超强激光功率密度对等离子体中自生磁场和电子热传导的影响
2015-03-23毛建景张凯萍郝东山
毛建景,张凯萍,郝东山
(郑州工业应用技术学院信息工程学院,新郑 451150)
超强激光功率密度对等离子体中自生磁场和电子热传导的影响
毛建景,张凯萍,郝东山
(郑州工业应用技术学院信息工程学院,新郑 451150)
应用多光子非线性康普顿散射模型、3维粒子模拟模型和数值计算方法, 研究了超强激光与等离子体作用中自生磁场产生和电子热传导过程, 提出了将非线性康普顿散射光作为改变等离子体自生磁场和电子热传导的新机制, 给出了自生磁场最大饱和值和超热电子热传导的修正方程和数值计算结果.研究发现在时间为100~160内, 自生磁场能量随入射激光功率密度增大而迅速增大, 之后处于较高饱和阶段.增大的初始时刻较散射前提前了20,增大阶段的时间延长了30,饱和阶段增幅为40%.入射激光功率密度为1019~1020W/cm2时,自生磁场强度最大模拟值为1.47×104~3.75×104T, 单电子能谱峰值出现在3.3 MeV和6.6 MeV附近, 能谱曲线在4~15 MeV和11~14.3 MeV迅速衰减,在6.7 MeV和13.2 MeV以上时, 超热电子有效温度为2.6 MeV和4.5 MeV, 比无散射的理论值和拟合值均有一定增大.随入射激光强度增大, 热流随激光脉冲一起向等离子体内流动的时间缩短, 自生磁场限制热流的时间延长.对所得结果给出了初步物理解释.
非线性光学; 等离子体; 超强激光功率密度; 自生磁场; 电子热传导; 非线性康普顿散射
1 引 言
超强激光与等离子体作用产生的超热电子强电流可在等离子体中形成强自生磁场[1].因该场和超热电子在快点火[2]、粒子加速[3]、X射线源[4]等方面有重要应用,故成为人们关注的热点之一[5-7].人们曾对自生磁场形成机制[8-10]和超热电子产额和能量转换效率进行了深入研究[11-13].因超强激光与等离子体作用中自生磁场、粒子速度各向异性分布和超热电子运动三者密切相关,且超热电子能量沉淀区是快点火的关键,故超热电子在高密度等离子体中传输和能量输运倍受人们关注[14-16].近期,阿不都热苏力等[17]给出了超热电子热流随激光功率密度演化规律.郝东山[18]指出,康普顿散射对飞秒光丝中等离子体时演特性有重要影响.应指出的是,在超强激光功率密度对超热电子热流影响的研究中,以上研究均未涉及非线性康普顿散射因素.实验表明[19],光强达1016W/cm2量级时,非线性康普顿散射开始显现.可见,研究超强激光功率密度对超热电子热流影响时,非线性康普顿散射应给予考虑.本文针对该问题,基于多光非线性康普顿散射模型和质子加速新机制[20],分析了超热电子有效温度,用3维粒子模型模拟不同激光功率密度时超热电子能量输运,并对结果给出了初步物理解释.
2 理论分析
2.1 自生磁场产生机制
超强激光与等离子体作用中发生多光子非线性康普顿散射(简称散射)时,散射光频为[18]
(1)
入射和散射光有质动力驱动电子运动,在等离子体内部出现电子岛,形成电子速度各向异性分布,导致强自生磁场产生.可见,自生磁场是由入射和散射光共同决定的.自生磁场作用下,电子耦合回旋频率ωcB与自生磁场耦合线性增长率γct相等时,则γct=ωcB,即
(2)
(3)
式中,nc≈9.96×1020cm-3、ne和B、Δne和ΔB分别为等离子体临界密度、散射前电子平均密度和激光磁场强度、及其相应增量.假设发生双光子非线性康普顿散射(实验已证实),则B=mωc/e=1.01×104T和ΔB=1.01×104T.可见,自生磁场由入射和散射光功率密度共同决定.
2.2 电子热传导模型
由电子热传导引起的电子热流在经典S-H 理论中可表示为
QS-H+ΔQS-H≈-4neuthLe,ikB▽Te-
4(ΔneuthLe,ikB▽Te+neΔuthLe,ikB▽Te+
neuthΔLe,ikB▽Te+neuthLe,ikB▽ΔTe)
(4)
式中,(uth、Te、Le,i)和(Δuth、ΔTe、ΔLe,i)为散射前电子热速度、温度、电子和离子碰撞的平均自由程及其相应扰动;式两端第二项为散射扰动项.可见,散射使电子热流增大.对于完全电离等离子体,Le,i和ΔLe,i满足
(5)
式中,ni、Z、lnA分别为离子密度、电荷数、碰撞参量,其中A=λD/r0,λD和r0为德拜长度和离子间距.可见,散射使电子和离子碰撞的平均自由程增大,即电子吸收超强激光能量后被剧烈加速,热流迅速增大.
3 数值模拟
用3维粒子模型模拟.系统空间格局和时间步长取0.3c/ω和0.1/ω,实长为4 μm×4 μm,如图1所示,两侧空间格局、粒子数、网格、等离子体密度标长、离子电荷数分别为2 μm、2×106、10×4×4、6 μm、1.设一束线极化超强激光垂直射入等离子体内,y-z面内高斯分布,其电场平行x方向,激光脉宽、波长、频率、直径、峰值功率分别为20 fs、1.06 μm、1.78×1015rad/s、1.0 μm、1019~1020W/cm2;等离子体密度均匀分布,最高电子密度ne=nc=9.935×1020cm-3,等离子体温度对电子和离子为1 keV和0.8 keV;初始电子和质子速度分布均为Maxwell分布,二者质量比为1∶1836;电磁场在x方向为吸收边界,在y-z面上为周期边界.
图1 等离子体模拟模型Fig.1 Simulation model of plasma
不同入射激光下自生磁场能量随时间演化如图2所示.由图2知,在ωt≈100~160内,自生磁场能量随入射激光功率密度增大而迅速增大,之后处于较高水平饱和阶段.增大起始时刻较散射前提前约20,增大阶段对应的ωt约延长30,饱和阶段增幅约为40%.这是因散射使粒子间碰撞频率增大,随激光功率密度增大,更多粒子电离,表面更多电子因反常表面吸收而被剧烈加速,形成向等离子体内部传输的强电流,导致电子动量各向异性分布和Weibel不稳定性增强,产生更强自生磁场,并制约电子在横向方向上能量增加,从而使电子在传输方向上获得更大加速能量的缘故.
图2 不同入射激光功率密度下自生磁场能量时间演化Fig.2 Evolution of self-generated magnetic field energy along time under different power density of l incident laser
自生磁场随不同入射功率密度空间演化如图3所示.由图3知,I18=1019~1020W/cm2时,自生磁场强度最大模拟值Bymax,s=1.47×104~3.75×104T.对应拟合值[17]Bymax,s=1.47×104~2.83×104T和理论值[21]Bymax,s=0.35~3.53×104T量级相同,系数增大.这是因散射使自生磁场线性和非线性成分增大,且非线性成分增加远大于线性,并随激光强度增大,二者差距越来越大,自生磁场对电子在横向方向的抑制效应使电子在传输方向上加速更为剧烈的缘故.可见,非线性康普顿效应应给予考虑.
热电子能谱随峰值功率密度变化如图4所示,能谱峰值在3.3 MeV和6.6 MeV附近.I18=1019~1020W/cm2时,能谱曲线在4~15 MeV和11~14.3 MeV内迅速衰减.在6.7 MeV和13.2 MeV以上采用Maxwell超热电子分布,可得超热电子有效温度Teff为2.6 MeV和4.5 MeV.可见,模拟结果比拟合结果[17]有所增大.这是因散射使电子辐射阻尼效应先强后弱,等离子体通道效应先弱后强,导致超热电子能谱峰值增大,等离子体吸收能量增加,能谱衰减范围增大的缘故.
图 3 自生磁场随不同入射激光功率密度的空间演化Fig.3 Evolution of self-magnetic field with different I18 with x
图4 超热电子能谱随峰值功率密度变化关系Fig.4 Change of the energy spectrum of extra-hot electron along crest value power
等离子体临界面上热流和磁场强度随激光强度演化如图5所示,粗和细线表示自生磁场强度和热流.可见,随入射激光强度增大,等离子体临界面吸收激光能量越强烈,使热流随激光一起向等离子体内流动时间缩短,自生磁场限制热流时间延长.这是因激光入射立即与等离子体发生散射,使超热电子各向异性速度分布增强,产生的自生磁场又强烈限制热流向等离子体内部输运的缘故.
图5 等离子体临界面上热流和磁场强度随激光强度演化Fig.5 Evolutions of the thermal flux and magnetic field intense on the plasma critical face along laser intensities
4 结 论
本文基于多光子非线性康普顿散射模型和3维粒子模型研究了超强激光与等离子体作用产生的自生磁场和超热电子能量输运过程.结果表明,在ωt≈100~160范围内,自生磁场能量随入射激光功率密度增大而迅速增大,之后处于较高水平饱和阶段.增大的起始时刻较散射前提前了约20,增大阶段所对应的ωt范围约延长了30,饱和阶段增幅度约为40%.在入射激光功率密度为1019~1020W/cm2时,得到自生磁场强度最大模拟值为1.47×104~3.75×104T,比无散射时的理论值和拟合值均有一定的增大.单电子能谱峰值出现在约3.3 MeV和6.6 MeV附近.当入射激光功率密度为1019~1020W/cm2时,能谱曲线分别在4~15 MeV和11~14.3 MeV范围内迅速衰减.在6.7 MeV和13.2 MeV以上时,超热电子的有效温度分别为2.6 MeV和4.5 MeV.二者比拟合结果均有所增大.随入射激光强度增大,热流随激光脉冲一起向等离子体内流动的时间缩短,自生磁场限制热流的时间延长.并对所得结果给出了初步物理解释.这些结果揭示了非线性康普顿散射与超热电子在高密度等离子体中传输特性及自生磁场三者之间的相互影响,这对于人们进一步认识场与粒子的作用实质具有一定的意义.
[1] Cai D F, Gu Y Q, Zheng Z J,etal. Anisotropic distnbuti-ons of the fast electron and the spontaneous magnetic field generated during laser interaction with foil targets [J].JournalofAtomicandMolecularPhysics, 2011, 28(1): 101(in Chinese)[蔡达锋, 谷渝秋, 郑志坚, 等. 激光-薄膜靶相互作用快电子和自生磁场的各向异性分布[J]. 原子与分子物理学报, 2011, 28(1): 101]
[2] Ma S Z, Zhang F P, Fang H,etal. Thermal properties of Ga doped ZnO oxide[J].ChineseJournalofQuantumElectronics, 2015, 32(1): 107 (in Chinese)[马硕章, 张飞鹏, 房慧, 等. Ga掺杂ZnO氧化物的热学性能的研究[J]. 量子电子学报, 2015, 32(1): 107]
[3] Arkin A, Abudurexiti A. Simulation of positron acelerati-on in the wake field of sine laser pulses [J].LaserTechnology, 2013, 37(1): 130(in Chinese)[艾尔肯, 阿不都热苏力. 正弦三角激光脉冲尾场加速正电子模拟[J]. 激光技术, 2013, 37(1): 130]
[4] Wang R R, Chen W M, Xie D Z. Characteristics of X-ray photons in tilted incident laser-produced plasma [J].HighPowerLaserandParticleBeams, 2008, 20(3): 387 (in Chinese) [王瑞荣,陈伟民,谢东珠. 斜辐照激光等离子体辐射X光子特性[J]. 强激光与粒子束, 2008, 20(3): 387]
[5] Romagnani I, Bigongiari A, Kar S,etal. Observation of magnetized soliton remnants in the wake of intense laser pulse propagation through plasmas [J].Phys.Rev.Lett., 2010, 105(17): 175002.
[6] Liu Y, Liu S Q. Nonlinear interaction of transverse plasmas with pair plasmas [J].NuclearFusionandPlasmaPhysics, 2011, 31(1): 19(in Chinese)[刘勇, 刘三秋. 横等离激元与对等离子体的非线性相互作用[J]. 核聚变与等离子体物理, 2011, 31(1): 19]
[7] Duan L W, Hong Y J. Ignition mode of non-thermal non-second-pulse transient plasma [J].HighPowerLaserandParticleBeams, 2013, 25(7): 1506.
[8] Zhu S P, Zheng C Y, He X T. A theoretical model for a spontaneous magnetic field in intense laser plasma interaction [J].Phys.Plasmas, 2003, 10(10): 4166.
[9] Abudurexit A, Pazilaiti A, Mijit F. Thermoelectric mecha-nism for self-generated magnetic field in femto-second laser-plasma interaction [J].HighPowerLaserandParticleBeams, 2013, 25(7): 1709(in Chinese)[阿不都热苏力, 帕孜来提, 帕力哈提. 飞秒激光与等离子体相互作用中自生磁场的热电机制[J]. 强激光与粒子束, 2013, 25(7): 1709]
[10] Meier J, Stegeman G I, Christodoulides D N. Experimental observation of discrete modulation instability [J].Phys.Rev.Lett., 2004, 92(16): 3902.
[11] Chen L M, Zhang J, Teng H,etal. Experimental study of a subpico-second pulse laser interacting with metallic and dielectric targets [J].Phys.Rev. E, 2001, 63(3): 6403-1.
[12] Cai D F, Gu Y Q, Zheng Z J,etal. Yield and energy conversion efficiency of the forward hot electrons from laser-foil target [J].NuclearFusionandPlasmaPhysics, 2014, 34(1): 13(in Chinese)[蔡达锋, 谷渝秋, 郑志坚, 等. 激光-薄膜靶相互作用中前向超热电子的产额和能量朱鹮效率[J]. 核聚变与等离子体物理, 2014, 34(1): 13]
[13] Jha P, Mishra R K, Upadhyay A K,etal. Spot-size evolu-tion of laser beam propagation in plasma embedded in axial magnetic field [J].PhysicsofPlasmas, 2007, 14(11): 114504-1.
[14] Liu X L, Li X Q. Relativistic Langmuir solitons in ultra-powerful laser plasma [J].LaserTechnology, 2013, 37(5): 627(in Chinese)[刘笑兰, 李晓卿. 超强激光等离子体中的相对论性朗缪尔孤子[J]. 激光技术, 2013, 37(5): 627]
[15] Abudurexiti A, Tuniyazi P, Wang Q. Weibel instability-es ultra-intense laser-plasma interaction [J].HighPowerLaserandParticleBeams, 2012, 24(1): 110(in Chinese)[阿不都热苏力, 帕尔哈提, 王倩. 激光等离子体相互作用中Weibel不稳定性[J]. 强激光与粒子束, 2012, 24(1): 110]
[16] Feng G H, Hao D S. Influences of Compton scattering on transverse dispersion of relativistic electron-positron plasma [J].LaserandOptoelectronicsProgress, 2014, 51(3): 031401-1(in Chinese)[冯光辉, 郝东山. Compton散射对相对论正负电子对等离子体横色散的影响[J]. 激光与光电子学进展, 2014, 51(3): 031401]
[17] Abudurexiti A, Arkin Z, Tuniyazi P. Effect of laser power density on self-generated magnetic field and electron thermal conduction [J].LaserTechnology, 2013, 37(1): 134(in Chinese)[阿不都热苏力, 艾尔肯,帕力哈提. 激光功率密度对自生磁场和电子热传导的影响[J] . 激光技术, 2013, 37(1): 134]
[18] Hao D S. Influences of Compton scattering to temporal evolution of plasma density in femo-second light filaments [J].ChineseJournalofLasers, 2014, 41(5): 0505002-1(in Chinese)[郝东山. 康普顿散射对飞秒光丝中等离子体密度时演特性的影响[J]. 中国激光, 2014, 41(5): 0505002-1]
[19] Kong Q, Zhu L J, Wang J X,etal. Electron dynamics in the extra-intense stationary laser field [J].ActaPhys.Sin., 1999, 48 (4): 650(in Chinese)[孔青, 朱立俊, 王加祥, 等. 电子在超强激光场中的动力学特性[J]. 物理学报, 1999, 48(4): 650]
[20] Hao D S. A new mechanism of protons in high power laser-plasma [J].LaserTechnology, 2012, 36(5): 653(in Chinese)[郝东山. 强激光等离子体中质子加速的新机制[J]. 激光技术,2012, 36(5): 653]
[21] Abudurexiti A, Tuniyazi P. Electromagnetic instability and energy transport in the interaction of ultra-intense laser pulse with plasma [J].ActaPhotonicaSinica, 2011, 40(1): 15(in Chinese)[阿不都热苏力, 帕尔哈提. 超强激光脉冲与等离子体作用中的电磁不稳定性和能量输运[J]. 光子学报, 2011, 40(1): 15]
Influences of extra-intense laser power density on the self-generated magnetic field and electron thermal conduction in plasma
MAO Jian-Jing,ZHANG Kai-Ping,HAO Dong-Shan
(College of Information Engineering, Zhengzhou University of Industrial Technology, Xinzheng 451150, China)
By using the model of multi-photon nonlinear Compton scattering, the simulation model of 3D particle and numerical method, the producing of the self-generated magnetic field and the electron thermal conduction in the effect between the extra-intense power laser and plasma are studied. A new mechanism that the self-generated magnetic field and the electron thermal conduction in plasma are changed by nonlinear Compton scattering is proposed. The amended equations on the maximum saturation value of the self-generated magnetic field and the electron thermal conduction and number computing results are given. The results show that the energy of the self-generated magnetic field is quickly increased with the increasing of the incident laser power density in the time 100~160, then the energy is kop in the higher saturation period. The time that the initial moment of increased period is moved are 20, the time of that the increased period are prolonged are 30, and increased extent of the saturation period are 40%. When the incident laser power density are 1019~1020W/cm2, the maximum simulation value of the self-generated magnetic field intense are 1.47×104~3.75×104T, the crest values of an electron energy section are appeared near the 3.3 MeV and 6.6 MeV, and the energy section curvature are quickly decreased in 4~15 MeV and 11~14.3 MeV. The effective temperature of the extra-hot electron are 2.6 MeV and 4.5 MeV over 6.7 MeV and 13.2 MeV on the energy section curvature, and these values are increased than the un-scattering theory values and simulated coupling values. The time that the thermal current and laser pulse together drift to internal plasma is decreased, and the time that the self-generated magnetic field checks the thermal current is increased. The initial physics explain on these results have been given out.
Nonlinear optics; Plasma; Extra-intense laser power density; Self-generated magnetic field; Electron thermal conduction; Nonlinear Compton scattering
2014-06-14
河南省基础与前沿技术研究资助项目(092300410227);河南省教育厅科学技术研究重点项目(12B520063)
毛建景(1981—), 女,讲师,硕士,主要从事信号传输和网络安全技术研究.
郝东山.E-mail: haodongshan@126.com
103969/j.issn.1000-0364.2015.08.017
O53
A
1000-0364(2015)08-0625-06