APP下载

内蒙古孔兹岩带乌拉山-大青山地区古元古代孔兹岩系年代学研究*

2015-04-13蔡佳刘福来刘平华王舫施建荣

岩石学报 2015年10期
关键词:大青山黑云片麻岩

蔡佳 刘福来 刘平华 王舫 施建荣

CAI Jia,LIU FuLai,LIU PingHua,WANG Fang and SHI JianRong

中国地质科学院地质研究所,北京 100037

Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China

2015-03-01 收稿,2015-05-26 改回.

1 引言

内蒙孔兹岩带位于华北克拉通西北缘,是一条由西部陆块内北部的阴山陆块和南部的鄂尔多斯陆块碰撞形成的古元古代碰撞构造带,该孔兹岩带出露大面积孔兹岩系岩石(Zhao et al.,1999,2003,2005,2012;Zhai et al.,2000),分布在西段贺兰山-千里山、中段乌拉山-大青山和东段集宁地区。近年来,研究者们先后对上述孔兹岩系岩石的成因矿物学、变质演化、地球化学、同位素年代学和构造演化等方面进行了深入研究,并取得一系列重要进展(金巍,1989;金巍等,1991;卢良兆等,1992,1996;Liu et al.,1993,1998,2013,2014;Lu and Jin,1993;李树勋等,1994;刘喜山,1994,1996;于海峰,1994;金巍和李树勋,1996;刘福来等,2002;Santosh et al.,2006,2007a,b,2009a,b;Wan et al.,2006,2009,2013a,b;Xia et al.,2006a,b,2008;Dong et al.,2007,2013,2014;Yin et al.,2009,2011,2014;周喜文等,2010;Yin,2010;Jiao and Guo,2011;Li et al.,2011;Jiao et al.,2013a,b;Dan et al.,2012;Guo et al.,2012;Ma et al.,2012;刘平华等,2013;蔡佳等,2013a,b,2014)。其中,很多研究者对孔兹岩带出露的孔兹岩系岩石进行了变质作用研究,普遍得到了近等温减压型的顺时针P-T 轨迹(卢良兆等,1992;Liu et al.,1993;Lu and Jin,1993;Yin,2010;周喜文等,2010;Wang et al.,2011;Jiao et al.,2013a;蔡佳等,2013a,2014;Cai et al.,2014;Yin et al.,2014)。此外,大量的锆石同位素年代学研究表明孔兹岩带的孔兹岩系岩石记录了1810 ~1950Ma 的变质年龄(Wan et al.,2006,2009,2013a;Xia et al.,2006a,b;Dong et al.,2007,2013;Yin et al.,2009,2011;周喜文和耿元生,2009;Jiao et al.,2013b),有研究者认为~1950Ma 可能代表了北部的阴山陆块和南部鄂尔多斯陆块碰撞拼合的时代(Yin et al.,2009,2011;赵国春,2009;周喜文和耿元生,2009;Zhao et al.,2010;Dong et al.,2013),1920 ~1890Ma 则可能是碰撞后折返的时代(Yin et al.,2009;Jiao et al.,2013b)。然而,Wan et al. (2013a)获得了乌拉山-大青山变基性岩1920 ~1970Ma 的岩浆年龄,反映了古元古代的陆内伸展事件,而并非陆-陆碰撞拼合的时代。最近,Dong et al. (2014)通过SHRIMP 锆石U-Pb 年代学研究,报道了大青山孔兹岩系岩石存在晚太古代(2.45~2.40Ga)和古元古代(1.95 ~1.90Ga)两期变质事件,类似地,Liu et al. (2014)也报道了乌拉山-大青山变基性岩的晚太古代(~2.45Ga)和古元古代(1.95 ~1.85Ga)两期变质事件,反映乌拉山-大青山高级变质岩石经历了十分复杂的构造-热演化历史。然而,由于晚太古代变质事件可能普遍遭受了古元古代变质事件的改造,在岩相学和变质作用等其它方面仍难以很好地区分二者,这也为正确认识晚太古代变质事件的变质演化历史、成因机制以及构造背景带来了很大的挑战。

不同于孔兹岩带中段乌拉山-大青山地区的晚太古代变质事件,目前,有关该区孔兹岩系岩石和变基性岩石的古元古代变质事件的相关研究已取得了众多研究进展。本文在前期变质作用研究的基础上,选取了孔兹岩带乌拉山-大青山地区典型的孔兹岩系岩石,包括堇青石榴黑云二长片麻岩、夕线堇青石榴黑云二长片麻岩、紫苏石榴黑云片麻岩和石榴长英质粒状岩石,其中(夕线)堇青石榴黑云二长片麻岩保留多种退变质反应结构,Cai et al. (2014)对该类样品进行了详细的变质作用研究,划分出进变质、峰期变质、峰后近等温减压以及晚期降温冷却四个变质阶段的矿物共生组合,并利用相平衡模拟的方法计算出不同岩石样品的P-T 视剖面图,建立了乌拉山-大青山地区孔兹岩系岩石近等温减压型的顺时针P-T 演化轨迹。因此,本文在此研究的基础上,通过详细的野外地质观察和室内岩相学观察,利用LA-ICPMS 锆石U-Pb 年代学研究分别获得了该区孔兹岩系岩石的原岩形成时代和变质时代,并结合前人的研究结果,将其变质时代划分为~1950Ma 和~1860Ma 两个阶段,分别对应了陆-陆碰撞初始阶段和折返抬升的时代,为进一步揭示古元古代华北克拉通西部的阴山陆块和鄂尔多斯陆块之间的俯冲-碰撞并折返至地表的动力学过程提供科学依据。

2 地质背景

内蒙古孔兹岩带位于华北克拉通西北缘,是一条古元古代碰撞构造带,由西向东沿千里山-贺兰山、乌拉山-大青山和集宁-卓资-丰镇一带展布,北邻阴山陆块,南侧与鄂尔多斯陆块相接(图1a,b),东侧紧邻中部造山带。前人研究(Zhao et al.,1999,2002,2005;Zhai et al.,2000)认为孔兹岩带是由北部的阴山陆块和南部的鄂尔多斯陆块于 ~1950Ma 碰撞拼合而成,而中部造山带是由西部陆块与东部陆块在~1850Ma碰撞形成。本文研究区位于孔兹岩带中段的乌拉山-大青山地区,是典型的孔兹岩系出露区(图1a,b)。

图1 孔兹岩带在华北克拉通的分布和构造位置图(a,b,据Zhao et al.,2005)和乌拉山-大青山地区的地质简图及采样位置(c,据徐仲元等,2007)图中所示的大青山地区变泥质岩石的锆石年龄数据分别来自Wan et al. (2009)和Dong et al. (2013,2014)Fig.1 Distribution of the Khondalite Belt in the North China Craton (a,b,after Zhao et al.,2005)and geological map of the Wulashan-Daqingshan area (c,after Xu et al.,2007)Zircon age data of the metapelitic rocks in the Daqingshan area are from Wan et al. (2009)and Dong et al. (2013,2014)

乌拉山-大青山地区出露的早前寒武纪变质岩石的类型十分复杂,包括太古代兴和岩群麻粒岩系、古元古代乌拉山岩群和美岱召岩群的变质表壳岩系(孔兹岩系)、太古代深变质岩浆岩、古元古代岩浆岩以及少量古元古代(石榴)基性麻粒岩和斜长角闪岩(卢良兆等,1992,1996;徐仲元等,2007)。其中,古元古代乌拉山岩群孔兹岩系主要分布于包头以北的哈德门沟、忽鸡沟、大南沟、五当召和鸡灯湾等地,包括两个岩石单元,下部主要是黑云角闪质片麻岩,岩石类型包括含石英辉石斜长角闪岩、含石英钾长/二长角闪岩、斜长角闪岩、角闪斜长片麻岩、黑云角闪斜长片麻岩、黑云角闪二长片麻岩、黑云钾长/二长片麻岩夹辉石磁铁石英岩等(李树勋等,1994);而上部岩石单元总体与孔兹岩系相当,主要为石榴黑云二长/斜长片麻岩、夕线石榴堇青黑云二长/斜长片麻岩、(石墨)大理岩、长英质粒状岩石、黑云变粒岩等,部分地区见基性麻粒岩透镜体出露(刘平华等,2013;Liu et al.,2014)。在局部地区出露的石榴石花岗岩与高级变质表壳岩系密切伴生,可能与区内麻粒岩相变质演化所伴随的部分熔融作用有关(卢良兆等,1996)。

3 样品野外产状和岩相学特征

采样点位于孔兹岩带乌拉山-大青山地区的鸡灯湾、忽鸡沟、石拐区以北的五当召以及哈德门沟一带,出露变质程度较高且具有多种变质反应结构的孔兹岩系岩石(图1c)。典型样品包括堇青石榴黑云二长片麻岩(BH27-1)、夕线堇青石榴黑云二长片麻岩(BH27-2 和BT20-1)、紫苏石榴黑云片麻岩(BH27-3 和BT38-1)和石榴长英质粒状岩石(BH28-1),其野外产状和室内岩相学特征描述如下(图2、图3)。

3.1 堇青石榴黑云二长片麻岩(BH27-1)

图2 乌拉山-大青山地区孔兹岩系岩石野外露头照片(a)堇青石榴黑云二长片麻岩(BH27-1)与夕线堇青石榴黑云二长片麻岩(BH27-2)共同产出;(b)堇青石榴黑云二长片麻岩(BH27-1)中石榴石的边部形成“黑眼圈”结构;(c)夕线堇青石榴黑云二长片麻岩的矿物组合(BH27-2)夕线石+石榴石+堇青石+黑云母+ 长石+ 石英;(d)紫苏石榴黑云斜长片麻岩(BH27-3)的矿物组合紫苏辉石+ 石榴石+ 黑云母+ 斜长石;(e)夕线堇青石榴黑云二长片麻岩(BT20-1)呈似层状产出;(f)夕线堇青石榴黑云二长片麻岩(BT20-1)的矿物组合夕线石+石榴石+堇青石+黑云母+长石+石英;(g)紫苏石榴黑云二长片麻岩(BT38-1)中可见多处长英质浅色条带和长石斑晶;(h)石榴长英质粒状岩石(BH28-1)的矿物组合石榴石+黑云母+石英+斜长石Fig.2 Outcrops of the khondalite rocks in the Wulashan-Daqingshan area(a) cordierite-garnet-biotite gneiss (BH27-1) associated with sillimanite-cordierite-garnet gneiss (BH27-2);(b)cordierite that forms a black ring around garnet(‘black-eye-socket’structure)in cordierite-garnet-biotite gneiss (BH27-1 ); (c ) sillimanitecordierite-garnet gneiss (BH27-2) with mineral assemblage of sillimanite+ garnet + cordierite + biotite + feldspar + quartz;(d)hypersthene-garnet-biotite gneiss (BH27-3)with mineral assemblage of hypersthene + garnet + biotite + plagioclase;(e)sillimanitecordierite-garnet gneiss (BT20-1 ) occurred in layers; (f)sillimanite-cordierite-garnet gneiss (BT20-1 ) with mineral assemblage of sillimanite + garnet + cordierite + biotite + feldspar +quartz;(g)quartzofeldspathic layers and porphyroblastic feldspar occur in the hypersthene-garnet-biotite gneiss (BT38-1);(h)garret-bearing quartzofeldspathic rock (BH28-1 ) with mineral assemblage of garnet+biotite+quartz+plagioclase

堇青石榴黑云二长片麻岩(BH27-1)样品采自土默特右旗公山湾乡鸡灯湾村东约1.1km 公路旁(图2a,b),该区出露的岩石类型还包括夕线堇青石榴黑云二长片麻岩(BH27-2)、紫苏石榴黑云斜长片麻岩(BH27-3)和斜长角闪岩等,出露宽度约100m,其中堇青石榴黑云二长片麻岩和夕线堇青石榴黑云二长片麻岩呈似层状产出。石榴石边部围绕不透明暗色矿物形成“黑眼圈”结构。该样品的主要组成矿物有石榴石、长石、石英、堇青石、黑云母,并含少量夕线石等,副矿物为锆石、磁铁矿和钛铁矿等。其中石榴石变斑晶呈浑圆状,粒径变化较大(0.1 ~1.5cm),含量2% ~10%。部分石榴石核-幔部可包裹大量细长针状夕线石、细粒石英、长石和黑云母等矿物(图3a)。堇青石围绕在石榴石边部形成退变反应边结构,其内包裹黑云母、石英、Fe-Ti 氧化物和锆石等(图3a)。

3.2 夕线堇青石榴黑云二长片麻岩(BH27-2)

夕线堇青石榴黑云二长片麻岩(BH27-2)样品和堇青石榴黑云二长片麻岩(BH27-1)取自同一露头(图2c),该样品的主要组成矿物为石榴石、夕线石、堇青石、黑云母、长石、石英等,副矿物为锆石、磁铁矿和钛铁矿等(图3b)。石榴石边部可被大量粗粒黑云母和夕线石围绕。堇青石多分布在基质中,与黑云母和长英质矿物共生,而不与石榴石直接接触,局部呈拉长状沿片麻理方向分布,其内可包裹细粒黑云母、石英、残留状的夕线石、尖晶石和Fe-Ti 氧化物等,少数堇青石围绕在石榴石边部形成退变反应边结构。

3.3 夕线堇青石榴黑云二长片麻岩(BT20-1)

夕线堇青石榴黑云二长片麻岩(BT20-1)样品来自包头市九原区乌兰计镇柏树沟村西北约250m 的山坡上,主要出露一套夕线堇青石榴黑云二长片麻岩和石榴黑云二长片麻岩,二者呈互层状产出,局部可见含石榴石的长英质浅色体聚集,其中长石呈眼球状沿片麻理分布(图2e,f)。该样品的主要组成矿物有石榴石、长石、石英、堇青石、黑云母和夕线石等,并含少量锆石、磁铁矿和钛铁矿。石榴石变斑晶呈浑圆状或拉长状,粒径变化为0.2 ~0.8cm。石榴石可包裹细粒石英、长石、黑云母和夕线石等矿物。石榴石边部可被大量粗粒黑云母和夕线石围绕(图3c),部分石榴石边部形成含堇青石或鳞片状黑云母+斜长石的退变边结构。基质中的堇青石常与黑云母和长英质矿物共生。

3.4 紫苏石榴黑云斜长片麻岩(BH27-3)

紫苏石榴黑云斜长片麻岩(BH27-3)样品和BH27-1、BH27-2 样品取自同一露头(图2d),两类岩石呈渐变过渡关系。该样品的主要组成矿物为石榴石、紫苏辉石(粒径约0.5 ~2.5mm)、斜长石、黑云母等,并含少量钾长石和石英等。其中石榴石变斑晶可包裹紫苏辉石、黑云母、石英和长石等(图3d)。局部石榴石分解形成紫苏辉石+斜长石的后成合晶,石英和斜长石被钾长石所分隔。

图3 乌拉山-大青山地区孔兹岩系岩石代表性矿物组合及显微结构特征(单偏光照片)(a)石榴石变斑晶包裹细粒毛发状夕线石和石英等,其边部围绕堇青石退变边;(b)基质中的石榴石、夕线石、黑云母、石英、长石、锆石和磁铁矿共同产出;(c)石榴石变斑晶边部退变为堇青石(蚀变),并围绕粗粒夕线石和黑云母等;(d)石榴石变斑晶内包裹紫苏辉石、黑云母和斜长石等,边部围绕粗粒黑云母;(e)基质中的石榴石、紫苏辉石、黑云母、斜长石、钾长石和石英等;(f)基质中的浑圆状石榴石、石英、斜长石、黑云母和金红石等,石榴石内包裹石英和斜长石Fig.3 Representative photomicrographs showing mineral assemblages and microtextures of the khondalite rocks in the Wulashan-Daqingshan area (plane-polarized light photos)(a)fibrolitic sillimanite and quartz included in porphyroblastic garnet,and the garnet rimmed by a corona of cordierite;(b)garnet porphyroblast,coarse-grained sillimanite,biotite,quartz and feldspar in the matrix in contact with zircon and magnetite;(c)a garnet porphyroblast mantled by pinitized cordierite,coarse-grained sillimanite,and biotite;(d)hypersthene,biotite and minute plagioclase preserved within a garnet porphyroblast which is surrounded by coarse-grained biotite;(e)matrix garnet,hypersthene,biotite,plagioclase,K-feldspar and quartz;(f)rounded garnet,quartz,plagioclase,biotite and rutile in the matrix,and porphyroblastic garnet contains quartz and plagioclase

3.5 紫苏石榴黑云二长片麻岩(BT38-1)

紫苏石榴黑云二长片麻岩(BT38-1)样品取自包头市石拐区乌兰此老村东侧石拐-五当召线公路旁,岩石呈似层状产出。岩石局部含有浅色长英质条带,并可见斜长石的巨晶(图2g)。该样品主要组成矿物为石榴石、紫苏辉石、斜长石、钾长石、石英和黑云母等(图3e),副矿物有磁铁矿、钛铁矿和锆石等。石榴石变斑晶可包裹黑云母、长石、紫苏辉石和尖晶石-磁铁矿-钛铁矿出溶体。紫苏辉石呈不规则粒状,粒径约0.05 ~2.5mm,其内可定向出溶细长针状钛铁矿。

3.6 石榴长英质粒状岩石(BH28-1)

石榴长英质粒状岩石(BH28-1)样品取自固阳县忽鸡沟乡大南沟村南偏东约750m 山坡上,该岩石与石榴堇青黑云斜长片麻岩、尖晶黑云石榴钾长片麻岩共同产出。石榴长英质粒状岩石的主要组成矿物有石英、长石、石榴石和黑云母等(图2h),副矿物有褐红色金红石、磁铁矿和锆石等。石榴石多呈浑圆粒状,粒径0.50 ~2.00mm,其核-幔部包裹细粒石英、长石和黑云母等(图3f)。

图4 堇青石榴黑云二长片麻岩(BH27-1)锆石阴极发光图像和LA-ICP-MS U-Pb 定年结果(a)锆石具有核-边结构,继承性核部具有相对强发光效应(灰白-灰色),变质边具有相对均匀的中等发光效应(灰黑色);(b、c)锆石具中等-弱发光效应(灰-灰黑色),具岩浆结晶环带;(d)锆石具有核-边结构;(e、f)锆石具有相对均匀的弱发光效应(灰黑色-黑色);(g)锆石具有核-边结构,边部具有相对均匀的弱发光效应(黑色);(h)锆石具有核-边结构,边部具有相对均匀的中等发光效应(灰色)Fig.4 Cathodoluminescent (CL)images and LA-ICP-MS U-Pb ages of zircons from the Crd-Grt-Bt gneiss (BH27-1)(a)the zircon grain showing high-luminescent (greyish white-grey)core,middle-luminescent (greyish black)rim relationship;(b,c)the zircon grains showing middle-low-luminescent (grey-greyish black)magmatic zoning;(d)the zircon grain showing greyish black-luminescent core and rim;(e,f)the zircon grains showing homogeneous low-luminescence (greyish black-black);(g)the zircon grain showing middle-luminescent core and low-luminescent (black)rim;(h)the zircon grain showing low-luminescent core and middle-luminescent (grey)rim

4 分析方法

岩石样品的破碎与锆石分选在河北省区域地质调查所矿物分选实验室完成。首先,将样品(约5kg)进行破碎至适当粒级,经清洗、烘干和筛选后,采用磁选和重液分选出不同粒级的锆石晶体,然后在双目镜下挑选出颗粒相对完整的锆石晶体约200 粒,制成符合阴极发光测试和LA-ICP-MS U-Pb定年的标准锆石靶。锆石的LA-ICP-MS U-Pb 定年测试在天津地质矿产研究所同位素实验室Neptune 型LA-ICP-MS 上进行,该实验测试条件详见耿建珍等(2012)的论述。本文所有矿物代号均采用Whitney and Evans (2010)的资料。由于LA-ICP-MS 定年手段对锆石的剥蚀深度较大,对于具有环带或结构不均一的锆石,容易获得混合年龄。因此对于具核边结构的锆石,尽量选择变质边较宽且结构均一的位置进行测试;对于结构均匀的变质锆石,避免选择靠中心的位置进行测试,以免灼烧到小颗粒的继承性核部锆石;对于具有岩浆结晶环带的继承性碎屑锆石或是具核边结构的继承性锆石核部,也尽量选择核部颗粒较大且岩浆结晶环带清晰的位置。此外,对不同样品尽量多选择测试点,使获得的年龄数据更具统计意义,以降低个别的混合年龄对最终年龄结果的影响。

5 样品的锆石特征

堇青石榴黑云二长片麻岩(BH27-1)中的锆石呈暗紫红色,不透明-半透明,以不规则粒状或短柱状为主,少数为浑圆状,长宽比多为1 ∶1 ~2 ∶1。锆石颗粒较小,为40 ~150μm。根据锆石阴极发光(CL)图像与形态特征可划分出两种类型:其一具有核-边结构,即强-弱发光效应(灰白-灰黑色)的继承性核和相对弱发光(灰黑色-黑色)效应的变质增生边(图4a-d,g,h),核部与边部之间多呈渐变过渡,其中继承性的核多发育岩浆结晶环带,部分继承性的核由于受到麻粒岩相变质作用的影响导致早期韵律环带被强烈改造而产生较模糊的岩浆结晶环带,变质增生边结构较均匀,无分带特征,边部宽窄不一,多在2 ~30μm 之间;其二多呈浑圆状,具有相对均匀的中等-弱发光效应(多呈灰-黑色),可发育冷杉叶结构,内部无分带(图4e,f),具变质锆石的特征。

夕线堇青石榴黑云二长片麻岩(BH27-2)与堇青石榴黑云二长片麻岩(BH27-1)中的锆石特征类似,粒径变化于80~200μm,以浑圆状或不规则粒状为主,少数为短柱状,长宽比多为1∶1 ~2∶1。CL 图像同样显示两种类型的锆石:第一种具典型的核-边结构(图5a,b),继承性的核部呈不规则粒状,多发育岩浆结晶环带,具强-弱发光效应(灰白-灰黑色),而变质增生边的结构较均匀,多呈中等-弱发光效应(灰色-灰黑色),宽度为5 ~60μm,继承性核部与边部之间的界限较清晰;第二种类型多呈浑圆状,内部结构均匀,少数发育冷杉叶结构,具均匀的弱发光效应(灰黑色-黑色),具有变质锆石的特征(图5c-h)。

夕线堇青石榴黑云二长片麻岩(BT20-1)中的锆石以浑圆状为主,少数呈短柱状,粒径为50 ~300μm。CL 图像显示两种类型的锆石:其一具核-边结构(图6a-c,e,h),其中继承性核部呈不规则粒状或柱状,具中等-弱发光效应,可显示清晰的岩浆结晶环带,而其周围的变质增生边呈均匀的中等-弱发光效应(灰色-灰黑色),边部宽度不一,在5 ~80μm之间;其二为具有均匀的弱发光效应的变质锆石,内部无分带结构(图6d,f,g)。

图5 夕线堇青石榴黑云二长片麻岩(BH27-2)锆石阴极发光图像和LA-ICP-MS U-Pb 定年结果(a)锆石具核-边结构,继承性核部和边部均具相对弱发光效应(灰-灰黑色),核部显示岩浆结晶环带;(b)锆石具核-边结构,继承性核部具中等-弱发光效应(灰黑色),边部具中等发光效应(灰色);(c-h)锆石多呈浑圆粒状,具有相对均匀的弱发光效应(灰黑色-黑色)Fig.5 CL images and LA-ICP-MS U-Pb ages of zircons from the Sil-Crd-Grt gneiss (BH27-2)(a)the zircon grain showing low-luminescent (grey-greyish black)magmatic zoning core and rim;(b)the zircon grain showing middle-lowluminescent core (greyish black)and middle-luminescent rim (grey);(c-h)the rounded zircon grains showing homogeneous low-luminescence(greyish black-black)

图6 夕线堇青石榴黑云二长片麻岩(BT20-1)锆石阴极发光图像和LA-ICP-MS U-Pb 定年结果(a、b)锆石具有核-边结构,继承性核显示岩浆结晶环带,具中等发光效应(灰色),边部具均匀的中等-弱发光效应(灰-灰黑色);(c)锆石具核-边结构,边部显示均匀的中等发光效应(灰黑色);(d)锆石具有均匀的弱发光效应;(e)锆石具有核-边结构,边部具有相对均匀的弱发光效应(灰黑色-黑色);(f、g)锆石具有相对均匀的弱发光效应(灰黑色-黑色);(h)锆石具有核-边结构,边部具有相对均匀的弱发光效应(灰黑色)Fig.6 CL images and LA-ICP-MS U-Pb ages of zircons from the Sil-Crd-Grt gneiss (BT20-1)(a,b)the zircon grains showing middle-luminescent (grey)magmatic zoning core and middle-low-luminescent (grey-greyish black)rim relationship;(c)the zircon grain showing low-luminescent core and homogeneous middle-luminescent (greyish black)rim;(d)the zircon grain showing homogeneous low-luminescence;(e)the zircon grain showing low-luminescent (greyish black-black)core and rim;(f,g)the zircon grains showing homogeneous low-luminescence (greyish black-black);(h)the zircon grain showing low-luminescent (greyish black)rim

紫苏石榴黑云斜长片麻岩(BH27-3)中的锆石呈浑圆状、不规则粒状或短柱状,长宽比为1∶1 ~3∶1。锆石颗粒多较小,粒径约60 ~130μm。CL 图像显示三种类型的锆石:其一具有核-边结构,即中等-弱发光效应(灰色-黑色)的继承性核和相对均匀的弱发光(灰黑色-黑色)效应的变质增生边,继承性核呈不规则状(图7a,f,g),内部可发育岩浆结晶环带或结构均匀,核部与边部之间界限较清晰,变质增生边常具有均匀的灰黑-黑色的弱发光效应,无分带特征,变质边宽度在2 ~30μm 之间;其二呈长柱状,内部发育典型的岩浆结晶环带,具有中等-弱的发光效应(图7b);其三多呈浑圆状,少数呈半自形-自形晶,具有相对均匀的中等-弱发光效应(灰-灰黑色),内部无分带特征,可发育冷杉叶结构,具有变质锆石的特征(图7c-e,h)。

紫苏石榴黑云二长片麻岩(BT38-1)中的锆石主要呈短柱状、浑圆状或不规则状,粒径变化于80 ~200μm 之间。CL图像显示两种锆石:其一具核-边结构(图8a-f,h-j),多呈柱状,少数呈浑圆状,其中继承性核部具有中等-弱发光效应(灰黑-黑色),其内部结构均匀,少数具有岩浆结晶环带,而变质增生边多具均匀的中等-弱发光效应(灰色-灰黑色),内部无分带现象,边部宽度变化较大(20 ~150μm);其二具有均匀的中等发光效应(灰白-灰黑色),多呈浑圆状,发育冷杉叶结构(图8g,k,l)。

图7 紫苏石榴黑云斜长片麻岩(BH27-3)锆石阴极发光图像和LA-ICP-MS U-Pb 定年结果(a)锆石具有核-边结构,继承性核部具中等-弱发光效应(灰-灰黑色)并具岩浆结晶环带,变质边具有相对均匀的弱发光效应(灰黑-黑色);(b)锆石呈柱状,有典型的岩浆结晶环带,具中等-弱发光效应(灰-灰黑色);(c-e)锆石具有相对均匀的中等-弱发光效应(灰色-黑色);(f、g)锆石具有核-边结构,继承核较小且具中等-弱发光效应,边部具有相对均匀的弱发光效应(灰黑-黑色);(h)锆石具有相对均匀的弱发光效应(灰黑色-黑色)Fig.7 CL images and LA-ICP-MS U-Pb ages of zircons from the Hyp-Grt-Bt gneiss (BH27-3)(a)the zircon grain showing middle-low-luminescent (grey-greyish black)magmatic zoning core,low-luminescent (greyish black-black)rim relationship;(b)the elongated zircon grain showing middle-low-luminescent (grey-greyish black)magmatic zoning;(c-e)the zircon grains showing homogeneous middle-low-luminescence (grey-black);(f,g)the zircon grains showing small greyish black-luminescent core and homogeneous lowluminescent (greyish black-black)rim;(h)the zircon grain showing homogeneous low-luminescence (greyish black-black)

图8 紫苏石榴黑云二长片麻岩(BT38-1)锆石阴极发光图像和LA-ICP-MS U-Pb 定年结果(a-f)锆石具有核-边结构,继承性核部具均匀的弱发光效应(灰黑-黑色),变质边具均匀的中等-弱发光效应(灰-灰黑色);(g)锆石具有相对均匀的中等发光效应(灰色);(h-j)锆石具有核-边结构,继承性核部有均匀的中等-弱发光效应(灰黑-黑色),变质边具均匀的中等-弱发光效应(灰-灰黑色);(k、l)锆石具有相对均匀的中等-弱发光效应(灰-灰黑色)Fig.8 CL images and LA-ICP-MS U-Pb ages of zircons from the Hyp-Grt-Bt gneiss (BT38-1)(a-f)the zircon grains showing low-luminescent (greyish black-black)core,middle-low-luminescent (grey-greyish black)rim relationship;(g)the zircon grains showing homogeneous middle-luminescence (grey);(h-j)the zircon grains showing middle-low-luminescent (greyish black-black)core and middle-low-luminescent (grey-greyish black)rim;(k,l)the zircon grains showing homogeneous middle-low-luminescence (grey-greyish black)

图9 石榴长英质粒状岩石(BH28-1)锆石阴极发光图像和LA-ICP-MS U-Pb 定年结果(a)锆石呈柱状,具岩浆结晶环带特征,显示强-中等发光效应(灰白-灰色);(b-j,o)锆石具有核-边结构,继承性核部具有中等发光效应(灰-灰黑色),具岩浆结晶环带,变质边具有相对均匀的弱发光效应(灰黑-黑色);(k-n,p)锆石具有相对均匀的弱发光效应(灰黑色-黑色)Fig.9 CL images and LA-ICP-MS U-Pb ages of zircons from the Grt-bearing quartzofeldspathic rock (BH28-1)(a)elongated zircon grain showing high-middle-luminescent (greyish white-grey)magmatic zoning structure;(b-j,o)the zircon grains showing middle-luminescent (grey-greyish black)magmatic zoning core,low-luminescent (greyish black-black)rim relationship;(k-n,p)the zircon grains showing homogeneous low-luminescence (greyish black-black)

石榴长英质粒状岩石(BH28-1)中的锆石以浑圆状或柱状为主,长宽比多为1∶1 ~3∶1。锆石粒径变化较大(40 ~140μm)。根据CL 图像可分为三种类型:其一为继承性锆石,多呈柱状,可具强-中等发光效应(灰白-灰色),内部发育典型的岩浆结晶环带(图9a);其二具核-边结构,包括继承性核和相对弱发光效应(灰黑色-黑色)的变质增生边(图9b-j,o),核边之间界限较清晰,其中继承性核多具中等-弱发光效应(灰色-灰黑色),内部可发育岩浆结晶环带或结构均匀,呈不规则状,继承性核周围发育具弱发光效应(灰黑色-黑色)的变质增生边,无分带特征,变质边宽度变化较大(2 ~80μm);其三为变质锆石,多呈浑圆状,少数呈短柱状,具有相对均匀的中等-弱发光效应(灰黑-黑色),内部无分带特征,可发育冷杉叶结构(图9k-n,p)。

6 U-Pb 定年结果

6.1 堇青石榴黑云二长片麻岩(BH27-1)

样品BH27-1 中的继承性锆石多含有较高的Th 含量(77×10-6~427 ×10-6)和Th/U 比值(0.19 ~0.85),U 含量相对较低(160 ×10-6~966 ×10-6),而典型的变质锆石的Th含量(3 ×10-6~153 ×10-6)和Th/U 比值(0.01 ~0.29)均相对较低,U 含量变化较大(232 ×10-6~2619 ×10-6)(表1)。

207Pb/235U-206Pb/238U 关系图解(图10a)显示:继承性锆石记录的207Pb/206Pb 年龄为2076 ~2409Ma;变质锆石年龄可分为两组:(1)记录的207Pb/206Pb 年龄在1943 ~1947Ma 之间,加权平均年龄为1946 ±25Ma(MSWD =0.028,n =2;图10a);值得注意的是BH27-1.37 测试点的锆石具有模糊的岩浆结晶环带,而其锆石年龄为1947 ±16Ma,具有变质锆石的特征,表明该锆石受到麻粒岩相变质作用的改造;(2)记录的207Pb/206Pb 年龄相对偏新,为1793 ~1919Ma,加权平均年龄为1851 ±12Ma(MSWD=2.4,n=26)。

6.2 夕线堇青石榴黑云二长片麻岩(BH27-2)

样品BH27-2 中的继承性锆石具有较高的Th 含量(271×10-6~564 ×10-6)和U 含量(351 ×10-6~606 ×10-6),Th/U 比值为0.56 ~1.61,而典型的变质锆石的Th 含量(4 ×10-6~718 ×10-6)和U 含量(253 ×10-6~2313 ×10-6)均变化较大,Th/U 比值(0.00 ~0.48)相对较低(表2)。

207Pb/235U-206Pb/238U 关系图解(图10b)显示测试点均位于谐和线上,该样品的锆石年龄显示:继承性锆石记录的207Pb/206Pb 年龄为2108 ~2262Ma;变质锆石可划分出两组年龄:(1)变质锆石记录的207Pb/206Pb 年龄相对较老,为1943 ±20Ma(图10b);(2)变质锆石记录的207Pb/206Pb 年龄在1817~1927Ma 之间,加权平均年龄为1864 ±6Ma(MSWD=1.3,n=44;图10b)。

表1 堇青石榴黑云二长片麻岩(BH27-1)锆石LA-ICP-MS 定年结果Table 1 LA-ICP-MS analyses of zircon from the Crd-Grt-Bt gneiss (Sample BH27-1)

表2 夕线堇青石榴黑云二长片麻岩(BH27-2)锆石LA-ICP-MS 定年结果Table 2 LA-ICP-MS analyses of zircon from the Sil-Crd-Grt gneiss (Sample BH27-2)

表3 紫苏石榴黑云斜长片麻岩(BH27-3)锆石LA-ICP-MS 定年结果Table 3 LA-ICP-MS analyses of zircon from the Hyp-Grt-Bt gneiss (Sample BH27-3)

图10 内蒙古乌拉山-大青山孔兹岩系样品的锆石207Pb/235U-206Pb/238U 年龄关系图(a)堇青石榴黑云二长片麻岩(BH27-1);(b)夕线堇青石榴黑云二长片麻岩(BH27-2);(c)紫苏石榴黑云斜长片麻岩(BH27-3);(d)石榴长英质粒状岩石(BH28-1);(e)紫苏石榴黑云二长片麻岩(BT38-1);(f)夕线堇青石榴黑云二长片麻岩(BT20-1)Fig.10 207Pb/235U-206Pb/238U diagrams showing U-Pb analyses for zircons of the khondalite rocks in the Wulashan-Daqingshan area(a)Crd-Grt-Bt gneiss (BH27-1);(b)Sil-Crd-Grt gneiss (BH27-2);(c)Hyp-Grt-Bt gneiss (BH27-3);(d)Grt-bearing quartzofeldspathic rock(BH28-1);(e)Hyp-Grt-Bt gneiss (BT38-1);(f)Sil-Crd-Grt gneiss (BT20-1)

6.3 紫苏石榴黑云斜长片麻岩(BH27-3)

样品BH27-3 中继承性的锆石多具有较高的Th 含量(96×10-6~1002 ×10-6),U 含量变化较大(185 ×10-6~1145×10-6),Th/U 比值为0.23 ~1.46,而变质锆石的Th 含量(6×10-6~616 ×10-6)和Th/U 比值(0.01 ~0.49)相对较低,U 含量变化较大(183 ×10-6~1256 ×10-6)(表3)。

表4 石榴长英质粒状岩石(BH28-1)锆石LA-ICP-MS 定年结果Table 4 LA-ICP-MS analyses of zircon from the Grt-bearing quartzofeldspathic rock (Sample BH28-1)

续表4Continued Table 4

续表4Continued Table 4

该样品锆石的207Pb/206Pb 年龄可划分出两组:继承性锆石年龄在2047 ~2463Ma 之间;变质锆石记录的207Pb/206Pb年龄在1808 ~1924Ma 之间,加权平均年龄为1863 ±11Ma(MSWD=2.9,n=33;图10c)。

6.4 石榴长英质粒状岩石(BH28-1)

样品BH28-1 中继承性的锆石多具有较高的Th 含量(35×10-6~763 ×10-6)和Th/U 比值(0.12 ~1.56),U 含量变化较大(61 ×10-6~1040 ×10-6)。变质锆石的Th 含量(5 ×10-6~73 ×10-6)和Th/U 比值(0.01 ~0.13)均相对较低,U含量变化较大(420 ×10-6~1834 ×10-6)(表4)。

207Pb/235U-206Pb/238U 关系图解(图10d)显示:继承性锆石记录的207Pb/206Pb 年龄在2076 ~2502Ma 之间;变质锆石记录的207Pb/206Pb 年龄在1825 ~1922Ma 之间,加权平均年龄为1858 ±8Ma(MSWD=2.1,n=28;图10d)。

6.5 紫苏石榴黑云二长片麻岩(BT38-1)

样品BT38-1 中继承性锆石的Th 含量(6 ×10-6~614 ×10-6)、U 含量(81 ×10-6~1846 ×10-6)和Th/U 比值(0.01~1.67)变化均很大。变质锆石Th 含量(31 ×10-6~214 ×10-6)和U 含量(73 ×10-6~438 ×10-6)相对较低,Th/U 比值(0.07 ~1.37)变化较大(表5)。

锆石U-Pb 定年结果(图10e)显示其年龄结果可划分出两组:第一组以继承性锆石为代表,记录的207Pb/206Pb 年龄为2115 ~2499Ma;第二组以变质锆石为代表,其207Pb/206Pb年龄十分集中,变化于1906 ~1962Ma 之间,加权平均年龄为1946 ±5Ma(MSWD=0.76,n=30;图10e)。

6.6 夕线堇青石榴黑云二长片麻岩(BT20-1)

样品BT20-1 中继承性锆石的Th 含量(16 ×10-6~239×10-6)和U 含量(30 ×10-6~360 ×10-6)以及Th/U 比值(0.06 ~1.08)变化较大。变质锆石的Th 含量(28 ×10-6~117 ×10-6)和Th/U 比值(0.11 ~0.43)相对较低,U 含量为184 ×10-6~290 ×10-6(表6)。

207Pb/235U-206Pb/238U 关系图解(图10f)显示,该样品的锆石年龄也可划分出二组:其一以继承性锆石为代表,记录的207Pb/206Pb 年龄为2033 ~2408Ma;其二以变质锆石为代表,记录的207Pb/206Pb 年龄变化于1929 ~1966Ma 之间,加权平均年龄为1946 ±12Ma(MSWD=2.9,n=7;图10f)。

表5 紫苏石榴黑云二长片麻岩(BT38-1)锆石LA-ICP-MS 定年结果Table 5 LA-ICP-MS analyses of zircon from the Hyp-Grt-Bt gneiss (Sample BT38-1)

续表5Continued Table 5

表6 夕线堇青石榴黑云二长片麻岩(BT20-1)锆石LA-ICP-MS 定年结果Table 6 LA-ICP-MS analyses of zircon from the Sil-Crd-Grt gneiss (Sample BT20-1)

7 讨论

7.1 乌拉山-大青山孔兹岩系的原岩形成时代

乌拉山-大青山孔兹岩系岩石的碎屑锆石年龄变化较大,在2033 ~2502Ma 之间,且不同样品的年龄分布略有差异,这反映其沉积物源十分复杂。碎屑锆石年龄直方图(图11)显示主要峰值年龄分别为:2400 ~2500Ma、~2300Ma 和2000 ~2100Ma,其中,石榴长英质粒状岩石(BH28-1)的100个继承性碎屑锆石微区的年代学测试结果显示两组207Pb/206Pb 年龄,分别为~2400Ma 和~2100Ma,这与孔兹岩带其它地区变泥质岩中的碎屑锆石年龄分布相似(Wan et al.,2006,2009;吴昌华等,2006;Xia et al.,2006a,b,2008;Dong et al.,2007,2013;Yin et al.,2009,2011;周喜文和耿元生,2009)。结合前人研究资料,认为乌拉山-大青山孔兹岩系的最大沉积时代应为~2000Ma。

图11 乌拉山-大青山孔兹岩系岩石的碎屑锆石207 Pb/206Pb 年龄直方图Fig.11 Histogram of the 207Pb/206Pb ages of detrital zircons from the khondalite rocks in the Wulashan-Daqingshan area

7.2 乌拉山-大青山孔兹岩系的变质时代

尽管部分研究者认为华北克拉通孔兹岩带内孔兹岩系岩石的变质时代为新-中太古代(Li et al.,2000;卢良兆,1991;卢良兆等,1992,1996;Qian and Li,1999;杨振升等,2000),越来越多的年代学研究结果表明这些孔兹岩系岩石普遍经历了古元古代的高级变质事件(金巍等,1991;李树勋等,1994;刘喜山,1994,1996;于海峰,1994;金巍和李树勋,1996;吴昌华等,1998,2006;Zhao et al.,1999,2012;Xia et al.,2006a,b;Wan et al.,2009;Dong et al.,2013)。本文对孔兹岩带中段乌拉山-大青山地区孔兹岩系岩石的锆石UPb 年代学研究结果表明其变质时代为1850 ~1950Ma,证实了后者的观点。

乌拉山-大青山孔兹岩系变质锆石的年龄直方图(图12)显示了~1950Ma 和~1860Ma 两个主要的年龄峰值。因此,将其变质锆石划分出两组变质时代。

(1)~1950Ma。例如,紫苏石榴黑云二长片麻岩(BT38-1)的变质锆石记录的207Pb/206Pb 年龄在1906 ~1962Ma 之间,加权平均年龄为1946 ±5Ma(图10e)。夕线石榴黑云斜长片麻岩(BT20-1)也记录了近一致的207Pb/206Pb 表面年龄,为1929 ~1966Ma,加权平均年龄为1946 ±12Ma(图10f)。此外,堇青石榴黑云二长片麻岩(BH27-1)的第一组变质锆石记录的207Pb/206Pb 年龄为1943 ~1947Ma,加权平均年龄为1946 ±25Ma(图10a);夕线堇青石榴黑云二长片麻岩(BH27-2)中第一组变质锆石的207Pb/206Pb 年龄为1943 ±20Ma(图10b)。

图12 乌拉山-大青山孔兹岩系岩石中变质锆石的207Pb/206Pb 年龄直方图Fig. 12 Histogram of the 207Pb/206 Pb ages of the metamorphic zircons from the khondalite rocks in the Wulashan-Daqingshan area

许多研究者通过对孔兹岩带其它地区高级变质岩中的变质锆石开展大量的高精度同位素年代学研究,也普遍得到了~1950Ma 的变质时代(图1c;表7;Dong et al.,2007,2013;董春艳等,2009;Wan et al.,2009,2013a;Yin et al.,2009,2011;周喜文和耿元生,2009;Li et al.,2011),进一步证实了内蒙孔兹岩系岩石的变质作用始于~1950Ma,而并非前人所认为的新-中太古代,这可能代表了华北克拉通西部陆块内北部的阴山陆块和南部的鄂尔多斯陆块碰撞初始的时代(Yin et al.,2009,2011;Guo et al.,2012;Zhao et al.,2012;Zhao and Zhai,2013)。

(2)~1860Ma。例如,堇青石榴黑云二长片麻岩(BH27-1)中第二组变质锆石的207Pb/206Pb 年龄在1793 ~1919Ma 之间,加权平均年龄为1851 ±12Ma(图10a);夕线堇青石榴黑云二长片麻岩(BH27-2)中第二组变质锆石的207Pb/206Pb 年龄为1817 ~1927Ma,加权平均年龄为1864 ±6Ma(图10b);紫苏石榴黑云斜长片麻岩(BH27-3)变质锆石年龄记录的207Pb/206Pb 表面年龄为1808 ~1924Ma,加权平均年龄为1863±11Ma(图10c);石榴长英质粒状岩石(BH28-1)的变质锆石记录的207Pb/206Pb 年龄为1825 ~1922Ma,加权平均年龄为1858 ±8Ma(图10d)。其中,对BH27-1 和BH27-2 样品的岩相学观察显示,石榴石边部可出现含堇青石的退变反应边结构,反映了峰后近等温减压的变质阶段。

前人研究表明,孔兹岩带其它地区变泥质岩和变基性岩中的变质锆石记录了变化于1850 ~1920Ma 之间的变质年龄(图1c、表7;例如:~1870Ma,Yin et al.,2009,2011;周喜文和耿元生,2009;1840 ~1870Ma,Wan et al.,2006;1850 ~1910Ma,Wan et al.,2009;~1892Ma,刘 平 华 等,2013;~1866Ma,Li et al.,2011;~1890Ma,Jiao et al.,2013b;~1912Ma,蔡佳等,2014)。值得注意的是,Xia et al. (2006a)获得了集宁-卓资地区的富铝片麻岩的变质年龄为~1810Ma,然而CL 图像显示部分继承性碎屑锆石的核部实际上受到变质作用的改造,具有变质锆石的特征,因此,该作者将~1940Ma 和~1890Ma 划分为碎屑锆石的年龄,实际上应为变质年龄。此外,有研究者还报道了孔兹岩带超高温变质岩的变质时代为1920 ~1930Ma(Santosh et al.,2007a,b),并认为~1920Ma 的超高温变质事件发生在阴山和鄂尔多斯陆块碰撞拼合之后,与碰撞后的伸展环境下地幔岩浆底侵有关(赵国春,2009;Peng et al.,2010,2011;Guo et al.,2012;Wan et al.,2013a)。

表7 乌拉山-大青山地区变泥质岩和变基性岩锆石定年结果总结Table 7 Summary of zircon ages of metapelitic rocks and metabasic rocks in the Wulashan-Daqingshan area

续表7Continued Table 7

最近,Wan et al. (2013a)指出孔兹岩带变基性岩记录了四组变质年龄,分别为~2450Ma,~1950Ma,~1900Ma 和~1850Ma,均稍晚于相应的基性深成岩浆的侵位时代,可能反映了岩浆弧的环境(Wells,1980;Bohlen,1991;Condie,1997),这种岩浆弧环境可能来源于地幔柱(Bohlen,1991)或陆内裂谷环境(Sandiford and Powell,1986)。然而,这种地幔柱或陆内裂谷的构造模式并不能很好的解释区内变泥质岩指示陆-陆碰撞的近等温减压型顺时针P-T 演化轨迹。Liu et al. (2014)也提出乌拉山-大青山变基性岩记录了2450 ~2500Ma 和1850 ~1950Ma 两期变质事件,其中古元古代变质事件又可根据岩相学特征和变质锆石包裹体分析,进一步划分出~1950Ma,~1900Ma 和~1850Ma 三个年龄阶段。类似地,Dong et al. (2014)对大青山的部分孔兹岩系岩石进行锆石U-Pb 年代学研究,同样揭示了2400 ~2450Ma 和1900 ~1950Ma 两期变质事件(图1c),这一结论与早期研究者认为乌拉山-大青山地区出露的基底再造杂岩经历新太古代晚期-古元古代早期的变质事件,随后又受到古元古代晚期高级变质事件的改造相一致,可能是由于北部的阴山陆块内部分太古宙的构造岩片卷入了孔兹岩带的古元古代构造-热事件(金巍,1989;金巍等,1991;Liu et al.,1993;李树勋等,1994;刘喜山,1994,1996;于海峰,1994;金巍和李树勋,1996)。

部分研究者(Yin et al.,2009,2011;赵国春,2009;周喜文和耿元生,2009;Zhao et al.,2010;Dong et al.,2013)认为孔兹岩带变泥质岩的变质锆石所记录的1850 ~1920Ma 为碰撞后折返抬升的时代。该时代与贺兰山S 型花岗岩的形成时代相吻合(~1880Ma;Yin et al.,2009),而S 型花岗岩被普遍认为是陆-陆碰撞造山后的折返过程中高级变泥质岩减压熔融的产物(卢良兆等,1992,1996)。此外,Jiao et al.(2013b)提出~1890Ma 的变质时代代表了孔兹岩带开始折返的时代。因此,综合研究表明~1860Ma 应代表了北部阴山陆块和南部鄂尔多斯陆块碰撞后构造折返阶段的时代。注意到,孔兹岩带不同地体的高级变质岩石记录的折返时代与本文~1860Ma 略有差异,可能是由于这些地体的折返时代略有不同或是各种岩石类型记录了不同的退变质阶段的时代。

7.3 大地构造意义

前人对于华北克拉通西北缘孔兹岩带(或称丰镇构造带)新太古代-古元古代时期的演化历史和构造模式有较大的争议(Zhao and Zhai,2013)。Zhao et al. (1999,2002,2005,2012)首次提出该孔兹岩带为一条古元古代陆-陆碰撞型构造带,孔兹岩带内的孔兹岩系岩石形成于被动大陆边缘型环境,是由其北部的阴山陆块和南部的鄂尔多斯陆块于~1950Ma 碰撞拼合并发生高级变质作用所形成的,阴山陆块内的新太古代-古元古代的闪长质-花岗质深成岩和基性火山岩形成于活动大陆边缘。然而,Kusky and Li (2003)则认为内蒙孔兹岩带是内蒙古-冀北造山带的一部分,而后者是在~2300Ma 由华北克拉通北缘与外来岛弧地体碰撞汇聚后,于1800 ~1900Ma 与另一陆块碰撞拼合而成的。此后,该研究者(Kusky et al.,2007,Kusky and Santosh,2009)又提出华北克拉通的内蒙古-冀北造山带与哥伦比亚超大陆在1850~1920Ma 发生碰撞,并发生高级变质作用。最近,Santosh et al. (2010,2012,2013)指出内蒙古缝合带(孔兹岩带)形成于大陆增生型环境,处于板块汇聚边缘,并认为区内一系列岩浆事件和变质事件是俯冲-增生的标志。Zhai and Santosh(2011,2013)则认为孔兹岩带与华北克拉通东部陆块的胶-辽-吉构造带的构造模式相似,应与陆内裂谷的开启和闭合有关,两者都经历了陆内裂谷作用并形成初始洋盆,随后经历了陆-陆俯冲碰撞导致洋盆闭合,形成中-高压麻粒岩相变质岩石甚至是超高温变质岩,最后在碰撞后折返抬升的过程,将这些高级变质岩石带至地壳浅部或是地表。

华北克拉通西北缘孔兹岩带中段乌拉山-大青山地区出露大面积孔兹岩系岩石,并保留多种典型的减压反应结构,例如:在石榴石周围形成堇青石的退变反应边结构。Cai et al. (2014)根据乌拉山-大青山地区富铝片麻岩的岩相学特征,划分出M1,M2,M3和M4四个变质演化阶段的矿物组合,并利用P-T 视剖面图限定出M1~M4变质阶段的温压条件分别为<780℃和<9kbar,840 ~880℃和9 ~11kbar,800 ~870℃和5.0 ~7.5kbar,<660℃和4.1 ~6.9kbar,经历了峰期麻粒岩相变质作用,并建立出近等温减压型顺时针的P-T 轨迹。前人对内蒙古孔兹岩带变泥质岩的变质作用研究也普遍得到了近一致的顺时针P-T 轨迹(Lu and Jin,1993;Liu et al.,1993;Yin,2010;周喜文等,2010;蔡佳等,2013a;Jiao et al.,2013a;Yin et al.,2014)。其中,部分研究者在孔兹岩带西段的贺兰山-千里山地区发现了以含蓝晶石+钾长石矿物组合为特征的高压泥质麻粒岩,进一步利用相平衡模拟建立出近等温减压型顺时针P-T 轨迹,峰期变质温压条件为792 ~805℃和10.2 ~11.2kbar(Yin,2010;周喜文等,2010;Yin et al.,2014)。Jiao et al. (2013a)对孔兹岩带东段的集宁小什字地区石榴石花岗岩进行了详细的变质作用研究,划分出了M1,M2和M3三个变质阶段,利用金红石Zr 温度计和P-T 视剖面手段综合限定各变质阶段的温压条件分别为820 ~850℃(最高可达950℃)和8.5 ~9.5kbar,850 ~865℃和7.4 ~7.6kbar,710 ~720℃和6.4 ~6.6kbar,同样得到了典型的近等温减压型的顺时针P-T 轨迹。此外,近年来一些研究者对大青山-乌拉山的东坡地区和土贵乌拉、和林格尔、土贵山等地区零星出露的超高温变质岩的变质演化、成因机制、同位素年代学等方面进行了深入研究(Santosh et al.,2006,2007a,b,2008,2009a,b,2012;Peng et al.,2010,2011,2012;Jiao and Guo,2011;Tsunogae et al.,2011;Guo et al.,2012;Liu et al.,2012),对于该区超高温变质岩所经历的P-T 轨迹样式仍存在不同认识,其中Santosh et al.(2009b)认为土贵乌拉超高温变质岩经历了逆时针的P-T轨迹(峰期变质温度>950℃),而Guo et al. (2012)则认为东坡超高温变质岩记录了顺时针的P-T 轨迹(峰期温度为910 ~980℃),然而,二者的P-T 轨迹均具有近等温减压的变质阶段。

有研究者认为这种近等温减压型的顺时针P-T 演化轨迹与地壳挤压增厚有关,反映了陆-陆碰撞造山过程中加厚下地壳折返至地表的动力学过程,显示出岩石经历的一系列构造-热事件(England and Thompson,1984;Thompson and England,1984;Condie et al.,1992;Brown,1993)。因此,上述对内蒙古孔兹岩带变泥质岩的变质作用研究获得的近等温减压型顺时针P-T 轨迹进一步支持了孔兹岩带的碰撞拼合模式(Zhao et al.,2005),即俯冲-碰撞作用造成陆壳的加厚,向下俯冲的加厚陆壳物质被埋深至下地壳并经历峰期中-高压麻粒岩相变质作用的改造,随后变质地壳发生折返抬升至地壳浅部。这一模式可以较好地解释变泥质岩如何从地表被带至下地壳后又折返至地表的构造演化过程以及伴随麻粒岩相变质作用的成因机制(Zhao et al.,2012)。

结合前人研究资料,乌拉山-大青山孔兹岩系岩石所记录的古元古代高级变质事件可能经历了陆-陆俯冲-碰撞和碰撞后折返抬升的造山过程,进一步支持了孔兹岩带的碰撞拼合模式(Zhao et al.,2005),表明华北克拉通西部的阴山陆块和鄂尔多斯陆块之间在~1950Ma 开始发生俯冲-碰撞作用,形成了古元古代的一条陆-陆碰撞构造带,普遍发生麻粒岩相变质的孔兹岩系岩石由此产生,并在~1860Ma 经历折返抬升至地壳浅部,即经历了减压的退变质过程。

8 结论

对乌拉山-大青山孔兹岩系岩石的岩相学特征、锆石内部结构分析和锆石U-Pb 年代学的综合研究,得出以下几点认识:

(1)乌拉山-大青山孔兹岩系岩石如夕线堇青石榴二长片麻岩保留了典型的减压反应结构,其碎屑锆石的年龄变化于2033 ~2502Ma 之间,主要分为三组年龄2400 ~2500Ma、~2300Ma 和2000 ~2100Ma,最大沉积时代应为~2000Ma;

(2)乌拉山-大青山孔兹岩系岩石的变质时代为1850 ~1950Ma,其年龄峰值主要集中在~1950Ma 和~1860Ma;

(3)乌拉山-大青山孔兹岩系岩石卷入了华北克拉通西部的古老陆块之间的碰撞造山作用过程中,其中~1950Ma代表了阴山陆块和鄂尔多斯陆块间发生初始的俯冲-碰撞作用的时间,并形成了古元古代的一条陆-陆碰撞构造带,即孔兹岩带,在此期间,孔兹岩带普遍经历了麻粒岩相变质作用;随后于~1860Ma 左右,孔兹岩带麻粒岩相变质岩石折返抬升至地壳浅部,并叠加了后期退变质作用的改造。

致谢 天津地质矿产研究所同位素实验室耿建珍老师在锆石的LA-ICP-MS U-Pb 定年测试过程中给予了指导和帮助;中国地质科学院地质研究所刘超辉博士和肖玲玲博士在野外提供了很大的帮助;吴春明教授和另一名匿名审稿人对本文提出了宝贵的修改意见;在此一并表示衷心感谢。

Bohlen SR. 1991. On the formation of granulites. Journal of Metamorphic Geology,9(3):223 -229

Brown M. 1993. P-T-t evolution of orogenic belts and the causes of regional metamorphism. Journal of the Geological Society,150(2):227 -241

Cai J,Liu PH,Liu FL,Liu JH,Wang F and Shi JR. 2013a. Genetic mineralogy and metamorphic evolution of Al-rich gneisses in the Shiguai area,Daqingshan-Wulashan metamorphic complex belt.Acta Petrologica Sinica,29 (2):437 - 461 (in Chinese with English abstract)Cai J,Liu FL,Liu PH,Shi JR and Liu JH. 2013b. Petrogenesis and metamorphic P-T conditions of garnet-spinel-biotite-bearing paragneiss in Danangou area,Daqingshan-Wulashan metamorphic complex belt. Acta Petrologica Sinica,29(7):2313 - 2328 (in Chinese with English abstract)

Cai J,Liu FL,Liu PH,Liu CH,Wang F and Shi JR. 2014.Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan Complex of the Khondalite Belt,North China Craton. Precambrian Research,241:161 -184

Cai J,Liu FL,Liu PH and Shi JR. 2014. Metamorphic P-T conditions and U-Pb dating of the sillimanite-cordierite-garnet paragneisses in Sanchakou,Jining area,Inner Mongolia. Acta Petrologica Sinica,30(2):472 -490 (in Chinese with English abstract)

Condie KC,Boryta MD,Liu JZ and Qian XL. 1992. The origin of khondalites:Geochemical evidence from the Archean to Early Proterozoic granulite belt in the North China craton. Precambrian Research,59(3 -4):207 -223

Condie KC. 1997. Contrasting sources for upper and lower continental crust:The greenstone connection. The Journal of Geology,105(6):729 -736

Dan W,Li XH,Guo JH,Liu Y and Wang XC. 2012. Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China Craton:Juvenile crustal materials deposited in active or passive continental margin?Precambrian Research,222 -223:143-158

Dong CY,Liu DY,Li JJ,Wan YS,Zhou HY,Li CD,Yang YH and Xie LW. 2007. Palaeoproterozoic Khondalite Belt in the western North China Craton:New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area. Chinese Science Bulletin,52(21):2984 -2994

Dong CY,Liu DY,Wan YS,Xu ZY,Liu ZH and Yang ZS. 2009.Crustally derived carbonatite from the Daqinshan area:Zircon features and SHRIMP dating. Acta Geologica Sinica,83(3):388 -398 (in Chinese with English abstract)

Dong CY,Wan YS,Xu ZY,Liu DY,Yang ZS,Ma MZ and Xie HQ.2013. SHRIMP zircon U-Pb dating of Late Paleoproterozoic kondalites in the Daqing Mountains area on the North China Craton.Science China (Earth Sciences),56(1):115 -125

Dong CY,Wan YS,Wilde SA,Xu ZY,Ma MZ,Xie HQ and Liu DY.2014. Earliest Paleoproterozoic supracrustal rocks in the North China Craton recognized from the Daqingshan area of the Khondalite Belt:Constraints on craton evolution. Gondwana Research,25(4):1535-1553

England PC and Thompson AB. 1984. Pressure-temperature-time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology,25(4):894 -928

Geng JZ,Zhang J,Li HK,Li HM,Zhang YQ and Hao S. 2012. Tenmicron-sized zircon U-Pb dating using LA-MC-ICP-MS. Acta Geoscientia Sinica,33(6):877 - 884 (in Chinese with English abstract)

Guo JH,Peng P,Chen Y,Jiao SJ and Windley BF. 2012. UHT sapphirine granulite metamorphism at 1. 93 ~1. 92Ga caused by gabbronorite intrusions:Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research,222 -223:124 -142

Jiao SJ and Guo JH. 2011. Application of the two-feldspar geothermometer to ultrahigh-temperature (UHT) rocks in the Khondalite belt,North China craton and its implications. American Mineralogist,96(2 -3):250 -260

Jiao SJ,Guo JH,Harley SL and Windley BF. 2013a. New constraints from garnetite on the P-T path of the Khondalite Belt:Implications for the tectonic evolution of the North China Craton. Journal of Petrology,54(9):1725 -1758

Jiao SJ,Guo JH,Harley SL and Peng P. 2013b. Geochronology and trace element geochemistry of zircon,monazite and garnet from the garnetite and/or associated other high-grade rocks:Implications for Palaeoproterozoic tectonothermal evolution of the Khondalite Belt,North China Craton. Precambrian Research,237:78 -100 Jin W. 1989. Geological evolution and metamorphic dynamics of Early Precambrian basement rocks along the northern boundary (central section) of the North China Craton. Ph. D. Dissertation.Changchun:Changchun College of Geology (in Chinese with English summary)

Jin W,Li SX and Liu XS. 1991. A study on characteristics of Early Precambrian high-grade metamorphic rock series and their metamorphic dynamics. Acta Petrologica Sinica,(4):27 -35 (in Chinese with English abstract)

Jin W and Li SX. 1996. PTt path and crustal thermodynamic model of Late Archean-Early Proterozoic high-grade metamorphic terrain in North China. Acta Petrologica Sinica,12(2):208 - 221 (in Chinese with English abstract)

Kusky TM and Li JH. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences,22(4):383-397

Kusky TM,Li JH and Santosh M. 2007. The Paleoproterozoic North Hebei orogen:North China Craton’s collisional suture with the Columbia supercontinent. Gondwana Research,12(1 -2):4 -28

Kusky TM and Santosh M. 2009. The Columbia connection in North China. Geological Society,London,Special Publications,323(1):49 -71

Li JH,Qian XL and Liu SW. 2000. Geochemistry of khondalites from the central portion of North China craton (NCC):Implications for the continental cratonization in the Neoarchean. Science in China(Series D),43(3):253 -265

Li SX,Xu XC,Liu XS and Sun YD. 1994. Early Precambrian Geology of Wulashan Region,Inner Mongolia. Beijing:Geological Publishing House,1 -78 (in Chinese)

Li XP, Yang ZY, Zhao GC, Grapes R and Guo JH. 2011.Geochronology of khondalite-series rocks of the Jining Complex:Confirmation of depositional age and tectonometamorphic evolution of the North China craton. International Geology Review,53(10):1194 -1211

Liu FL,Shen QH,Geng YS,Xu XC and Ma R. 1998. Genetic relationship of metamorphic reaction and dehydration-melting:Example from Al-rich gneiss of khondalite series on the border of Jin(Shanxi Province)-Inner Mongolia. Science in China (Series D),41(1):49 -56

Liu FL,Shen QH and Zhao ZR. 2002. Evolution of mineral assemblages of khondalite series in the process of prograde metamorphism,southeastern Inner Mongolia:Evidence from mineral inclusions in zircons. Geological Bulletin of China,21(2):75 -78 (in Chinese with English abstract)

Liu PH,Liu FL,Cai J,Liu JH,Shi JR and Wang F. 2013.Geochronological and geochemical study of the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex,the central Khondalite Belt in the North China Craton. Acta Petrologica Sinica,29(2):462 -484 (in Chinese with English abstract)

Liu PH,Liu FL,Liu CH,Liu JH,Wang F,Xiao LL,Cai J and Shi JR.2014. Multiple mafic magmatic and high-grade metamorphic events revealed by zircons from meta-mafic rocks in the Daqingshan-Wulashan Complex of the Khondalite Belt,North China Craton.Precambrian Research,246:334 -357

Liu SJ,Tsunogae T,Li WS,Shimizu H,Santosh M,Wan YS and Li JH. 2012. Paleoproterozoic granulites from Heling’er:Implications for regional ultrahigh-temperature metamorphism in the North China Craton. Lithos,148:54 -70

Liu SJ,Dong CY,Xu ZY,Santosh M,Ma MZ,Xie HQ,Liu DY and Wan YS. 2013. Palaeoproterozoic episodic magmatism and highgrade metamorphism in the North China Craton:Evidence from SHRIMP zircon dating of magmatic suites in the Daqingshan area.Geological Journal,48(5):429 -455

Liu XS,Jin W,Li SX and Xu XC. 1993. Two types of Precambrian high-grade metamorphism,Inner Mongolia, China. Journal of Metamorphic Geology,11(4):499 -510

Liu XS. 1994. Characteristics of basement reworked complex and implication for Daqingshan orogenic belt. Acta Pertologica Sinica,10(4):413 -426 (in Chinese with English abstract)

Liu XS. 1996. Progressive metamorphic genesis of Archean granulites in Central Nei Mongol. Acta Petrologica Sinica,12(2):287 -298 (in Chinese with English abstract)

Lu LZ. 1991. Metamorphic P-T-t path of the Archean granulite-facies terrains in Jining area,Inner Mongolia and its tectonic implications.Acta Petrologica Sinica,(4):1 - 12 (in Chinese with English abstract)

Lu LZ,Jin SQ,Xu XC and Liu FL. 1992. The Petrogenesis and Orebearing Potential of Precambrian Khondalite Series in Southeast Inner Mongolia. Changchun:Jilin Science and Technology Press,4 -121(in Chinese)

Lu LZ and Jin SQ. 1993. P-T-t paths and tectonic history of an Early Precambrian granulite facies terrane,Jining district,south-east Inner Mongolia,China. Journal of Metamorphic Geology,11(4):483-498

Lu LZ,Xu XC and Liu FL. 1996. The Early Precambrian Khondalite Series in the North China. Changchun:Changchun Publishing House,16 -118 (in Chinese)

Ma MZ,Wan YS,Santosh M,Xu ZY,Xie HQ,Dong CY,Liu DY and Guo CL. 2012. Decoding multiple tectonothermal events in zircons from single rock samples:SHRIMP zircon U-Pb data from the Late Neoarchean rocks of Daqingshan,North China Craton. Gondwana Research,22(3 -4):810 -827

Peng P,Guo JH,Zhai MG and Bleeker W. 2010. Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton: Evidence of crust-mantle interaction.Precambrian Research,183(3):635 -659

Peng P,Guo JH,Windley BF and Li XH. 2011. Halaqin volcanosedimentary succession in the central-northern margin of the North China Craton:Products of Late Paleoproterozoic ridge subduction.Precambrian Research,187(1 -2):165 -180

Peng P,Guo JH,Zhai MG,Windley BF,Li TS and Liu F. 2012.Genesis of the Hengling magmatic belt in the North China Craton:Implications for Paleoproterozoic tectonics. Lithos,148:27 -44

Qian XL and Li JH. 1999. Discovery of Neoarchean unconformity and its implication for continental cratonization of North China craton.Science in China (Series D),42(4):399 -407

Sandiford M and Powell R. 1986. Deep crustal metamorphism during continental extension:Modern and ancient examples. Earth and Planetary Science Letters,79(1 -2):151 -158

Santosh M,Sajeev K and Li JH. 2006. Extreme crustal metamorphism during Columbia supercontinent assembly:Evidence from North China Craton. Gondwana Research,10(3 -4):256 -266

Santosh M,Tsunogae T,Li JH and Liu SJ. 2007a. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton:Implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research,11(3):263 -285

Santosh M,Wilde SA and Li JH. 2007b. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton:Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research,159(3 -4):178 -196

Santosh M,Tsunogae T,Ohyama H,Sato K,Li JH and Liu SJ. 2008.Carbonic metamorphism at ultrahigh-temperatures:Evidence from North China Craton. Earth and Planetary Science Letters,266(1 -2):149 -165

Santosh M,Wan YS,Liu DY,Dong CY and Li JH. 2009a. Anatomy of zircons from an ultrahot orogen:The amalgamation of the North China craton within the supercontinent Columbia. The Journal of Geology,117(4):429 -443

Santosh M, Sajeev K, Li JH, Liu SJ and Itaya T. 2009b.Counterclockwise exhumation of a hot orogen:The Paleoproterozoic ultrahigh-temperature granulites in the North China Craton. Lithos,110(1 -4):140 -152

Santosh M,Zhao DP and Kusky TM. 2010. Mantle dynamics of the Paleoproterozoic North China Craton:A perspective based on seismic tomography. Journal of Geodynamics,49(1):39 -53

Santosh M,Liu SJ,Tsunogae T and Li JH. 2012. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton:Implications for tectonic models on extreme crustal metamorphism.Precambrian Research,222 -223:70 -106

Santosh M,Liu DY,Shi YL and Liu SJ. 2013. Paleoproterozoic accretionary orogenesis in the North China Craton:A SHRIMP zircon study. Precambrian Research,227:29 -54

Thompson AB and England PC. 1984. Pressure-temperature-time paths of regional metamorphism II. Their inference and interpretation using mineral assemblages in metamorphic rocks. Journal of Petrology,25(4):929 -955

Tsunogae T,Liu SJ,Santosh M,Shimizu H and Li JH. 2011. Ultrahightemperature metamorphism in Daqingshan,Inner Mongolia Suture Zone,North China Craton. Gondwana Research,20(1):36 -47

Wan YS,Song B,Liu DY,Wilde SA,Wu JS,Shi YR,Yin XY and Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:Evidence for a major Late Palaeoproterozoic tectonothermal event.Precambrian Research,149(3 -4):249 -271

Wan YS,Liu DY,Dong CY,Xu ZY,Wang ZJ,Wilde SA,Yang YH,Liu ZH and Zhou H. 2009. The Precambrian Khondalite Belt in the Daqingshan area,North China Craton:Evidence for multiple metamorphic events in the Palaeoproterozoic era. Geological Society,London,Special Publications,323(1):73 -97

Wan YS,Xu ZY,Dong CY,Nutman A,Ma MZ,Xie HQ,Liu SJ,Liu DY,Wang HC and Cu H. 2013a. Episodic Paleoproterozoic(~2.45,~1.95 and ~1.85Ga)mafic magmatism and associated high temperature metamorphism in the Daqingshan area,North China Craton:SHRIMP zircon U-Pb dating and whole-rock geochemistry.Precambrian Research,224:71 -93

Wan YS,Xie HQ,Yang H,Wang ZJ,Liu DL,Kröner A,Wilde SA,Geng YS,Sun LY,Ma MZ,Liu SJ,Dong CY and Du LL. 2013b.Is the Ordos Block Archean or Paleoproterozoic in age?Implications for the Precambrian evolution of the North China Craton. American Journal of Science,313(7):683 -711

Wang F, Li XP, Chu H and Zhao GC. 2011. Petrology and metamorphism of khondalites from the Jining complex,North China craton. International Geology Review,53(2):212 -229

Wells PRA. 1980. Thermal models for the magmatic accretion and subsequent metamorphism of continental crust. Earth and Planetary Science Letters,46(2):253 -265

Whitney DL and Evans BW. 2010. Abbreviations for names of rockforming minerals. American Mineralogist,95(1):185 -187

Wu CH,Li HM,Zhong CT and Chen QA. 1998. The ages of zircon and rutile (cooling)from khondalite in Huangtuyao,Inner Mongolia.Geological Review,44(6):618 - 626 (in Chinese with English abstract)

Wu CH,Sun M,Li HM,Zhao GC and Xia XP. 2006. LA-ICP-MS U-Pb zircon ages of the khondalites from the Wulashan and Jining highgrade terrain in northern margin of the North China Craton:Constraints on sedimentary age of the khondalite. Acta Petrologica Sinica,22(11):2639 -2654 (in Chinese with English abstract)

Xia XP,Sun M,Zhao GC and Luo Y. 2006a. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex,North China Craton and its tectonic significance. Precambrian Research,144(3 -4):199 -212

Xia XP,Sun M,Zhao GC,Wu FY,Xu P,Zhang JP and Luo Y.2006b. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites:Constraints on the evolution of the Ordos Terrane,Western Block of the North China Craton. Earth and Planetary Science Letters,241(3 -4):581 -593

Xia XP,Sun M,Zhao GC,Wu FY,Xu P,Zhang J and He YH. 2008.Paleoproterozoic crustal growth in the Western Block of the North China Craton:Evidence from detrital zircon Hf and whole rock Sr-Nd isotopic compositions of the khondalites from the Jining Complex.American Journal of Science,308(3):304 -327

Xu ZY,Liu ZH,Yang ZS,Wu XW and Chen XF. 2007. Structure of metamorphic strata of the Khondalite Series in the Daqingshan-Wulashan area, central Inner Mongolia, China, and their geodynamic implications. Geological Bulletin of China,26(5):526-536 (in Chinese with English abstract)

Yang ZS,Xu ZY and Liu ZH. 2000. Khondalite event and Archean crust structure evolvement. Progress in Precambrian Research,23(4):206 -212 (in Chinese with English abstract)

Yin CQ,Zhao GC,Sun M,Xia XP,Wei CJ,Zhou XW and Leung WH.2009. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Research,174(1 -2):78 -94

Yin CQ. 2010. Metamorphism of the Helanshan-Qianlishan Complex and its implications for tectonic evolution of the Khondalite Belt in the Western Block,North China Craton. Ph. D. Dissertation. Hong Kong:The University of Hong Kong

Yin CQ,Zhao GC,Guo JH,Sun M,Xia XP,Zhou XW and Liu CH.2011. U-Pb and Hf isotopic study of zircons of the Helanshan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos,122(1 -2):25-38

Yin CQ,Zhao GC,Wei CJ,Sun M,Guo JH and Zhou XW. 2014.Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex:Constraints on the tectonic evolution of the Khondalite Belt in the North China Craton. Precambrian Research,242:172 -186

Yu HF. 1994. High temperature deformational-metamorphic zone and Early Proterozoic inner continental orogeny. Ph. D. Dissertation.Changchun:Changchun College of Geology (in Chinese with English summary)

Zhai MG,Bian AG and Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during Late Palaeoproterozoic and Meso-Proterozoic.Science in China (Series D),43(Suppl.1):219 -232

Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton:A synoptic overview. Gondwana Research,20(1):6 -25

Zhai MG and Santosh M. 2013. Metallogeny of the North China Craton:Link with secular changes in the evolving Earth. Gondwana Research,24(1):275 -297

Zhao GC,Wilde SA,Cawood PA and Lu LZ. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics,310(1 -4):37 -53

Zhao GC,Cawood PA,Wilde SA and Sun M. 2002. Review of global 2.1 ~1.8Ga orogens:Implications for a pre-Rodinia supercontinent.Earth-Science Reviews,59(1 -4):125 -162

Zhao GC,Sun M and Wilde SA. 2003. Major tectonic units of the North China Craton and their Paleoproterozoic assembly. Science in China(Series D),46(1):23 -38

Zhao GC,Sun M,Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research,136(2):177 -202

Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton:Key issues and discussion.Acta Petrologica Sinica,25(8):1772 - 1792 (in Chinese with English abstract)

Zhao GC,Wilde SA. Guo JH,Cawood PA,Sun M and Li XP. 2010.Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research,177(3 -4):266 -276

Zhao GC,Cawood PA,Li SZ,Wilde SA,Sun M,Zhang J,He YH and Yin CY. 2012. Amalgamation of the North China Craton:Key issues and discussion. Precambrian Research,222 -223:55 -76

Zhao GC and Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research,23(4):1207 -1240

Zhou XW and Geng YS. 2009. Metamorphic age of the khondalite series in the Helanshan region:Constraints on the evolution of the western block in the North China Craton. Acta Petrologica Sinica,25(8):1843 -1852 (in Chinese with English abstract)

Zhou XW,Zhao GC and Geng YS. 2010. Helanshan high pressure pelitic granulite:Petrologic evidence for collision event in the western block of the North China Craton. Acta Petrologica Sinica,26(7):2113 -2121 (in Chinese with English abstract)

附中文参考文献

蔡佳,刘平华,刘福来,刘建辉,王舫,施建荣. 2013a. 大青山-乌拉山变质杂岩带石拐地区富铝片麻岩成因矿物学与变质演化. 岩石学报,29(2):437 -461

蔡佳,刘福来,刘平华,施建荣,刘建辉. 2013b. 大青山-乌拉山变质杂岩带大南沟地区含榴尖晶黑云钾长片麻岩成因及其形成的P-T 条件. 岩石学报,29(7):2313 -2328

蔡佳,刘福来,刘平华,施建荣. 2014. 内蒙古集宁三岔口地区夕线堇青石榴二长片麻岩变质作用及年代学研究. 岩石学报,30(2):472 -490

董春艳,刘敦一,万渝生,徐仲元,刘正宏,杨振升. 2009. 大青山地区古元古代壳源碳酸岩:锆石特征及SHRIMP 定年. 地质学报,83(3):388 -398

耿建珍,张健,李怀坤,李惠民,张永清,郝爽. 2012. 10μm 尺度锆石U-Pb 年龄的LA-MC-ICP-MS 测定. 地球学报,33(6):877-884

金巍. 1989. 华北陆台北缘(中段)早前寒武纪地质演化及其变质动力学研究. 博士学位论文. 长春:长春地质学院

金巍,李树勋,刘喜山. 1991. 内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学. 岩石学报,(4):27 -35

金巍,李树勋. 1996. 华北晚太古代-早元古代高级变质区的变质PT-t 轨迹及其地壳热动力学演化模式. 岩石学报,12(2):208-221

李树勋,徐学纯,刘喜山,孙德育. 1994. 内蒙古乌拉山区早前寒武纪地质. 北京:地质出版社,1 -78

刘福来,沈其韩,赵子然. 2002. 内蒙古东南部孔兹岩系进变质过程矿物组合演化——来自锆石中矿物包裹体的证据. 地质通报,21(2):75 -78

刘平华,刘福来,蔡佳,刘建辉,施建荣,王舫. 2013. 华北克拉通孔兹岩带中段大青山-乌拉山变质杂岩立甲子基性麻粒岩年代学及地球化学研究. 岩石学报,29(2):462 -484

刘喜山. 1994. 大青山造山带中基底再造杂岩的特征及其指示意义.岩石学报,10(4):413 -426

刘喜山. 1996. 内蒙古中部太古代麻粒岩递增变质成因. 岩石学报,12(2):287 -298

卢良兆. 1991. 内蒙集宁地区太古宙麻粒岩相变质作用的PTt 轨迹及其大地构造意义. 岩石学报,(4):1 -12

卢良兆,靳是琴,徐学纯,刘福来. 1992. 内蒙古东南部早前寒武纪孔兹岩系成因及其含矿性. 长春:吉林科学技术出版社,4-121

卢良兆,徐学纯,刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春:长春出版社,16 -118

吴昌华,李惠民,钟长汀,陈强安. 1998. 内蒙古黄土窑孔兹岩系的锆石与金红石年龄研究. 地质论评,44(6):618 -626

吴昌华,孙敏,李惠民,赵国春,夏小平. 2006. 乌拉山-集宁孔兹岩锆石激光探针等离子质谱(LA-ICP-MS)年龄——孔兹岩沉积时限的年代学研究. 岩石学报,22(11):2639 -2654

徐仲元,刘正宏,杨振升,吴新伟,陈晓峰. 2007. 内蒙古中部大青山-乌拉山地区孔兹岩系的变质地层结构及动力学意义. 地质通报,26(5):526 -536

杨振升,徐仲元,刘正宏. 2000. 孔兹岩系事件与太古宙地壳构造演化. 前寒武纪研究进展,23(4):206 -212

于海峰. 1994. 大青山地区高温变形变质带与早元古代陆内造山作用. 博士学位论文. 长春:长春地质学院

赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报,25(8):1772 -1792

周喜文,耿元生. 2009. 贺兰山孔兹岩系的变质时代及其对华北克拉通西部陆块演化的制约. 岩石学报,25(8):1843 -1852

周喜文,赵国春,耿元生. 2010. 贺兰山高压泥质麻粒岩——华北克拉通西部陆块拼合的岩石学证据. 岩石学报,26(7):2113-2121

猜你喜欢

大青山黑云片麻岩
辽宁红透山铜锌矿床含矿岩系地球化学特征及找矿指示
黑云白云
巍巍大青山
大青山颂
大青山油松人工林林分密度对其生长指标的影响
密怀隆起
土石混合介质碎石性质对土壤入渗和产流过程影响
呼和浩特市大青山野生动物园景观调查分析
男妖女妖知多少