APP下载

基于全变分理论的红外图像背景抑制

2015-03-28张贵榕林再平黄剑斌

红外技术 2015年2期
关键词:残差灰度红外

张贵榕,安 玮,林再平,朱 然,黄剑斌



基于全变分理论的红外图像背景抑制

张贵榕,安 玮,林再平,朱 然,黄剑斌

(国防科技大学 电子科学与工程学院,湖南 长沙 410073)

针对红外单帧图像的小目标检测问题,提出基于全变分理论的背景杂波抑制的改进算法。构建以能量函数极值最优化为主体的全变分模型,结合自适应步长和非单调性线搜索条件,形成改进的全变分算法,在红外图像背景抑制方面取得良好效果。经过仿真实验测试几种算法的抑制效能,分析结果表明改进算法的检测性能较传统算法在杂波抑制、减少边缘虚警等方面均有优势,能够满足实时性要求,且适用于复杂背景的工程实现。

全变分;背景抑制;红外小目标;目标检测

0 引言

由于阳光强反射和地表热发射对云层尤其是高空卷云的大气辐射特性有明显的影响[1],红外预警图像多呈现分布不均匀、灰度起伏的亮背景,这对红外弱小目标的检测构成了强干扰。加之光学系统存在点扩散现象,目标能量信息往往被“闪烁”,大大降低信噪比,进一步增加背景杂波抑制的难度。这样就需要有高性能的图像预处理方法来保证和实现红外弱小目标检测的质量。所以,红外弱小目标检测研究的关键就在于如何高效能的实现复杂背景的杂波抑制。

传统的背景抑制算法指的是针对图像进行滤波去噪处理的方法,主要包括空域和频域滤波等。维纳滤波、高通滤波[2]和均值滤波是3种比较常见的传统算法。其中维纳滤波抑制加性高斯噪声效果明显,但在处理过程中对目标强度的削弱也是非常明显的,往往会造成抑制后目标性噪比较低的后果。高通滤波适用的图像要求背景低频且变化缓慢、目标是高频分量的像素点的情况,则有较好的背景抑制效果;均值滤波对于噪声和边缘细节的平滑效果都比较明显,因此面对一些复杂背景的图像,两者都无法达到理想的效果。

全变分模型针对特定的图像处理应用,从物理概念上引入能量函数,对结构化图像的一些性质做出假设,建立相应的约束条件,从而转变为变分问题,通过相关基础理论可以进行极值求解的理论证明和数值实现。大量图像重建和图像复原应用实例已经证明,全变分理论对噪声抑制和边缘细节信息保留都存在优势。因此,本文将改进的全变分模型应用于复杂背景杂波的红外单帧图像的背景抑制。

1 背景抑制

一般的背景抑制算法过程通常是先对红外图像进行预处理得到预测图像,原始图像和预测图像进行差值计算获取残差图像,然后对残差图像进行处理获取检测结果。在红外图像中,背景占据着绝大部分面积,且存在相当的连续性,而红外目标则通常表现为图像中的异常点,两者在统计特征上存在明显的差异[3]。因此,近些年来,利用丰富的图像背景信息进行图像背景重建,进而达到背景抑制的算法越来越受到广大研究人员的关注。而这种以背景重建为核心思想的红外弱小目标检测算法即背景预测。

背景预测的基本思想可以归结如下:同属一图像背景的任意一点的灰度值一定可以通过其周边的点进行预测。也就是说,如果一个像素点与其相邻的点同属于背景,其灰度值与相邻点的灰度值具有很强的相关性;若其相邻的点为目标点,则其灰度值与相邻点的灰度值相关性就相对比较弱。而背景预测方法就是利用像素点之间的如此差异特性,通过背景重建进而达到目标和背景分离的目的。

2 全变分

2.1 ROF模型

1992年,Rudin、Osher和Fatemi等提出的全变分的概念模型[4](ROF):

全变分算法是一种确定性的方法,它引入了梯度能量函数,实现了将图像背景预测问题转变成极值最优化求解问题。从全变分的概念模型来看,其所描述的是整体能量函数和能量函数梯度值的数学关系,其中全变分的大小由能量函数梯度值所决定。对于一幅红外图像,其背景上的像素点之间的关系也完全可以用该模型来描述。首先,同属背景的像素点是具有一定连续性,且具有较强的相关性。其次,像素点之间的梯度值大小反映的是背景起伏变化的剧烈程度。在此先验条件下,估计背景的全变分大小就可以作为目标函数的约束项,实现对目标函数极值最优化求解,即背景估计。因此规整后的目标函数为:

上式中的第一项为正则项,也是约束项,其大小反映的是估计背景的连续性与平滑度,第二项为逼近项,其大小反映的是估计背景与观测图像的逼近程度。二者不仅满足背景估计的相似性要求,而且也符合红外小目标检测对于估计背景连续性的要求。而且,当观测图像存在不连续性的时候,全变分模型的约束项能够在估计图像中很好的保护边缘和细节信息,这也是其最大的优点。

2.2 Chambolle投影算法模型

2004年,A. Chambolle在文献[5]上提出了一种基于ROF模型的投影算法,目标函数的最小化模型如下:

而的离散全变分就可以定义为:

A. Chambolle证明了公式(4)中的定义是全变分的离散化表示,其连续形式的标准定义为:

而()的Legendre-Fenchel变换[6]为:

是闭凸集的特征函数,即:

其中是下式集合的闭包:

则连续形式的最优化问题表示为:

¶是函数的偏微分,定义为满足的集合:

0=(/) (14)

整理得到:

因此,最小化问题的离散就可以表示为:

问题的求解公式可表达为:

=-div(18)

2.3 本文全变分改进算法流程

Chambolle算法在计算简便性和快速收敛性上具有很大的优势,但是在一些大数据优化问题上无法保证全局的快速收敛,甚至是出现病态的情况。这并不符合红外小目标检测的实际情况需要。因此参考文献[7]提出的基于Chambolle算法的非单调性投影算法模型,结合Barzilai-Borwein步长[8]和非单调性线搜索流程[9]应用于复杂背景的红外图像小目标检测问题中,能够同时满足快速收敛和全局收敛的要求,而且符合预警红外图像大规模数据优化的实时要求。

公式(17)的最小化问题的解可表达为:

=-div即=-=div(19)

投影算法中的Barzilai-Borwein步长的迭代格式[10]可表达为:

其中+1可以有以下2种选择:

为保证算法收敛性,结合非单调性线性搜索选择Barzilai-Borwein时间步长满足:

其中Î(0,1),(0)=0, 0≤()≤min[(-1)+1,],>0,则本文采用:

下面设置迭代终止条件[11]:

本文改进算法的步骤描述如下:

步骤1:初始化;

步骤2:各像素点进行迭代运算;

步骤4:迭代结束,输出结果div。

在实际应用中,面对不同的观测图像,针对不同的应用需要,本文改进算法只需要调整参数,这不仅大大缩短了调整时间,而且大大提高了复杂度高的红外图像背景抑制的鲁棒性。通过大量实验数据测试分析,进一步反映了该算法在获取高质量的背景抑制残差结果和算法实现时间方面具有明显优势,这对于工程应用具有很重大的实际意义。

3 实验结果与分析

仿真实验采用红外仿真图像中截取出的512×512相对复杂的云层背景区域,进行本文算法和其他3种传统算法的性能测试比较。为了衡量算法的检测性能,实验中将采用信噪比(SNR)、信噪比增益(ISNR)、对比度(SCR)、对比度增益(ISCR)、背景抑制因子(BSF)等5个指标[12]来说明算法抑制复杂背景、增强目标信号的性能。

3.1 本算法性能分析

实验采用的原始背景图像是一幅复杂的红外云层背景,起伏变化明显,个别区域还有云层亮反射带来的高灰度值,但是总体上仍具备一定程度的连续性。观测图像受噪声影响较大,观测图像背景变化剧烈,单从观测图像甚至无法分辨目标信号,这给背景抑制和目标检测工作带来了难度。

图1显示的是利用本文算法进行背景抑制的具体效果对比视图(参数=50000)。图1所示为:利用本文算法得到的背景估计,在边缘信息保留方面有很好的效果,使得在背景抑制时能够准确地对消观测图像中的背景杂波,有效降低由于边缘产生的大量虚警。背景抑制残差中,目标信号得到较好的保护,实现了目标和背景的分离,而且背景残差的统计概率分布与理想分布相似程度高(图1(b)右下小图中包络轮廓为理想概率分布,内部为背景残差的统计概率分布直方图),不仅符合全变分滤波模型的理论,而且有利于下一步的阈值分割。

接下来讨论的是参数的变化对背景抑制效果的影响。图2(a)第一行显示的是权衡参数取值为100、1000、10000、100000时(取值根据噪声强度和图像大小,确保满足≤1/8,保证投影算法的收敛性的实现,在文献[5]中对此得以证明)得到的背景估计图像可以看出,越大估计图像越平滑,滤波除噪效果越显著,与2.1中的理论分析相符合。图2(a)第二行显示的是参数上述对应取值所得到的背景抑制残差灰度三维视图,从图中可以看出当参数取值偏小时,允许背景起伏程度更大,目标处的灰度值信息被判断为变化起伏剧烈的背景而算入估计背景当中,在背景对消之后,残差中的目标信号能量被大大削弱,没有能够达到目标与背景杂波的可分的预期目的。随着取值逐步增大,对目标点处的灰度值与邻域连续性要求越来越高,目标处信息逐渐被算入抑制残差内,于是背景估计中边缘越来越平滑,抑制残差中目标信息越来越多。然而并不是一味地加大的值,效果越好,如图2(b)中所示,当参数达到一定数值时,目标处信噪比和对比度值都趋于稳定值。如若再增大,估计背景将出现失真,符合2.1全变分定义中的权值参数的物理意义。

图1 本文算法的效果视图

Fig 2 Background rejection results ofas different numerical

3.2 与其他算法对比分析

图4(a)和(c)是两幅灰度值呈现不同程度剧烈变化的背景云图。通过针对两幅不同类型的背景原图进行各个算法的滤波抑制,得到(b)和(d)的不同背景抑制残差。从抑制残差结果来看,本文算法对于两种不同起伏变化的云层背景图像,抑制效果较之其他3种传统算法都有一定的优势,尤其在边缘信息保留方面,本文算法大大降低了云层边缘虚警目标出现的概率,从表1的指标中可以看出,本算法在信噪比增益和对比度增益方面都不逊色于其他算法,并且本算法的抑制因子远优于其他算法,则说明了抑制后目标区域内背景要更平稳,虚警点更少。

图3 A. Chambolle算法和本文算法收敛性比较

表1 图A1、A2各算法的抑制指标

4 结束语

本文基于Chambolle算法的非单调性全变分模型背景抑制算法在进行背景估计时,能够充分利用观测数据,能够较好地保留边缘信息,在背景抑制中有效避免了云层边缘易产生大量虚警的问题。针对背景抑制残差的统计特性进行分析,其概率分布基本符合理想的高斯分布,这一特性非常有利于背景抑制后进行阈值分割时门限的选取以及虚警率等相关指标的分析,而且引入自适应步长,降低了参数调整的时间,有效改善算法快速收敛性,进一步满足了面向工程的时效性要求。此外通过相关仿真测试对比,针对各性能指标进行,验证了算法的可行性和有效性。然而在红外弱小目标检测的工程应用中,仍然有很多具体的实际困难需要克服,这就对复杂背景下的抑制算法如何更好的结合实际工程应用提出了更多更高的要求。

[1] 王攀, 易凡, 陶金, 等. 卷云在红外波段辐射传输特性模拟计算[J]. 红外技术, 2014, 36(1): 63-67.

[2] 侯洁, 辛云宏. 基于高通滤波和图像增强的红外小目标检测方法[J]. 红外技术, 2013, 35(5): 279-284.

[3] 杜小平, 刘明, 夏鲁瑞, 等. 基于光谱角累加的高光谱图像异常检测算法[J]. 中国光学, 2013, 6(3): 325-331.

[4] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]., 1992, 60: 259-268.

[5] Chambolle A. An algorithm for total variation minimization and applications[J]., 2004, 20(1-2): 89-97.

[6] R Tyrrell Rockafellar.[M]. Princeton University Press, 1997.

[7] Yu G, Li Q, Yu H. On nonmonotone Chambolle gradient projection algorithms for total variation image restoration[J]., 2009, 35(2): 143-154.

[8] Barzilai J, Borwein J M. Two-point step size gradient methods[J]., 1988, 8(1): 141-148.

[9] Dai Y H, Fletcher R. Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming[J]., 2005, 100(1): 21-47.

[10] 毕亚倩, 刘新为. 求解界约束优化的一种新的非单调谱投影梯度法[J] . 计算数学, 2013, 35(4): 419-430.

[11] 钱姗姗, 黄静, 马建华, 等. 基于投影数据非单调性全变分恢复的低剂量CT重建[J]. 电子学报, 2011, 39(7): 1702-1707.

[12] 李凡. 复杂背景抑制及弱小目标检测算法研究[D]. 西安: 西安电子科技大学, 2010.

[13] 朱然, 安玮, 龙云利, 等. 一种基于全变分理论的红外背景杂波抑制算法[J]. 航空电子对抗, 2013, 29(5): 30-31.

Infrared Background Clutter Suppression Based on Total Variation Theory

ZHANG Gui-rong,AN Wei,LIN Zai-ping,ZHU Ran,HUANG Jian-bin

(,,410073,)

An improved algorithm of background clutter suppression based on total variation theory is proposed for infrared small target detection in a single frame image under complicated background. Combined with adaptive step size and non-monotone line search condition, the improved model whose main body is an optimization problem of energy function can achieve good results for background clutter suppression of infrared image. The simulation results about inhibition efficiency show that such method is remarkably improved compared with traditional methods in cluttering suppression and reducing false-alarm on edges. It can not only satisfy real-time requirement, but also its implementation is suitable for engineering fulfillment of infrared image under complicated background.

total variation,background suppression,infrared small target,target detection

TN911.73

A

1001-8891(2015)02-0147-07

2014-10-22;

2014-11-24 .

张贵榕(1987-),男,福建福州,硕士研究生,主要方向为空间信息获取及处理技术。E-mail:yunkai34@qq.com。

猜你喜欢

残差灰度红外
采用改进导重法的拓扑结构灰度单元过滤技术
基于双向GRU与残差拟合的车辆跟驰建模
网红外卖
闪亮的中国红外『芯』
Bp-MRI灰度直方图在鉴别移行带前列腺癌与良性前列腺增生中的应用价值
基于残差学习的自适应无人机目标跟踪算法
基于递归残差网络的图像超分辨率重建
TS系列红外传感器在嵌入式控制系统中的应用
基于最大加权投影求解的彩色图像灰度化对比度保留算法
基于快速递推模糊2-划分熵图割的红外图像分割