014b;吴发富等,2014),结果显示这些岩体主要形成于150 ~140Ma,并与已发现的铜矿床具有密切的成因联系,这说明商丹断裂带南部的铜矿床和北部的钼矿床形成于同一时代,是同一次构造-岩浆活动的产物。相对于商丹断裂带北侧发育以钼(钨)为主的矿化,目前在商丹断裂带南部发现的矿床以铜矿化为主,伴生少量钼矿化,为何同期成矿作用会在商丹断裂带南北两侧形成两种截然不同的矿化类型,造成这种矿化差异的因素是什么?在商丹断裂带南部是否也具有寻找与北部类似的同时期以钼矿化为主的矿床,反之,在北部地区是否也具有寻找铜矿的可能?针对这些问题,本次研究在详细对比商丹断裂带南北两侧Cu(Mo)和Mo(W)成矿作用特征的基础上,对两种矿化的成矿岩体从地球化学、温压条件、氧化还原状态及深部岩浆源区特征方面进行了综合对比研究,以期能够找出造成这种差异性的控制因素,同时也希望能够对区域内的找矿勘查工作提供一些建议。
1 区域地质背景
本次研究的东秦岭地区主要包括山阳-凤镇断裂以北,西安以东的地区,以东秦岭钼成矿带和山阳-柞水矿集区为主要研究区域。在大地构造位置上,东秦岭钼成矿带主要位于北秦岭和华北板块南缘,而山阳-柞水矿集区位于南秦岭泥盆纪弧前盆地(王宗起等,2002,2009;闫臻等,2007)。区域内出露地层具有多时代的特征,从新太古界、古元古界、中元古界、新元古界、寒武系和奥陶系,到泥盆系、石炭系和新生代地层均有所出露(图1c)。在商丹断裂带以北的区域,即东秦岭钼成矿带,主要分布有新太古代至奥陶纪地层,包括秦岭群、熊耳群、高山河群、栾川群、宽坪群和陶湾群等岩石地层单元,岩性主要是一系列变质程度不同的火山岩和沉积岩,形成时代相对较老;商丹断裂带以南的山阳-柞水地区主要分布泥盆纪和少量石炭纪地层,也有零星的志留纪和前寒武纪地层出露(图1c),其中泥盆纪和石炭纪地层主要由粉砂岩、砂岩、绢云板岩、结晶灰岩、石英杂砂岩及白云岩组成。
东秦岭地区构造活动强烈,以断裂构造最为发育,尤其以EW 向的断裂分布最为广泛,包括一系列区域性的断裂,如:商丹断裂带,栾川断裂带、马超营断裂带和山阳-凤镇断裂带(图1),这些大型的EW 向断裂不仅划分了大地构造格局,还对区域沉积特征和矿化分布产生了重要影响。同时,区域内还分布有NE、NNE 和NW 向的次级断裂,这些次级断裂与主断裂的交汇部位及次级断裂的相互交汇部位是区域内中生代岩浆岩侵位和相关矿床分布的主要区域。
区内岩浆活动持续时间较长,从太古代至中生代均有不同规模的岩浆岩侵位,太古代至新元古代时期,由于板块的汇聚和裂解活动,形成了同碰撞到后碰撞的花岗岩(图1c,陆松年等,2004;Wang et al.,2003;张成立等,2004;王涛等,1999,2005);古生代时期由于俯冲增生作用,沿商丹断裂带发育有大量古生代花岗岩(Wang et al.,2005,2009);中生代时期,由于扬子板块和华北板块的碰撞,形成了大量晚三叠纪和侏罗纪-白垩纪岩浆岩,其中晚三叠纪的岩浆活动主要分布在商丹断裂带南侧,形成东江口、柞水、沙河湾和曹坪等大型岩体,而晚中生代的岩浆岩,即侏罗纪-白垩纪的岩浆活动主要集中在商丹断裂带以北的区域,南部只有零星的小规模岩体出露(图1c)。
由于强烈、多期次的构造-岩浆活动,区域内也形成了多期次的成矿作用,既有与元古代基性岩有关的钒钛磁铁矿(郭现轻等,2014),也有古生代的热水喷流沉积-改造型Cu-Fe-PbZn-Ag 矿床(朱华平等,2003),但分布最广泛的还是与中生代构造-岩浆活动有关的Mo(W)CuAuAgPbZn 矿床(陈衍景等,2009;毛景文等,2009)。
2 东秦岭地区160 ~140Ma Cu(Mo)和Mo(W)成矿作用特征
东秦岭地区160 ~140Ma 的Mo(W)矿床主要位于商丹断裂带以北的北秦岭和华北板块南缘,矿化类型主要是斑岩型和斑岩-矽卡岩型,以Mo 和Mo(W)矿化为主,伴生有PbZn、Ag、Fe 和Cu 矿化。矿区内出露有新太古代至奥陶纪的岩石地层单元,而赋矿地层具有多时代特征,不受地层时代和层位的控制,各时代地层均可有Mo 矿床产出(表1)。赋矿地层的岩石单元可从中高级的变质岩到变质程度较弱的岩石,岩性从火山岩到沉积岩。但地层岩性对矿床类型具有重要的影响,当围岩中含有较多的碳酸盐岩时,形成斑岩-矽卡岩型矿床,如南泥湖-三道庄矿床;而当围岩以火山岩、石英砂岩、碎屑岩或片岩为主,不含或含很少量碳酸盐岩时,则形成斑岩型矿床,如金堆城、八里坡和石家湾等矿床。成矿岩体主要是小型、中酸性浅成侵入体,岩石类型主要为花岗斑岩,少量为斑状二长花岗岩和花岗闪长(斑)岩。Mo(W)矿床总体沿区域构造呈近EW 向展布,NNE、NW 向次级断裂与近EW 向构造交汇部分控制成矿岩体的空间侵位和矿体展布,尤其是NNE 向断裂与绝大多数矿床的形成具有密切的联系。东秦岭地区160 ~140Ma Mo(W)矿床中除Mo 作为最主要成矿元素以外,还伴生有W、Pb、Zn、Ag、Fe、Cu 等成矿元素,不同元素的矿化强度不同,如南泥湖矿床中伴生的W 矿化已达超大型规模(向君峰等,2012),但是在整个东秦岭商丹断裂以北的区域内目前只有秋树湾矿床形成MoCu 矿化,而且Cu 矿化达到中等规模(郭保健等,2006)。不同矿化类型的矿体产状不同,斑岩型矿床的矿体直接产于斑岩体内部或接触带上,呈似层状、板状、透镜状;斑岩-矽卡岩型矿床的矿体一般呈层状、似层状、透镜状。斑岩型、斑岩-矽卡岩型和矽卡岩型钼矿床中均发育典型的面状蚀变,主要围岩蚀变有钾长石化、绿帘石化、绢英岩化、硅化、黑云母化、萤石化和矽卡岩等;矿石金属矿物主要有辉钼矿、黄铁矿、磁黄铁矿、白钨矿、方铅矿、闪锌矿和黄铜矿;脉石矿物主要有透辉石、石榴石、阳起石、绿帘石、符山石、长石、石英、绢云母、萤石、方解石、绿泥石及沸石等(表1)。
东秦岭地区Cu(Mo)矿床主要位于商丹断裂带以南的晚古生代弧前盆地内,多发育于150 ~140Ma 的中酸性小斑岩体与泥盆系、石炭系富含钙质成分的接触部位及岩体内部,成矿作用与150 ~140Ma 的侵入体、含钙地层(泥盆纪的池沟组、云镇组、龙洞沟组及石炭纪的下东沟组、桐峪寺组、二峪河组等)关系密切(表1)。EW、NNE、NE 和NEE 向断裂控制了成矿岩体和矿化的展布,同时地层中的层间破碎带也为成矿提供了有利条件。矿化类型以矽卡岩型矿化为主,少量斑岩型矿化,成矿元素以Cu 为主,伴生有Mo、Fe、Au 等元素(表1)。目前已发现的矿体多呈透镜状、似层状和囊状,主要分布于矽卡岩中,少量位于岩体内部。围岩蚀变主要有角岩化、矽卡岩、硅化、钾化、绢英岩化、绿泥石化及粘土化。矿化和蚀变均具有鲜明的分带特征,而且矽卡岩型矿化和斑岩型矿化具有密切时空联系,具有统一的矽卡岩-斑岩型成矿系统(陈雷等,2014a)。矿石金属矿物主要有黄铜矿、黄铁矿、辉钼矿、磁铁矿、黝铜矿、斑铜矿、镜铁矿和辉铜矿;脉石矿物主要有石榴石、透辉石、透闪石、阳起石、符山石、绿帘石、绿泥石、方解石、长石、绢云母和石英等(表1)。
由上述东秦岭地区160 ~140Ma Cu(Mo)和Mo(W)矿床的地质特征概述可以发现,这两类矿床在矿化类型和主要控矿构造方面具有相似的特征,而且成矿作用均与同时期的岩浆岩具有成因联系。赋矿地层的岩性特征方面,两者既有一定的相似性也存在差异,Cu(Mo)矿床的地层岩性主要是粉砂岩、砂岩、绢云板岩、结晶灰岩及白云岩,而Mo(W)矿床的地层岩性除了砂岩、千枚岩、板岩、大理岩和白云岩外,还含有火山岩、碎屑岩和石英岩等(表1)。因此,除了围岩的不同外,这种成矿作用的差异性可能与成矿岩体具有直接联系,对这两种不同矿化的成矿岩体进行对比研究可以更加深入的理解这种成矿差异性的控制因素。
表1 东秦岭地区160 ~140Ma主要Cu(Mo)和Mo(W)矿床地质特征Table1 ThegeologicfeaturesoftheCu(Mo) and Mo(W) depositsformed in 160 ~140Main EastQinlingarea
续表1Continued Table1
续表1Continued Table1
表2 东秦岭地区典型160 ~140Ma Cu(Mo)和Mo(W)矿床成矿岩体地球化学数据(主量元素:wt%;稀土和微量元素:×10 -6)Table 2 The geochemical data of the metallogenic rocks of the typical Cu(Mo)and Mo(W)deposits formed in 160 ~140Ma in East Qinling area (major elements:wt%;trace elements:×10 -6)
图2 东秦岭地区160 ~140Ma Mo(W)和Cu(Mo)矿床成矿岩体QAP 图解(a,据Streckeisen,1976)、SiO2-K2O(b,据Peccerillo and Taylor,1976)、A/CNK-A/NK(c,据Maniar and Piccoli,1989)和分异指数(Di)-SiO2 图解(d)数据来源见表2;图3、图5、图7 数据来源和图例同此图;图4 数据来源同此图;图8、图9、图10 的图例同此图Fig.2 QAP (a,Streckeisen,1976),SiO2-(K2O+Na2O)(b,Le Bas et al.,1986),A/CNK-A/NK (c,Maniar and Piccoli,1989)and Di-SiO2diagram (d)of 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East QinlingThe data are seen in Table 2;The source of data and symbols in Fig.3,Fig.5 and Fig.7 as this figure;The source of data in Fig.4 as this figure;Symbols in Fig.8,Fig.9 and Fig.10 as this figure
3 Cu(Mo)和Mo(W)矿床的成矿岩体的差异
通过对东秦岭地区160 ~140Ma Cu(Mo)和Mo(W)矿床的地质特征对比(表2)可以发现,Mo(W)矿床的成矿岩体主要是花岗斑岩和斑状二长花岗岩,Cu(Mo)矿床的成矿岩体主要是花岗闪长斑岩,少量为花岗斑岩。Cu(Mo)和Mo(W)矿床成矿岩体均具有明显地斑状结构,发育强烈的钾化、硅化、绢云母化和绿泥石化等热液蚀变特征。同时,Cu(Mo)和Mo(W)成矿岩体绝大多数为小型侵入体,地表出露面积都不足1km2,而且成矿岩体的展布均受到断裂控制。本次对Cu(Mo)和Mo(W)成矿岩体主要从岩石地球化学、结晶温度、氧化还原状态及岩浆源区特征方面进行对比研究。
3.1 岩石地球化学的差异
东秦岭地区160 ~140Ma Cu(Mo)和Mo(W)矿床的成矿岩体在地球化学特征上主要表现为花岗闪长岩、二长花岗岩和花岗岩特征(图2a),均属于高钾钙碱性-钾玄岩系列(图2b),以准铝质为主,个别为过铝质岩石(图2c)。相对于Cu(Mo)矿床,Mo(W)矿床的成矿岩体具有较高的SiO2含量(分别为63.92% ~79.13%和60.21% ~68.31%)、K2O 含量(均值分别为5.72%和4.34%)(图2b)和较大的分异指数(Di)(均值分别为90.26 和77.9)(图2d),但是Mo(W)成矿岩体具有较低的MgO 含量(均值分别为0.37% 和1.64%)、Mg#(均值分别为25.6 和49.3)(图3)和Fe2O3T 含量(均值分别为2.04%和3.11%)。通过上述对比可以发现,东秦岭地区160 ~140Ma Mo(W)矿床的成矿岩体具有高硅、富钾,贫镁铁,高分异的特征,而Cu(Mo)矿床的成矿岩体表现出低硅、低钾,富镁铁,低分异的特征。
图3 东秦岭地区160 ~140Ma Mo(W)和Cu(Mo)矿床成矿岩体SiO2-Mg#图解Fig.3 SiO2-Mg# diagrammatize of 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East Qinling
Cu(Mo)和Mo(W)矿床的成矿岩体具有相似的微量元素特征(图4a,c),但Cu(Mo)成矿岩体相对富集Ba,亏损U和Nb;Mo(W)成矿岩体则表现出Ba 亏损,U 富集,并且大部分岩体具有弱的Nb 富集。Cu(Mo)和Mo(W)成矿岩体Rb/Sr 比值分别为0.05 ~0.83(平均0.21)和0.04 ~21.46(平均4.12),Rb/Nb 比值分别为6.09 ~35.94(平均11.07)和1.46~40.1(平均7.77),Cu(Mo)成矿岩体Rb/Sr 比值明显低于中国东部(0.31,高山等,1999)和全球上地壳的平均值(0.32,Taylor and McLennan,1985),Rb/Nb 比值高于中国东部(6.8,高山等,1999)和全球上地壳的平均值(4.5,Taylor and McLennan,1985),而Mo(W)成矿岩体均高于中国东部和全球的上地壳平均值,反映Cu(Mo)和Mo(W)成矿岩体源区可能都含有不同的陆壳物质。
在稀土元素方面,Cu(Mo)成矿岩体∑REE(83.98 ×10-6~261.7 ×10-6,平均为151.8 ×10-6)略高于Mo(W)成矿岩体∑REE(39.43 ×10-6~253.8 ×10-6,平均为100.4 ×10-6)。在球粒陨石标准化配分图上(图4b,d),Cu(Mo)和Mo(W)成矿岩体均表现出轻稀土元素富集,重稀土元素亏损;Cu(Mo)和Mo(W)成矿岩体LREE/HREE 分别为9.38 ~16.39 和2.39 ~25.64,(La/Yb)N值分别为19.44 ~28.77 和2.69 ~27.55。Mo(W)成矿岩体总体表现出较为明显的负Eu 异常(δEu 值为0.3 ~1.0),而Cu(Mo)成矿岩体并未表现出明显的Eu 异常(δEu 值为0.8 ~1.3),只有部分样品有弱的Eu 异常,表明Mo(W)成矿岩体在分馏结晶或部分熔融的过程中源区有长石的残余,而Cu(Mo)成矿岩体没有或只有很少量的长石残余。两者的(La/Sm)N值分别为3.01 ~6.74和2.52 ~10.84,(Gd/Yb)N值分别为1.41 ~2.36 和0.24 ~2.54,表明轻、重稀土元素都发生了一定程度的分馏,轻稀土元素的分馏程度要强于重稀土元素,Mo(W)成矿岩体的分馏程度要高于Cu(Mo)成矿岩体。
图4 东秦岭地区160 ~140Ma Cu(Mo)(a、b)和Mo(W)(c、d)矿床成矿岩体的微量元素和稀土元素配分模式图(原始地幔和球粒陨石值据Sun and McDonough,1989)Fig.4 Chondrite-normalized and primitive mantle normalized REE and trace elements diagrams of the 160 ~140Ma metallogenic rocks of Cu(Mo)(a,b)and Mo(W)(c,d)deposits in East Qinling (primitive mantle and chondrite values after Sun and McDonough,1989)
图5 东秦岭地区160 ~140Ma Cu(Mo)和Mo(W)矿床成矿岩体的(La/Sm)-La 图(a)和Sm/Yb-La/Sm 图(b)Fig.5 Diagrams of (La/Sm)-La (a)and Sm/Yb-La/Sm (b)of the 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East Qinling
在(La/Sm)-La 图解中(图5a),Cu(Mo)和Mo(W)矿床的成矿岩体均表现出良好的正相关性特征,表明两种岩浆在形成过程中都经历了部分熔融作用。鉴于稀土元素的不活动性,La/Sm 和Sm/Yb 比值对于判断源区残留相具有十分重要的指示意义(Kay and Mpodozis,2001;Ahmadian et al.,2009;Shafiei et al.,2009;Haschke et al.,2010)。由于Yb在石榴石中的分配系数高于Sm,因此高Sm/Yb 比值(>6)代表一种含水量低的榴辉岩相熔融残留体;Sm/Yb 比值(3 ~6)代表含水角闪石相残留体,而低Sm/Yb 比值(<3)则代表一种以辉石相为主的残留体(Van Westrenen et al.,2001)。高La/Sm 比值(>8)代表富集熔融源区,并以角闪石为残留相,而低La/Sm 比值代表富集程度相对较低的熔融源区且无或极少量角闪石残留(Kay and Abbruzzi,1996)。对比东秦岭地区160 ~140Ma Cu(Mo)和Mo(W)矿床的成矿岩体可以发现,Cu(Mo)矿床的成矿岩体Sm/Yb 比值为2.67 ~4.56,La/Sm 比值为3.0 ~6.7,说明岩浆源区可能是以极少量角闪石为残留相的部分熔融产物(图5b)。Mo(W)矿床的成矿岩体Sm/Yb 比值为0.33 ~4.32,La/Sm 比值为2.52 ~10.84,说明成矿岩体的岩浆可能是以辉石为残留相的部分熔融产物(图5b)。上述对比说明Cu(Mo)和Mo(W)矿床的成矿岩体在岩浆源区上具有一定的差异。王翠云等(2012)和Hou et al. (2013)分别对德兴斑岩铜矿和冈底斯地区的斑岩铜矿进行研究显示成矿岩体的岩浆均为以角闪石为主要残留相的部分熔融产物,而本次研究的Cu(Mo)矿床的成矿岩浆源区却是以极少量或无角闪石为残留相,这种岩浆源区的差异可能也是南秦岭山阳-柞水地区150 ~140Ma 的成矿岩体虽然具有良好的成矿地质背景,但并未形成大规模的Cu 矿化的原因之一。
3.2 结晶温度、源区压力和氧化还原状态差异
花岗质岩浆初始结晶温度对于理解花岗质岩浆的起源和演化具有重要的意义,本次主要选取岩石的锆石饱和温度计对Cu(Mo)和Mo(W)矿床的成矿岩体进行结晶温度估算。根据Miller et al. (2003)的计算公式,计算出Cu(Mo)成矿岩体的结晶温度为718 ~815℃,主要集中在770℃;Mo(W)成矿岩体的结晶温度为699 ~826℃,主要集中于~740℃、~770℃和~790℃三个区间,两者总体具有相似的结晶温度(图6)。Sylvester (1998)提出花岗岩的Al2O3/TiO2比值可以作为源区部分熔融的温度指示剂,当Al2O3/TiO2>100 时,表明部分熔融温度<875℃,反之则相反。本次研究的Cu(Mo)成矿岩体Al2O3/TiO2比值在20.6 ~47.5 之间,Mo(W)成矿岩体在33.8 ~112.4 之间,这也表明Mo(W)和Cu(Mo)成矿岩体的具有相似的源区部分熔融的温度。
图6 东秦岭地区160 ~140Ma Mo(W)和Cu(Mo)矿床成矿岩体结晶温度分布图Fig. 6 Plot of crystallization temperature of the 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East Qinling
图7 东秦岭地区160 ~140Ma Mo(W)和Cu(Mo)矿床成矿岩体岩浆系列(a)和氧化还原状态与分异程度关系图(b,据Hart et al.,2004)NNO-镍-氧化镍;QFM-石英-铁橄榄石-磁铁矿;Hem-Mag-赤铁矿-磁铁矿Fig.7 Magma series (a)and oxidation state (b,modified after Hart et al.,2004)of the 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East QinlingNNO-Ni-NiO;QFM-quartz-fayalite-magnetite;Hem-Mag-hematite-magnetite
图8 东秦岭地区160 ~140Ma Mo(W)和Cu(Mo)矿床成矿岩体(87Sr/86Sr)i-εNd(t)(a)和t-εHf(t)(b)分布图北秦岭地区中生代岩浆岩和华北板块南缘中生代岩浆岩的数据引自王晓霞等(2011);华北板块上、下地壳的成分特征引自Jahn et al.(1999);Cu(Mo)矿床成矿岩体Nd、Hf 同位素数据来自作者待发表数据;南泥湖、上房沟、石宝沟矿床和合裕岩体的Nd、Hf 同位素数据引自王新(2001)、李永峰(2005)、杨阳等(2012)和Bao et al. (2014);金堆城矿床的Nd、Hf 同位素数据引自郭波(2009)、李洪英等(2011)和焦建刚等(2010a);八里坡矿床的Nd 同位素数据引自焦建刚等(2010b);石家湾矿床的Nd、Hf 同位素数据引自赵海杰等(2010);南台矿床的Hf同位素数据引自柯昌辉等(2012)Fig.8 Plot of (87Sr/86Sr)i-εNd(t)(a)and t-εHf(t)(b)of the 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East QinlingData of the Mesozoic magmatic rocks from North Qinling orogenic belt and southern of North China Plate are from Wang et al. (2011);the component of lower and upper crust of North China Plate are from Jahn et al. (1999). The Nd and Hf data of the rocks related to Cu(Mo)deposits are the unpublished data of author. Nd and Hf isotopic data of Nannihu,Shangfanggou,Shibaogou deposits and Heyu intrusion are from Wang et al. (2011),Li et al. (2005),Yang et al. (2012)and Bao et al. (2014). Nd and Hf isotopic data of Jinduicheng deposit are from Guo et al. (2009),Li et al.(2011)and Jiao et al. (2010a). Nd isotopic data of Balipo are from Jiao et al. (2010b). Nd and Hf isotopic data of Shijiawa deposit are from Zhao et al. (2010). Hf isotopic data of Nantai deposit are from Ke et al. (2012)
通过上述Cu(Mo)和Mo(W)成矿岩体岩浆源区残留相的对比可以发现(图5b),Cu(Mo)成矿岩体岩浆源区可能是以极少量角闪石为残留相,而Mo(W)成矿岩体的岩浆是以辉石为残留相的部分熔融的产物,说明Mo(W)成矿岩体形成压力要高于Cu(Mo)成矿岩体,也进一步说明在晚侏罗世-早白垩世时期,商丹断裂南北两侧的地壳厚度不同,北部的地壳厚度要大于南部。区域重磁资料研究结果显示,Mo(W)矿床主要形成于地幔的坳陷区,而地幔的隆起区并无Mo(W)矿床(张乃昌等,1986),也说明了Mo(W)矿床所处的北部地区的地壳厚度较大。
Cu(Mo)和Mo(W)成矿岩体在Fe2O3/FeO-SiO2图解上(图7a),都位于磁铁矿系列花岗岩区域,但是两者具有不同的分布区间,Mo(W)成矿岩体分异程度较高,而Cu(Mo)成矿岩体分异程度较低。在Fe2O3/FeO-Rb/Sr 图解上(图7b),虽然Cu(Mo)和Mo(W)成矿岩体在氧化还原状态上都位于NNO-Hem-Mag 区间内(图7b),但是Mo(W)成矿岩体具有相对较高的氧化态,这可能也是同时期的岩体形成大规模的Mo(W)矿化而只能形成小规模的Cu(Mo)矿化的原因之一。
3.3 深部岩浆源区的差异
成矿岩体的深部岩浆源区特征与成矿类型和矿化规模具有密切联系,岩浆源区中的地幔物质对不同成矿类型有重要贡献(Griffiths and Godwin,1983;Lehmann,1990;Cline and Bodnar,1991;Barnes,1997;侯增谦等,2003;曲晓明等,2004;Wang et al.,2006;Li et al.,2011;Hou et al.,2013;Song et al.,2014)。对于斑岩型Mo 矿床成矿岩体的源区特征,大部分学者认为含Mo 的成矿岩浆起源于下地壳的部分熔融,但是有地幔成分的混入(罗铭玖等,1991;Mao et al.,1999,2008;卢欣祥等,2002),Stein (1988)、Stein and Crock (1990)、Stein et al. (1997)及Brooks et al. (2004)则认为成Mo 的岩浆具有强烈的幔源特征,而侯增谦和杨志明(2009)认为含Mo 岩浆的确起源于加厚的下地壳,但并没有确切证据能说明斑岩型钼矿的成矿岩体源区中有地幔物质的混入。Li et al. (2011)、Hou et al. (2013)和秦克章等(2014)对冈底斯地区斑岩铜矿的成矿岩体进行研究后认为成矿岩浆源区中具有大量的地幔物质,并认为岩浆的源区性质和源区中地幔物质的贡献决定了斑岩能否成矿。由此可以看出,无论是Mo 矿化还是Cu 矿化,成矿岩体的岩浆源区中地壳和地幔物质成分的比例对两种矿化均具有重要意义。
在(87Sr/86Sr)i-εNd(t)图解(图8a)上,可以看出东秦岭地区160 ~140Ma 两类不同矿化的成矿岩体具有明显不同的源区特征,Cu(Mo)成矿岩体相比Mo(W)成矿岩体具有较大的εNd(t)值(分别为-4.75 ~-2.73 和-28.8 ~-12.1),Cu(Mo)成矿岩体与北秦岭地区中生代岩浆岩具有相似的源区,而Mo(W)成矿岩体主体分布在华北板块南缘中生代岩浆岩区域内,更接近华北板块的上地壳,说明相较Cu(Mo)成矿岩体,Mo(W)成矿岩体在岩浆源区中含有更多的地壳成分。
图9 东秦岭地区160 ~140Ma Mo(W)和Cu(Mo)矿床成矿岩体Pb 同位素分布图DM、EMI、EMII 及NHRL 数据引自Hart (1984,1988);MORB 数据引自Othman et al. (1989)和Vroon et al. (1993,1995). 金堆城、南泥湖、夜长坪矿床的Pb 同位素数据引自张本仁等(1987)、陈岳龙等(1994)、焦建刚等(2010a);八里坡矿床数据引自焦建刚等(2010b);上房沟矿床的数据引自张本仁等(2002);Cu(Mo)矿床的成矿岩体Pb 同位素引自张本仁等(1989)Fig.9 Plot of Pb isotope of the 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East QinlingThe field of DM,EMⅠand EMⅡ,and the Northern Hemisphere Reference Line (NHRL)are from Hart (1984,1988). The data of MORB are from Othman et al. (1989)and Vroon et al. (1993,1995). Pb isotopic data of Jinduicheng,Nannihu and Yechangping deposits are from Zhang et al. (1987),Chen et al. (1994)and Jiao et al. (2010a),the data of Balipo deposit are from Jiao et al.(2010b). Data of Shangfagngou depositare from Zhang et al. (2002). Pb isotopic data of the rocks related to Cu(Mo)deposits are from Zhang et al. (1989)
在t-εHf(t)图中(图8b),Cu(Mo)成矿岩体的εHf(t)值(-3.79 ~+1.79)明显大于Mo(W)成矿岩体εHf(t)值(-38 ~-7.9),Mo(W)成矿岩体的εHf(t)值和华北板块南缘的中生代岩浆岩具有相同的分布范围,均位于早元古代-中元古代和太古代地壳的演化线之间;而Cu(Mo)成矿岩体位于球粒陨石演化线附近,相对Mo(W)成矿岩体更靠近亏损地幔演化线。这也进一步说明Cu(Mo)成矿岩体在岩浆源区中含有相对更多的幔源物质成分。
在Pb 同位素分布图上(图9),虽然Cu(Mo)和Mo(W)成矿岩体均位于地幔源区附近,变化特征不明显,但是相对Cu(Mo)成矿岩体,Mo(W)成矿岩体具有明显向下地壳演化线分布的趋势,这也说明Mo(W)成矿岩体在岩浆源区中含有相对更多的地壳成分。
图10 东秦岭地区160 ~140Ma Mo(W)和Cu(Mo)矿床成矿岩体锆石Hf 同位素模式年龄分布图数据来源同图8. 其中HY 代表合裕岩体,NT 代表南台矿床,其他字母代号同表2Fig.10 Plot of Zircon Hf isotopic tDM2 of the 160 ~140Ma metallogenic rocks of Mo(W)and Cu(Mo)deposits in East QinlingThe data have the same source with Fig.8. HY represent Heyu intrusions,NT represent Naitai deposit,others as inTable 2
由锆石的εHf(t)值和模式年龄(tDM2)的分布(图10)可以看出,以商丹断裂带为界,北部的Mo(W)矿床的成矿岩体普遍具有较老的模式年龄,而南部的Cu(Mo)矿床的成矿岩体则相对年轻,这也进一步说明南部的Cu(Mo)成矿岩体的岩浆源区中古老地壳物质成分逐渐减少,幔源成分增加,矿化类型也逐渐由北部以Mo(W)矿化为主转变为南部以Cu(Mo)矿化为主。
由上述Cu(Mo)和Mo(W)成矿岩体Nd、Pb 和Hf 同位素特征可以看出,Mo(W)成矿岩体源区中含有较多的壳源成分,而Cu(Mo)成矿岩体源区中含有较多的幔源成分,这种岩浆源区上的差异可能是导致东秦岭地区160 ~140Ma 岩浆活动形成两种不同矿化的根本原因,而造成这种差异的主要因素可能与两者位于不同的构造单元和不同的基底组成有关。
4 结论
通过对东秦岭地区160 ~140Ma Cu(Mo)和Mo(W)两种不同矿化类型的矿床进行矿床地质特征和成矿岩体的对比,发现造成这种差异性的因素主要如下:
(1)东秦岭地区160 ~140Ma Cu(Mo)和Mo(W)矿床位于不同的大地构造单元,以商丹断裂带为界,北部主要为Mo(W)矿化,主要分布于北秦岭和华北板块南缘;南部主要为Cu(Mo)矿化,主要位于南秦岭的晚古生代弧前盆地。
(2)Mo(W)矿床的成矿岩体以花岗斑岩为主,具有高硅、富钾,贫镁铁,高分异的特征;而Cu(Mo)矿床成矿岩体以花岗闪长斑岩为主,表现出低硅、低钾,富镁铁,低分异的特征。Cu(Mo)成矿岩体可能是以极少量角闪石为残留相的岩浆源区经部分熔融而形成的产物,而Mo(W)成矿岩体可能是以辉石为残留相的部分熔融产物。
(3)Mo(W)和Cu(Mo)成矿岩体具有相似的结晶温度;但相对来说,Mo(W)成矿岩体具有相对较高的岩体形成压力和氧化态。
(4)Mo(W)成矿岩体在岩浆源区中含有更多的壳源成分,而Cu(Mo)成矿岩体含有更多的幔源物质成分。商丹断裂带两侧岩浆源区成分的变化控制了南北两侧矿化类型的不同,这种岩浆源区上的差异可能是导致东秦岭地区160 ~140Ma 岩浆活动形成两种截然不同矿化的根本原因。
致谢 本次研究工作得到了西北有色地质勘查局地质勘查院和西北有色地质勘查局713 总队大力支持,野外工作中713 总队的李剑斌队长,任涛、张西社教授级高级工程师,王鹏、郭延辉、刘凯工程师给予了支持与协助;叶会寿研究员、赵俊兴博士两名审稿人对文章提出了很多具有建设性的建议;在此一并表示感谢。
Ahmadian J,Haschke M,McDonald I,Regelous M,Ghorbani M,Emami M and Murata M. 2009. High magmatic flux during Alpine-Himalayan collision:Constraints from the Kale-Kafi complex,central Iran. Geological Society of America Bulletin,121(5 - 6):857-868 Bao ZW,Zeng QS,Zhao TP and Yuan ZL. 2009. Geochemistry and petrogenesis of the ore-related Nannihu and Shangganggou granite porphyries from East Qinling belt and their constraints on the molybdenum mineralization. Acta Petrologica Sinica,25(10):2523-2536 (in Chinese with English abstract)
Bao ZW,Wang YC,Zhao TP,Li CJ and Gao XY. 2014. Petrogenesis of the Mesozoic granites and Mo mineralization of the Luanchuan ore field in the East Qinling Mo mineralization belt,Central China. Ore Geology Reviews,57:132 -153
Barnes HL. 1997. Geochemistry of Hydrothermal Ore Deposits. Hubert:John Wiley & Sons,Inc,1 -963
Brooks CK,Tegner C,Stein H and Thomassen B. 2004. Re-Os and40Ar/39Ar ages of porphyry molybdenum deposits in the East Greenland volcanic-rifted margin. Economic Geology,99(6):1215-1222
Chen L,Wang ZQ,Yan Z,Wu FF,Ren T and Guo YH. 2014a.Metallogenesis of 150 ~140Ma porphyry-skarn CuMoFe(Au)deposit in Shanyang-Zhashui ore concentration area, Qinling. Acta Petrologica Sinica,30(2):415 - 436 (in Chinese with English abstract)Chen L,Yan Z,Wang ZQ,Wu FF,Wang RT,Ren T,Guo YH and Wang P. 2014b. Mineralogical characteristic of the Yanshanian granitic rocks in Shanyang-Zhashui ore concentration area:An indicator for the magmatic nature and metallogenesis. Acta Geologica Sinica,88(1):109 -133 (in Chinese with English abstract)
Chen YL and Zhang BR. 1994. Pb,Sr and Nd isotope geochemistry of Yanshanian granitoids on southern margin of North China Craton in western Henan Province. Earth Science,19(3):375 - 382 (in Chinese with English abstract)
Chen YJ,Li C,Zhang J,Li Z and Wang HL. 2000. Sr and O isotopic characteristics of porphyries in the Qinling molybdemum deposit belt and their implication to genetic mechanism and type. Science in China (Series D),43(Suppl. 1):82 -94
Chen YJ,Zhai MG and Jiang SY. 2009. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent. Acta Petrologica Sinica,25(11):2695 -2726 (in Chinese with English abstract)
Cline JS and Bodnar RJ. 1991. Can economic porphyry copper mineralization be generatedby a typical calc-alkaline melt?Journal of Geophysical Research,96(B5):8113 -8126
Gao S,Luo TC,Zhang BR,Zhang HF,Han NW,Zhao ZD and Kern H.1999. Stracture and composition of the continental crust in East China. Science in China (Series D),42(2):129 -140
Griffiths JR and Godwin CI. 1983. Metallogeny and tectonics of porphyry copper-molybdenum deposits in British Columbia. Canadian Journal of Earth Sciences,20(6):1000 -1018
Guo B. 2009. Geology, geochemistry and geodynamic setting of Jinduicheng porphyry molybdenum deposit in East Qinling. Master Degree Thesis. Xi’an:Northwest University,1 -135 (in Chinese with English summary)
Guo BJ,Mao JW,Li HM,Qu WJ,Qiu JJ,Ye HS,Li MW and Zhu XL.2006. Re-Os dating of molybdenite from the Qiushuwan Cu-Mo deposit in the east Qinling and its geological significance. Acta Petrologica Sinica,22(9):2341 -2348 (in Chinese with English abstract)
Guo XQ,Yan Z,Wang ZQ,Fu CL and Chen L. 2014. Tectonic setting of Lijiabian Ti-Fe deposit in Shanyang-Zhashui ore concentration area,Qinling Orogen. Acta Petrologica Sinica,30(2):437 -450(in Chinese with English abstract)
Hart CJR,Mair JL,Goldfarb RJ and Groves DI. 2004. Source and redox controls on metallogenic variations in intrusion-related ore systems,Tombstone-Tungssten Belt Yukon Territory Canada. Transactions of the Royal Society of Edinburgh:Earth Sciences,95(1 -2):339-356
Hart SR. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature,309(5971):753 -757
Hart SR. 1988. Heterogeneous mantle domains:Signatures,genesis and mixing chronologies. Earth and Planetary Science Letters,90(3):273 -296
Haschke M,Ahmadian J,Murata M and McDonald I. 2010. Copper mineralization prevented by arc-root delamination during Alpine-Himalayan collision in central Iran. Economic Geology,105(4):855 -865
Hou ZQ,Mo XX,Gao YF,Qu XM and Meng XJ. 2003. Adakite:A possible host rock for porphyry copper deposits:Case studies of porphyry copper belts in Tibetan Plateau and in Northern Chile.Mineral Deposits,22 (1):1 - 12 (in Chinese with English abstract)
Hou ZQ and Yang ZM. 2009. Porphyry deposits in continental settings of China:Geological characteristics,magmatic-hydrothermal system,and metallogenic model. Acta Geologica Sinica,83(12):1779 -1817 (in Chinese with English abstract)
Hou ZQ,Zheng YC,Yang ZM,Rui ZY,Zhao ZD,Jiang SH,Qu XM and Sun QZ. 2013. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet.Mineralium Deposita,48(2):173 -192
Hu HZ,Li N,Deng XH,Chen YJ and Li Y. 2013. Indosinian Mo mineralization in Qinling area and prospecting potential. Geology in China,40(2):549 -565 (in Chinese with English abstract)
Huang DH,Wu CY,Du AD and He HL. 1994. Re-Os isotope ages of molybdenum deposits in East Qingling and their significance.Mineral Deposits,13(3):221 - 229 (in Chinese with English abstract)
Jahn BM,Wu FY,Lo CH and Tsai CH. 1999. Crust-mantle interaction induced by deep subduction of the continental curst:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex,central China. Chemical Geology,157(1 -2):119 -146 Jiao JG,Yuan HC,He K,Sun T,Xu G and Liu RP. 2009. Zircon U-Pb and molybdenite Re-Os dating for the Balipo porphyry Mo deposit in East Qinling,China,and its geological implication. Acta Geologica Sinica,83(8):1159 -1166 (in Chinese with English abstract)
Jiao JG,Tang ZL,Qian ZZ,Yuan HC,Yan HQ,Sun T,Xu G and Li XD. 2010a. Metallogenic mechanism,magma source and zircon UPb age of Jinduicheng granitic porphyry,East Qinling. Earth Science,35(6):1011 -1022 (in Chinese with English abstract)Jiao JG,Yuan HC,Liu RP,Li XD and He K. 2010b. Lithogeochemical characteristics of Balipo molybdenum deposit and its prospecting significance,Huaxian,Shaanxi Province. Acta Petrologica Sinica,26(12):3538 -3548 (in Chinese with English abstract)
Kay SM and Abbruzzi JM. 1996. Magmatic evidence for Neogene lithospheric evolution of the central Andean“flat slab”between 30°S and 32°S. Tectonophysics,259(1 -3):15 -28
Kay SM and Mpodozis C. 2001. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today,11:4 -9
Ke CH,Wang XX,Yang Y,Qi QJ,Fan ZP,Gao F and Wang XY.2012. Rock-forming and ore-forming ages of the Nantai Mo polymetallic deposit in North Qinling Mountains and its zircon Hf isotope composition. Geology in China,39(6):1562 -1576 (in Chinese with English abstract)
Kröner A,Zhang GW and Sun Y. 1993. Granulites in the Tongbai area,Qinling belt, China: Geochemistry, petrology, single zircon geochronology,and implications for the tectonic evolution of Eastern Asia. Tectonics,12(1):245 -255
Le Bas MJ,Le Maitre RW,Streckeisen A and Zanettin BA. 1986. A chemical classification of volcanic rocks based on the total alkalisilica diagram. Journal of Petrology,27:745 -750
Lehmann B. 1990. Metallogeny of tin. In:Lecture Notes in Earth Sciences. Berlin:Springer-Verlag,1 -211
Li HY,Mao JW,Wang XX,Ye HS and Yang L. 2011. Sr,Nd,Pb isotopic characteristics of granite in Jinduicheng area and their geological significance. Geology in China,38(6):1536 -1550 (in Chinese with English abstract)
Li JX,Qin KZ,Li GM,Xiao B,Chen L and Zhao JX. 2011. Postcollisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt,southern Tibet:Melting of thickened juvenile arc lower crust. Lithos,126(3 -4):265 -277
Li N,Chen YJ,Zhang H,Zhao TO,Deng XH,Wang Y and Ni ZY.2007. Molybdenum deposits in East Qinling. Earth Science Frontiers,14(5):186 -198 (in Chinese with English abstract)
Li XF,Watanabe Y and Yi XK. 2013. Ages and sources of ore-related porphyries at Yongping Cu-Mo deposit in Jiangxi Province,Southeast China. Resource Geology,63(3):288 -312
Li YF,Mao JW,Bai FJ,Li JP and He ZJ. 2003. Re-Os isotopic dating of molybdenites in the Nannihu molybdenum (tungsten)ore field in the eastern Qinling and its geological significance. Geological Review,49(6):652 -661 (in Chinese with English abstract)
Li YF. 2005. The temporal-spatial evolution of Mesozoic granitoids in Xiong’ershan area and their relationships to molybdenite-gold mineralization. Ph. D. Dissertation. Beijing:China University of Geosciences,1 -135 (in Chinese)
Li YF,Mao JW,Hu HB,Guo BJ and Bai FJ. 2005. Geology,distribution,types and tectonic settings of Mesozoic molybdenum deposits in East Qinling area. Mineral Deposits,24(3):292 -304(in Chinese with English abstract)
Lu SN,Chen ZH,Li HK,Hao GJ,Zhou HY and Xiang ZQ. 2004. Late Mesoproterozoic-Early Neoproterozoic evolution of the Qinling orogen. Geological Bulletin of China,23 (2):107 - 112 (in Chinese with English abstract)
Lu XX,Xiao QH,Dong Y,Li XB and Chang QL. 2000. Granitoid Tectonic Map of Qinling Belt (1 ∶1000000). Xi’an:Xi’an Cartographic Publishing Home (in Chinese)
Lu XX,Yu ZP,Feng YL,Wang YT,Ma WF and Cui HF. 2002.Mineralizat ion and tectonic setting of the deep-hypabyssal granites in East Qinling Mountain. Mineral Deposits,21(2):168 -178 (in Chinese with English abstract)
Lu XX,Luo ZH,Huang F,Gu DM,Li ML,Yang ZF,Huang DF,Liang T,Liu CQ,Zhang Z and Gao Y. 2011. Mo deposit types and mineralization assemblage characteristics in Qinling-Dabie Mountain area. Geology in China,38(6):1518 - 1535 (in Chinese with English abstract)
Luo DZ. 1995. The metallogenic characteristics of copper deposit in intermediate acid intrusive in the Lengshuigou-Xiaguangfang district,Shaanxi Province. Henan Geology,13(2):91 -94 (in Chinese with English abstract)
Luo MJ,Zhang FM,Dong QY,Xu YR,Li SM and Li KH. 1991.Molybdenum Deposits in China. Zhengzhou:Henan Press of Science and Technology,1 -425 (in Chinese)
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids.Geology Society of America Bulletin,101(5):635 -643
Mao B,Ye HS,Li C,Xiao ZJ and Yang GQ. 2011. Molybdenite Re-Os isochron age of Yechangping Mo deposit in western Henan Province and its geological implications. Mineral Deposits,30(6):1069 -1074 (in Chinese with English abstract)
Mao JW,Zhang ZC,Zhang ZH and Du AD. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W(Mo)deposit in the northern Qilian Mountains and its geological significance. Geochimica et Cosmochimica Acta,63(11 -12):1815 -1818
Mao JW,Xie GQ,Bierlein F,Qu WJ,Du AD,Ye HS,Pirajno F,Li HM,Guo BJ,Li YF and Yang ZQ. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica et Cosmoschimica Acta,72(18):4607 -4626 Mao JW,Ye HS,Wang RT,Dai JZ,Jian W,Xiang JF,Zhou K and Meng F. 2009. Mineral deposit model of Mesozoic porphyry Mo and vein-type Pb-Zn-Ag ore deposits in the eastern Qinling,Central China and its implication for prospecting. Geological Bulletin of China,28(1):72 -79 (in Chinese with English abstract)
Mattauer M,Matte P,Malavielle J,Tapponnier P,Maluski H,Xu ZQ,Lu YL and Tang YQ. 1985. Tectonics of the Qinling belt:Build-up and evolution of eastern Asia. Nature,317(6037):496 -500
Meng QR and Zhang GW. 2000. Geologic framework and tectonic evolution of the Qinling orogen,central China. Tectonophysics,323(3 -4):183 -196
Miller CF,McDowell SM and Mapes RW. 2003. Hot and cold granites?Implications of zircon saturation temperatures and preservation of inheritance. Geology,31(6):529 -532
Othman DB,White WM and Patchett J. 1989. The geochemistry of marine sediments,island arc magma genesis,and crust-mantle recycling. Earth and Planetary Science Letters,94(1 -2):1 -21
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene cala-alkaline volcanic rocks from Kastamonu area,Northern Turkey. Contributions to Mineralogy and Petrology,58(1):63 -81
Peng SX,Cheng JX,Chen JL,Zhao DH,Liu JC,Yang HQ,Zhang ZW,Zhang HD and Zhang SN. 2013. Geology and geochemical characteristics of rock mass at Lianhuagou molybdenite (copper)mine in Luonan County,Shaanxi Province. Geological Science and Technology Information,32(3):31 -41 (in Chinese with English abstract)
Qin KZ,Xia DX,Li GM,Xiao B,Duo J,Jiang GW and Zhao JX.2014. Qulong Porphyry-Skarn Cu-Mo Deposit,Tibet. Beijing:Science Press,1 -316 (in Chinese)
Qin Z,Dai XL and Deng XW. 2011. Two different granites in Qiushuwan and Yanlailing area,East Qinling Orogenic Belt,and their tectonic significance. Journal of Mineralogy and Petrology,31(3):48 -54(in Chinese with English abstract)
Qu XM,Hou ZQ,Guo LJ and Xu WY. 2004. Source compositions and crustal contaminations of adakitic ore-bearing porphyries in the Gangdise copper belt:Nd,Sr,Pb and O isotope constraints. Acta Geologica Sinica,78(6):813 - 821 (in Chinese with English abstract)
Ren T,Wang RT,Wang XY,Xia CL and Guo YH. 2009. A way and method for prospecting copper deposit in the Zhashui-Shanyang sedimentary basin in the Qinling orogenic belt. Acta Geologica Sinica,83(11):1730 -1738 (in Chinese with English abstract)
Shafiei B,Haschke M and Shahabpour J. 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks,southeastern Iran. Mineralium Deposita,44(3):265 -283
Song GX,Qin KZ,Li GM,Noreen JE and Li XH. 2014. Mesozoic magmatism and metallogeny in the Chizhou area,Middle-Lower Yangtze Valley, SE China: Constrained by petrochemistry,geochemistry and geochronology. Journal of Asian Earth Sciences 91(3):137 -153
Stein HJ. 1988. Genetic traits of Climax-type granites and molybdenum mineralization,Colorado mineral belt. In:Taylor RP and Strong DF(eds.). Recent Advances in the Geology of Granite-related Mineral Deposits. Canadian Institute of Mining,Metallurgy,and Petroleum Special,39:394 -401
Stein HJ and Crock JG. 1990. Late Cretaceous-Tertiary magmatism in the Colorado mineral belt:Rare earth element and Sm-Nd isotopic studies. In:Anderson JL (ed.). The Nature and origin of Cordilleraan magmatism. Geological Society of America,Memoirs,174:195 -224
Stein HJ,Markey RJ,Morgan JW,Du AD and Sun Y. 1997. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt,Shaanxi Province,China. Economic Geology,92(7 -8):827 -835
Streckeisen A. 1976. To each plutonic rock its proper name. Earth-Science Reviews,12(1):1 -33
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunder AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society,London,Special Publications,42(1):313 -345
Sylvester PJ. 1998. Post-collisional peraluminous granites. Lithos,45(1-4):29 -44
Taylor SR and McLennan SM. 1985. The Continental Crust:Its Composition and Evolution. Oxford:Blackwell,1 -312
Van Westrenen W,Blundy JD and Wood BJ. 2001. High field strength element /rare earth element fractionation during partial melting in the presence of garnet: Implications for identification of mantle heterogeneities. Geochemistry,Geophysics,Geosystems,2 (7):223 -235
Vroon PZ,van Bergen MJ,White WM and Varekamp JC. 1993. Sr-Nd-Pb isotope systematics of the Banda arc,Indonesia:Combined subduction and assimilation of continental material. Journal of Geophysical Research,98:22349 -22366
Vroon PZ,van Bergen MJ,Klaver GJ and White WM. 1995. Strontium,neodymium,and lead isotopic and trace-element signature of the East Indonesian sediments:Provenance and implications for Banda Arc magma genesis. Geochemica et Cosmochimica Acta,59(12):2573-2598
Wang CY,Li XF,Xiao R,Bai YP,Yang F and Jiang SK. 2012.Elements mobilization of mineralized porphyry rocks during hydrothermal alteration at Zhushahong porphyry copper deposit,Dexing district,South China. Acta Petrologica Sinica,28(12):3869 -3886 (in Chinese with English abstract)
Wang DS,Wang RT,Dai JZ,Wang CA,Li JH and Chen LX. 2009.“Dual Ore-Controlling Factors”characteristics of metallic deposits in the Qinling Orogenic Belt. Acta Geologica Sinica,83(11):1717 -1729 (in Chinese with English abstract)
Wang Q,Wyman DA,Xu JF,Zhao ZH,Jian P,Xiong XL,Bao ZW,Li CF and Bai ZH. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area,Anhui Province(eastern China ): Implications for geodynamics and Cu-Au mineralization. Lithos,89(3 -4):424 -446
Wang T,Zhang GW,Wang XX and Li WP. 1999. A possible dynamic characteristics of more continental blocks,ocean basin and weak subduction and the granite evolution:An example from the granites in the core of the Qinling orogenic belt,Central China. Journal of Nanjing University (Natural Sciences),35(6):659 - 667 (in Chinese with English abstract)
Wang T,Wang XX,Zhang GW,Pei XZ and Zhang CL. 2003.Remnants of a Neoproterozoic collisional orogenic belt in the core of the Phanerozoic Qinling orogenic belt (China ). Gondwana Research,6(4):699 -710
Wang T,Pei XZ,Wang XX and Hu NG. 2005. Orogen-parallel westward oblique uplift of the Qinling basement complex in the core of the Qinling orogen (China):An example of oblique extrusion of deepseated metamorphic rocks in a convergent orogen. Journal of Geology,113(2):181 -200 Wang T Zhang ZQ,Wang XX and Zhang CL. 2005. Neoproterozoic collisional deformation in the core of the Qinling orogen and its age:Constrained by zircon SHRIMP dating of strongly deformed syncollisional granites and weakly deformed granitic veins. Acta Geologica Sinica,79(2):220 - 231 (in Chinese with English abstract)
Wang T,Wang XX,Tian W,Zhang CL,Li WP and Li S. 2009. North Qinling Paleozoic granite associations and their variation in space and time:Implications for orogenic processes in the orogens of Central China. Science in China (Series D),52(9):1359 -1384
Wang XX,Wang T,Qi QJ and Li S. 2011. Temporal-spatial variations,origin and their tectonic significance of the Late Mesozoic granites in the Qinling,Central China. Acta Petrologica Sinica,27(6):1573-1593 (in Chinese with English abstract)
Wang ZQ,Wang T,Yan Z and Yan QR. 2002. Late Paleozoic forearc accretionary piggyback type basin system in the South Qinling,Central China. Regional Geology of China,21(8 -9):456 -464(in Chinese with English abstract)
Wang ZQ,Yan QR,Yan Z,Wang T,Jiang CF,Gao LD,Li QG,Chen JL,Zhang YL,Liu P,Xie CL and Xiang ZJ. 2009. New division of the main tectonic units of the Qinling Orogenic Belt,Central China.Acta Geologica Sinica,83(11):1527 - 1546 (in Chinese with English abstract)Wei QG,Yao JM,Zhao TP,Sun YL,Li J,Yuan ZL and Qiao B. 2009.Discovery of a ~1.9Ga Mo deposit in the eastern Qinling orogen:Molybdenite Re-Os ages of the Longmendian Mo deposit in Henan Province. Acta Petrologica Sinica,25 (11):2747 - 2751 (in Chinese with English abstract)Weng JC,Zhang YZ,Huang CY,Li WZ,Cui BL and Luo MW. 2010.Geological characteristic and genesis of Sandaozhuang supar-large molybdenum-tungsten ore deposit in Luanchan,Shaanxi Province.Geology and Exploration,46(1):41 -48 (in Chinese with English abstract)Wu FF,Wang ZQ,Yan Z,Chen L,Xia CL,Guo YH and Peng YM.2014. Geochenmical characteristics,zircons U-Pb ages and Lu-Hf isotopic composition of the Yanshanian intermediate-acidic plutons in Shangyang-Zhashui areas,Qinling Orogenic Belt. Acta Petrologica Sinica,30(2):451 -471 (in Chinese with English abstract)
Xiang JF,Mao JW,Pei RF,Ye HS,Wang CY,Tian ZH and Wang HL.2012. New geochronological data of granites and ores from the Nannihu-Sandaozhuang Mo(W)deposit. Geology in China,39(2):458 -473 (in Chinese with English abstract)
Xie GQ,Ren T,Li JB,Wang RT,Xian CL,Gou YH,Dai JZ and Shen ZC. 2012. Zircon U-Pb age and petrogenesis of ore-bearing granitoid for the Chigou Cu-Mo deposit from the Zhashan basin,Shaanxi Province. Acta Petrologica Sinica,28(1):15 -26 (in Chinese with English abstract)Xie GQ,Mao JW,Wang RT,Ren T,Li JB and Dai JZ. 2015. Origin of Late Mesozoic granitoids in the newly discovered Zha-Shan porphyry Cu district,South Qinling,central China,and implications for regional metallogeny. Journal of Asian Earth Sciences,103:184-197 Yan GL, Ren JG, Xiao GF and Pan D. 2013. Geochemical characteristics of granite porphyry of Yechangping molybdenum deposit and the analysis on its relationship with mineralization,western Henan. Mineral Exploration,4(2):154 -166 (in Chinese with English abstract)
Yan Z,Wang ZQ,Yan QR,Wang T,Xiao WJ,Li JL,Han FL,Chen JL and Yang YC. 2006. Devonian sedimentary environments and provenance of the Qinling orogen:Constraints on Late Paleozoic southward accretionary tectonics of the North China craton.International Geology Review,48(7):585 -618
Yan Z,Wang ZQ,Wang T,Yan QR,Xiao WJ,Li JL,Han FL and Chen JL. 2007. Tectonic setting of Devonian sediments in the Qinling orogen:Constraints from detrital modes and geochemistry of clastic rocks. Acta Petrologica Sinica,23(5):1023 - 1042 (in Chinese with English abstract)
Yang Y,Wang XX,Ke CH and Li JB. 2012. Zircon U-Pb age,geochemistry and Hf isotopic compositions of Shibaogou granitoid pluton in the Nannihu ore district,western Henan Province. Geology in China,39(6):1525 -1542 (in Chinese with English abstract)Ye HS. 2006. The mesozoic tectonic evolution and Pb-Zn-Ag metallogeny in the southern margin of North China Craton. Ph. D. Dissertation.Beijing:Chinese Academy of Geological Sciences,1 - 217 (in Chinese)
Zhang BR,Li ZJ and Luo TC. 1987. Regional Geochemical Studies in the Lushi-Linbao Area, Western Henan. Beijing: Geological Publishing House,1 -285 (in Chinese)
Zhang BR,Chen DX,Li ZJ,Gu XM,Jiang JY,Hu YK,Li FL,Guo WY and Li YC. 1989. Region Geochemistry of Shanyang-Zhashui Metallogenic Belt,Shaanxi Province. Wuhan:Press of China University of Geosciences,1 -221 (in Chinese)
Zhang BR,Gao S,Zhang HF and Han YW. 2002. Geochemistry of the Qinling Orogenic Belt. Beijing:Science Press,1 - 187 (in Chinese)
Zhang CL,Liu L,Zhang GW,Wang T,Chen DL,Yuan HL,Liu XM and Yan YX. 2004. Determination of Neoproterozoic post-collisional granites in the North Qinling Mountains and its tectonic significance.Earth Science Frontiers,11(3):33 -42 (in Chinese with English abstract)
Zhang GW,Zhang BR,Yuan XC and Xiao QH. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing:Science Press,1 -855 (in Chinese)
Zhang NC,Yan JH and Liu XN. 1986. A discussion on the deep structures and mineralizations in Henan Province from gravitational and magnetic data. Henan Geology,4(1):16 -22 (in Chinese with English abstract)
Zhang X,Dai XL,Deng XW,Qin Z and Zhang ZH. 2011. The characteristics of Qiushuwan porphyry granite and the prospecting target in the outside of its Nanshan ore section. Mineral Exploration,2(2):126 -134 (in Chinese with English abstract)
Zhang YL. 2002. Geological features and the metallogenetic conditions of acid-intermediate acid small rock bodies in Xiaohekou area of Shanyang County,Shaanxi Province. Geology of Shaanxi,20(2):27 -38 (in Chinese with English abstract)
Zhang ZW,Li WY,Zhao DH,Gao YB and Peng SX. 2010. Zircon UPb dating of Lianhuagou pluton in East Qinling and its geological implication. Geochimica,39(1):90 -99 (in Chinese with English abstract)
Zhao HJ,Mao JW,Ye HS,Hou KJ and Liang HS. 2010. Chronology and petrogenesis of Shijiawan granite porphyry in Shannxi Province:Constrains from zircon U-Pb geochronology and Hf isotopic compositions. Mineral Deposits,29(1):143 - 157 (in Chinese with English abstract)
Zhu HP and Qi SJ. 1997. Copper ore prospecting breakthrough in Shangzha area of Shaanxi Province. Northwestern Geology,18(1):18 -21 (in Chinese with English abstract)
Zhu HP,Ye L,Gan BX and Wang CQ. 2003. The ralationship to basin constructure system with metallgenic in Shan(yang)-Zha(shui)-Zhen(an)-Xun(yang)area. Northwestern Geology,36(1):52 -58 (in Chinese with English abstract)
Zhu LM,Zhang GW,Guo B and Li B. 2008. U-Pb (LA-ICP-MS)zircon dating for the large Jinduicheng porphyry Mo deposit in the East Qinling,China,and its metallogenetic geodynamical setting.Acta Geologica Sinica,82(2):204 -220 (in Chinese with English abstract)
附中文参考文献
包志伟,曾乔松,赵太平,原振雷. 2009. 东秦岭钼矿带南泥湖-上房沟花岗斑岩成因及其对钼成矿作用的制约. 岩石学报,25(10):2523 -2536
陈雷,王宗起,闫臻,吴发富,任涛,郭延辉. 2014a. 秦岭山阳-柞水矿集区150 ~140Ma 斑岩-矽卡岩型CuMoFe(Au)矿床成矿作用研究. 岩石学报,30(2):415 -436
陈雷,闫臻,王宗起,吴发富,王瑞廷,任涛,郭延辉,王鹏. 2014b.陕西山阳-柞水矿集区燕山期岩体矿物学特征:对岩浆性质及成矿作用的指示. 地质学报,88(1):109 -133
陈衍景,李超,张静,李震,王海华. 2000. 秦岭钼矿带斑岩体锶氧同位素特征与岩石成因机制和类型. 中国科学(D 辑),30(增刊):64 -72
陈衍景,翟明国,蒋少涌. 2009. 华北大陆边缘造山过程与成矿研究的重要进展和问题. 岩石学报,25(11):2695 -2726
陈岳龙,张本仁. 1994. 华北克拉通南缘豫西燕山期花岗岩类的Pb、Sr、Nd 同位素地球化学研究. 地球科学,19(3):375 -382
高山,骆庭川,张本仁,张宏飞,韩吟文,赵志丹,Kern H. 1999. 中国东部地壳的结构和组成. 中国科学(D 辑),29(3):204 -213郭波. 2009. 东秦岭金堆城斑岩钼矿床地质地球化学特征与成矿动力学背景. 硕士学位论文. 西安:西北大学,1 -135
郭保健,毛景文,李厚民,屈文俊,仇建军,叶会寿,李蒙文,竹学丽. 2006. 秦岭造山带秋树湾铜钼矿床辉钼矿Re-Os 定年及其地质意义. 岩石学报,22(9):2341 -2348
郭现轻,闫臻,王宗起,付长垒,陈雷. 2014. 山阳-柞水矿集区李家砭Ti-Fe 矿床成矿构造背景研究. 岩石学报,30(2):437 -450
侯增谦,莫宣学,高永丰,曲晓明,孟祥金. 2003. 埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例. 矿床地质,22(1):1 -12
侯增谦,杨志明. 2009. 中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型. 地质学报,83(12):1779-1817
胡海珠,李诺,邓小华,陈衍景,李毅. 2013. 秦岭地区印支期钼矿化特征及找矿前景. 中国地质,40(2):549 -565
黄典豪,吴澄宇,杜安道,何红蓼. 1994. 东秦岭地区钼矿床的铼-锇同位素年龄及其意义. 矿床地质,13(3):221 -230
焦建刚,袁海潮,何克,孙涛,徐刚,刘瑞平. 2009. 陕西华县八里坡钼矿床锆石U-Pb 和辉钼矿Re-Os 年龄及其地质意义. 地质学报,83(8):1159 -1166
焦建刚,汤中立,钱壮志,袁海潮,闫海卿,孙涛,徐刚,李小东.2010a. 东秦岭金堆城花岗斑岩体的锆石U-Pb 年龄、物质来源及成矿机制. 地球科学,35(6):1011 -1022
焦建刚,袁海潮,刘瑞平,李小东,何克. 2010b. 陕西华县八里坡钼矿床岩石地球化学特征及找矿意义. 岩石学报,26(12):3538-3548
柯昌辉,王晓霞,杨阳,齐秋菊,樊忠平,高非,王修缘. 2012. 北秦岭南台钼多金属矿床成岩成矿年龄及锆石Hf 同位素组成. 中国地质,39(6):1562 -1576
李洪英,毛景文,王晓霞,叶会寿,杨磊. 2011. 陕西金堆城钼矿区花岗岩Sr、Nd、Pb 同位素特征及其地质意义. 中国地质,38(6):1536 -1550
李诺,陈衍景,张辉,赵太平,邓小华,王运,倪智勇. 2007. 东秦岭斑岩钼矿带的地质特征和成矿构造背景. 地学前缘,14(5):186 -198
李永峰,毛景文,白凤军,李俊平,和志军. 2003. 东秦岭南泥湖钼(钨)矿田Re-Os 同位素年龄及其地质意义. 地质论评,49(6):652 -661
李永峰,毛景文,胡华斌,郭保健,白凤军. 2005. 东秦岭钼矿类型、特征、成矿时代及其地球动力学背景. 矿床地质,24(3):292-304
李永峰. 2005. 豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用. 博士学位论文. 北京:中国地质大学,1 -135
陆松年,陈志宏,李怀坤,郝国杰,周红英,相振群. 2004. 秦岭造山带中-新元古代(早期)地质演化. 地质通报,23(2):107-112
卢欣祥,肖庆辉,董有,李晓波,常秋玲. 2000. 秦岭花岗岩大地构造图(1∶1000000). 西安:西安地图出版社
卢欣祥,于在平,冯有利,王义天,马维峰,崔海峰. 2002. 东秦岭深源浅成型花岗岩的成矿作用及地质构造背景. 矿床地质,21(2):168 -178
卢欣祥,罗照华,黄凡,谷德敏,李明立,杨宗峰,黄丹峰,梁涛,刘传权,张震,高源. 2011. 秦岭-大别山地区钼矿类型与矿化组合特征. 中国地质,38(6):1518 -1535
罗德正. 1995. 陕西冷水沟-下官房一带中酸性侵入体成铜特征. 河南地质,13(2):91 -94
罗铭玖,张辅民,董群英,许永仁,黎世美,李昆华. 1991. 中国钼矿床. 郑州:河南科学技术出版社,1 -425
毛冰,叶会寿,李超,肖中军,杨国强. 2011. 豫西夜长坪钼矿床辉钼矿铼-锇同位素年龄及地质意义. 矿床地质,30(6):1069-1074
毛景文,叶会寿,王瑞廷,代军治,简伟,向君锋,周珂,孟芳.2009. 东秦岭中生代钼铅锌银多金属矿床模型及其找矿评价.地质通报,28(1):72 -79
彭素霞,程建新,陈隽璐,赵东宏,刘建朝,杨合群,张照伟,张海东,张苏楠. 2013. 陕西省洛南县莲花沟钼(铜)矿岩体地质及岩石地球化学特征. 地质科技情报,32(3):31 -41
秦克章,夏代祥,李光明,肖波,多吉,蒋光武,赵俊兴. 2014. 西藏驱龙斑岩-夕卡岩铜钼矿床. 北京:科学出版社,1 -316
秦臻,戴雪灵,邓湘伟. 2011. 东秦岭秋树湾-雁来岭两种不同类型的花岗岩及其构造意义. 矿物岩石,31(3):48 -54
曲晓明,侯增谦,国连杰,徐文艺. 2004. 冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染:Nd、Sr、Pb、O 同位素约束. 地质学报,78(6):813 -821
任涛,王瑞廷,王向阳,夏长玲,郭延辉. 2009. 秦岭造山带柞水-山阳沉积盆地铜矿勘查思路与方法. 地质学报,83(11):1730-1738
王翠云,李晓峰,肖荣,白艳萍,杨锋,蒋松坤. 2012. 德兴朱砂红斑岩铜矿热液蚀变作用及元素地球化学迁移规律. 岩石学报,28(12):3869 -3886
王东生,王瑞廷,代军治,王长安,李建华,陈荔湘. 2009. 秦岭造山带金属矿床的“二元控矿”特征. 地质学报,83(11):1717-1729
王涛,张国伟,王晓霞,李伍平. 1999. 一种可能的多陆块、小洋盆、弱俯冲的动力学特征及其花岗岩演化特点——以秦岭造山带核部及其花岗岩为例. 南京大学学报(自然科学版),35(6):659-667
王涛,张宗清,王晓霞,王彦斌,张成立. 2005. 秦岭造山带核部新元古代碰撞变形及其时代——强变形同碰撞花岗岩与弱变形脉体锆石SHRIMP 年龄限定. 地质学报,79(2):220 -231
王晓霞,王涛,齐秋菊,李舢. 2011. 秦岭晚中生代花岗岩时空分布、成因演变及构造意义. 岩石学报,27(6):1573 -1593
王宗起,王涛,闫臻,闫全人. 2002. 秦岭晚古生代弧前增生的背驮型盆地体系. 地质通报,21(8 -9):456 -464
王宗起,闫全人,闫臻,王涛,姜春发,高联达,李秋根,陈隽璐,张英利,刘平,谢春林,向忠金. 2009. 秦岭造山带主要大地构造单元的新划分. 地质学报,83(11):1527 -1546
魏庆国,姚军明,赵太平,孙亚莉,李晶,原振雷,乔波. 2009. 东秦岭发现~1.9Ga 钼矿床——河南龙门店钼矿床Re-Os 定年. 岩石学报,25(11):2747 -2751
瓮纪昌,张云政,黄超勇,李文智,崔蓓蕾,罗明伟. 2010. 栾川三道庄特大型钼钨矿床地质特征及矿床成因. 地质与勘探,46(1):41 -48
吴发富,王宗起,闫臻,陈雷,夏长玲,郭延辉,彭远民. 2014. 秦岭山阳-柞水地区燕山期中酸性侵入岩地球化学特征、锆石U-Pb年龄及Lu-Hf 同位素组成. 岩石学报,30(2):451 -471
向君峰,毛景文,裴荣富,叶会寿,王春毅,田志恒,王浩琳. 2012.南泥湖-三道庄钼(钨)矿的成岩成矿年龄新数据及其地质意义.中国地质,39(2):458 -473
谢桂青,任涛,李剑斌,王瑞廷,夏长玲,郭延辉,代军治,申志超.2012. 陕西柞山盆地池沟铜钼矿区含矿岩体的锆石U-Pb 年龄和岩石成因. 岩石学报,28(1):15 -26
晏国龙,任继刚,肖光富,潘登. 2013. 豫西夜长坪钼矿区岩体地球化学特征及其与成矿关系的探讨. 矿产勘查,4(2):154 -166
闫臻,王宗起,王涛,闫全人,肖文交,李继亮,韩芳林,陈隽璐.2007. 秦岭造山带泥盆系形成构造环境:来自碎屑岩组成和地球化学方面的约束. 岩石学报,23(5):1023 -1042
杨阳,王晓霞,柯昌辉,李金宝. 2012. 豫西南泥湖矿集区石宝沟花岗岩体的锆石U-Pb 年龄、岩石地球化学及Hf 同位素组成. 中国地质,39(6):1525 -1542
叶会寿. 2006. 华北陆块南缘中生代构造演化与铅锌银成矿作用.博士学位论文. 北京:中国地质科学院,1 -217
张本仁,李泽九,骆庭川. 1987. 豫西卢氏-灵宝地区区域地球化学研究. 北京:地质出版社,1 -285
张本仁,陈德兴,李泽九,谷晓明,蒋敬业,胡以铿,李方林,郭五寅,李耀成. 1989. 陕西柞水-山阳成矿带区域地球化学. 武汉:中国地质大学出版社,1 -221
张本仁,高山,张宏飞,韩吟文. 2002. 秦岭造山带地球化学. 北京:科学出版社,1 -187
张成立,刘良,张国伟,王涛,陈丹玲,袁洪林,柳小明,晏云翔.2004. 北秦岭新元古代后碰撞花岗岩的确定及其构造意义. 地学前缘,11(3):33 -42
张国伟,张本仁,袁学诚,肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京:科学出版社,1 -855
张乃昌,阎景汉,刘新年. 1986. 从重磁成果探讨我省深部构造及成矿作用. 河南地质,4(1):16 -22
张旭,戴雪灵,邓湘伟,秦臻,张智慧. 2011. 河南秋树湾斑岩体特征及其南山钼矿段外围找矿方向. 矿产勘查,2(2):126 -134
张银龙. 2002. 陕西省山阳县小河口地区酸性-中酸性岩体地质特征及其成矿地质条件分析. 陕西地质,20(2):27 -38
张照伟,李文渊,赵东宏,高永宝,彭素霞. 2010. 东秦岭莲花沟岩体锆石U-Pb 年代学研究及其地质意义. 地球化学,39(1):90-99
赵海杰,毛景文,叶会寿,侯可军,梁慧山. 2010. 陕西洛南县石家湾钼矿相关花岗斑岩的年代学及岩石成因:锆石U-Pb 年龄及Hf 同位素制约. 矿床地质,29(1):143 -157
朱华平,祁思敬. 1997. 陕西柞山地区铜矿找矿突破口的选择. 西北地质,18(1):18 -21
朱华平,叶磊,甘宝新,汪长青. 2003. 山柞镇旬地区盆地体制与金属成矿关系. 西北地质,36(1):52 -58
朱赖民,张国伟,郭波,李犇. 2008. 东秦岭金堆城大型斑岩钼矿床LA-ICP-MS 锆石U-Pb 定年及成矿动力学背景. 地质学报,82(2):204 -220