径向拉伸面上磁流体边界层流方程的有限元数值解*
2015-03-21胡敏
胡敏
(攀枝花学院数学与计算机学院,四川攀枝花617000)
径向拉伸面上磁流体边界层流方程的有限元数值解*
胡敏
(攀枝花学院数学与计算机学院,四川攀枝花617000)
研究流经径向拉伸面上的磁流体引起的稳定的二维边界层流的剪切力,利用一个等价变换将磁流体边界层流控制方程转化成与之等价的奇异积分方程,再利用Galerkin有限元方法将其转化成非线性方程组,最后利用Newton迭代法求解该非线性方程组的数值解,从而获得参数M取不同数值时该问题中流体剪切力的相应数值结果,并将该数值结果与前人的结果作比较。结果显示,该数值结果与前人结论基本一致,这说明Galerkin有限元方法也是一种解决磁流体边界层流的好方法。
径向拉伸面;磁流体边界层流;Galerkin有限元法;Newton迭代法;数值解
引言
磁流体边界层流问题一直是磁流体动力学[1]领域的主要研究课题,磁流体边界层流经常发生在飞机、汽车、轮船、内燃机等叶子机械的固体壁面附近,因此,对磁流体边界层流的研究具有重要的理论意义和实际应用价值。
许多人[2-6]对流经拉伸表面的磁流体边界层流体作了深入研究。丁琦和张鸿庆[7]利用同伦分析法研究流向拉伸表面的驻点流的解析解,并讨论该解析解的收敛域和性质。R.C.Aziz和I.Hashim[8]利用同伦分析法研究粘性耗散对非稳定拉伸板上薄液膜流动和热传递的影响。S.Mukhopadhyay[9]利用四阶龙格库塔法研究存在滑移的垂直拉伸面上的非定常混合对流边界层流动和热传递。K.Bhattachryya和S.M ukhopadhyay[10]利用打靶法研究流向拉伸表面的牛顿流体的非定常边界层驻点流动和热传导。A.M.Salem和R.Fathy[11]利用四阶龙格库塔法和打靶法研究多孔介质中的可渗透拉伸板上不可压缩流体在驻点附近的热量和物质传递。S.A.Kechil和I.Hashim[12]利用Adomian分解法研究拉伸板上的非定常边界层流。C.Y.Wang[13]研究径向拉伸面上的自由对流流体,并证明解得唯一性。P.D.Ariel[14]应用同伦扰动法研究流经径向拉伸面上的流体。A. Shahzad,R.Ali和M.Khan[15]利用同伦分析法研究流经非线性径向多孔薄板拉伸面上边界层流的热传递的解析解。A.S.Butt和A.Ali[16]研究流经径向拉伸表面的粘性流体,并利用同伦分析法和打靶法获得数值解。
尽管上述对流经拉伸面的磁流体边界层流的研究方法各异,但都没有运用Galerkin有限元方法和Newton迭代法来求数值解,本文利用这一方法获得其数值解,并与前人的数值结果进行对比。
1 基本方程
讨论流经径向拉伸薄片的磁流体引起的稳定的二维边界层流。假设忽略压力梯度,也没有外部电场影响,假设磁雷诺数足够大从而可以忽略感应磁场。于是磁流体边界层流的控制方程为
及其边界条件
利用下列相似变换
将方程(1)-(2)转化成下列方程
2 等价奇异积分方程
根据定理2和定理3,我们知道方程(4)-(5)与奇异积分方程(10)是等价的。
3 Galerkin有限元方法及其求解方法
对奇异积分方程
对上式关于t求导
3.1 Galerkin有限元方程组
于是由变分原理知方程(33)的Galerkin有限元基本公式:
3.2 Newton迭代法求解非线性方程组
求非线性方程组(40)-(41)的解就相当于求非线性方程组
的解。该系统的Jacobian矩阵
是三对角的,其中
4 数值结果
表1 比较同伦分析法、打靶法和Galerkin有限元法所得数值结果
表1 比较同伦分析法、打靶法和Galerkin有限元法所得数值结果
M 01234同伦分析法[16]-1.17372 -1.53571 -1.83049 -2.08485 -2.31172打靶法[16]-1.17372 -1.53571 -1.83047 -2.08484 -2.31171 Galerkin有限元法-1.17372 -1.53572 -1.83047 -2.08485 -2.31172
从表1中可以看出,对给定初值和最大误差,可以通过本文的方法计算出的值,其值均为负值,符合第二节中对奇异积分方程解的分析;并且通过与前人的数值结果进行对比,看出本文的结果也合理。
注释及参考文献:
[1]Roberts P H.An introduction to Magnetohydroynamica[M].Longmans Publications,London,1967.
[2]Sparrow E M,Cess R D.Magnetohydrodynamic flow and heat transfer about a rotating disc[J].J.Appl.Mech.,1962,29: 181-187.
[3]Chandrasekhara B.D,Rudraiah N.MHD flow through a channel of varying gap[J].Indian Journal of Pure and Applied Mathematics,1980,11(8):1105-1123.
[4]Shivakumar P N,Nagaraj S,Veerabhadraiah R and Rudraiah N.Fluid movement in a channel of varying gap with permeable walls covered by porous media[J].Int.J.Engng.Sci.,1986,24(4):479-492.
[5]Makinde O D,Osalusi E.MHD flow in a channel with slip at the permeabl boundaries[J].Romania Journal of Physics,2006, 51(3):319-328.
[6]Ganesh S,Krishnambal S.Magnetohydrodynamic flow of viscous fluid between two parallel porous plates[J].Journal of Applied Sciences,2006,6(11):2420-2425.
[7]DING Qi,ZHANG Hong-qing.Analytic Solution for Magnetohydrodynamic Stagnation Point Flow towards a Stretching Sheet[J].CHIN.PHYS.LETT.,2009,26(10):1047011-4.
[8]Aziz R C,Hashim I.Liquid Film on Unsteady Stretching Sheet with General Surface Temperature and Viscous Dissipation [J].CHIN.PHYS.LETT.,2010,27(11):1102021-4.
[9]Mukhopadhyay S.Effects of Slip on Unsteady Mixed Convective Flow and Heat Transfer Past a Stretching Surface[J].CHIN.PHYS.LETT.,2010,27(12):1244011-5.
[10]Bhattacharyya K,Mukhopadhyay S,Layek G C.Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J].CHIN.PHYS.LETT.,2011,28(9):0947021-4.
[11]Salema A M,Fathy R.Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation[J].Chin.Phys.B,2012,21(5):0547011-11.
[12]Kechil S A,Hashim I.Series Solution for Unsteady Boundary-Layer Flows Due to Impulsively Stretching Plate[J].CHIN.PHYS.LETT.,2007,24(1):139-142.
[13]Wang C Y.Natural convection on a vertical radially stretching sheet[J].J.Math.Anal.Appl.,2007,332(2):877-883.
[14]Ariel P D.Extended homotopy perturbation method and computation of flow past a stretching sheet[J].Comput.Math.Appl.,2009,58(11-12):2402-2409.
[15]Shahzad A,Ali R,Khan M.On the Exact Solution for Axisymmetric Flow and Heat Transfer over a Nonlinear Radially Stretching Sheet[J].CHIN.PHYS.LETT.,2012,29(8):0847051-4.
[16]Butt A S,Ali A.Effects of Magnetic Field on Entropy Generation in Flow and Heat Transfer due to a Radially Stretching Surface[J].CHIN.PHYS.LETT.,2013,30(2):0247011-5.
Galerkin Finite Element Numerical Solutions for the Hydromagnetic Boundary Layer Flow due to a Radially Stretching Surface
HU Min
(School of Mathematics and Computer Science,Panzhihua University,Panzhihua,Sichuan 617000)
The shear stress of the steady two-dimensional boundary layer flow of a hydromagnetic flow due to a radially stretching surface is investigated.The boundary layer equations governing the flow are transformed into a singular equation by using suitable equivalent transformations.The equation is then turned to nonlinear equations by using Galerkin finite element method.At last,the numerical solutions for the nonlinear equations are estimated through Newton iterative method.It is obtained the shear stress of this fluid corresponding to the parameter M different values.Moreover,the results are compared with previous conclusions through table.It’s shown that the numerical results and previous solution is consistent.This means that the Galerkin finite element method is a good method to solve the hydromagnetic boundary layer flow.
radially stretching surface;hydromagnetic boundary layer flow;Galerkin finite element method; Newton iterative method;numerical solutions
O357.3
A
1673-1891(2015)03-0008-04
2015-06-17
四川省自然科学基金项目(项目编号:15ZB0419);攀枝花市自然科学基金项目(项目编号:2014CY-G-22);攀枝花学院项目(项目编号:2014YB40)。
胡敏(1981-),女,四川长宁人,助教,硕士,主要从事微分方程研究。