滇西兰坪盆地茅草坪脉状Cu 矿床流体包裹体和稳定同位素地球化学研究*
2015-03-15程杨宋玉财侯增谦薛传东黄世强韩朝辉庄亮亮
程杨 宋玉财 侯增谦 薛传东 黄世强 韩朝辉 庄亮亮
CHENG Yang1,2,SONG YuCai2**,HOU ZengQian2,XUE ChuanDong3,HUANG ShiQiang1,2,HAN ChaoHui1,2 and ZHUANG LiangLiang1,2
1. 中国地质大学地球科学与资源学院,北京 100083
2. 中国地质科学院地质研究所,北京 100037
3. 昆明理工大学国土资源工程学院,昆明 650093
1. School of Geosciences and Resources,China University of Geosciences,Beijing 100083,China
2. Institute of Geology,CAGS,Beijing 100037,China
3. Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming 650093,China
2015-04-01 收稿,2015-07-29 改回.
1 引言
滇西兰坪盆地是我国重要的沉积岩容矿Cu、Pb、Zn 贱金属矿床富集区,发育金顶——世界级超大型Pb-Zn 矿床、白秧坪Pb-Zn-Cu-Ag 多金属矿集区、金满、连城脉状Cu 矿床、白洋厂砂岩型Cu 矿床等多金属多类型矿床(赵大康,2004;宋玉财等,2011;王晓虎等,2011;张锦让等,2012;Deng et al.,2014a,b;Deng and Wang,2015;Wang et al.,2014;Zhang et al.,2014)。其中,包括金满在内的脉状Cu 矿床沿盆地西缘澜沧江断裂带分布,构成一条近南北向展布、长达100 多千米的铜矿带(图1)。前人对脉状Cu 矿床成因进行了大量的研究,主要集中在这条成矿带北段的金满、连城、科登涧、小格拉等Cu 矿床。成矿流体来源一直是过去研究的重点,长期以来,多数学者认为脉状Cu 矿床成矿与兰坪盆地的演化有关,成矿流体来自盆地卤水(肖荣阁等,1994;Yan and Li,1995;颜文和李朝阳,1997;李峰和甫为民,2000;刘家军等,2000;吴南平等,2003;徐启东和李建威,2003;徐仕海等,2005;徐晓春等,2005;He et al.,2009),然而,这些脉状Cu 矿床的成矿流体均富含CO2,正如Chi and Xue(2011)所指出的“富CO2的成矿流体不是典型的盆地流体”,故其他学者主张有其他的来源流体加入、或以其他来源的流体为主,提出成矿流体:为盆地流体和岩浆流体或幔源流体的混合(季宏兵和李朝阳,1998;Chi and Xue,2011);为岩浆流体和大气降水的混合(赵海滨,2006;张锦让等,2012);为地幔流体和变质流体的混合(阙梅英等,1998),为大气降水、岩浆水、变质流体三种流体的混合(张立生,2000)。由此可见,滇西脉状Cu 矿床的成矿流体来源存在较大争议,富CO2流体的成因尚无统一认识。
茅草坪脉状Cu 矿床位于该矿带南部(图1、图2),是近年来新发现的矿床,目前圈定铜资源量8.5 万吨,为目前兰坪盆地西缘脉状Cu 矿带中规模较大的矿床。流体包裹体研究能够最真实观察成矿流体信息,同时,热液矿物的元素、同位素示踪是研究成矿流体来源的主要途径。本文试图通过对茅草坪脉状Cu 矿床的流体包裹体研究,以及石英的O-H、方解石的C-O 同位素和黄铜矿的S 同位素研究,结合与该带其他脉状Cu 矿床和盆地西缘脉状Pb-Zn 矿床的综合对比研究,揭示茅草坪脉状Cu 矿床的成矿流体特征,探讨成矿流体来源,以期为限定滇西脉状Cu 矿床的流体来源提供新的信息。
图2 滇西兰坪盆地茅草坪脉状Cu 矿床地质图(据成祥,2014 修改)Fig.2 Geological map of Maocaoping vein Cu deposit in Lanping basin,western Yunnan (modified after Cheng,2014)
2 成矿地质背景和矿床地质
滇西地区地处扬子板块与印度板块之间特殊地带,是西南“三江”复合造山带的重要组成部分(葛良胜等,2012;Deng et al.,2014a)。兰坪盆地位于“三江”造山带兰坪-思茅地块北部,盆地呈南北向展布,向北趋于尖灭,向南与思茅盆地相接,西部以碧罗雪山-崇山剪切带(Zhang et al.,2011)为界,东部以雪龙山-点苍山剪切带(Cao et al.,2011)为界。盆地主要充填中、新生界沉积岩和火山岩。中三叠世至晚三叠世早期,盆地内发育碎屑岩和中基性-中酸性火山岩;晚三叠世中、晚期沉积暗色为主的碎屑岩和碳酸盐岩;中侏罗世至新近纪,盆地充填了厚层红色碎屑岩建造,伴有蒸发盐岩沉积和少量的碳酸盐岩。侵入岩主要出露在盆地两侧,西缘发育有早中三叠世、白垩纪S 型花岗岩(Peng et al.,2008;Zhu et al.,2011),始新世至中新世的花岗岩(Zhang et al.,2011;唐渊等,2013);东缘发育42 ~20Ma 富碱性花岗岩(Wang et al.,2001)(图1)。受新生代以来印-亚大陆碰撞的影响,青藏高原东缘在晚始新世至早中新世发育大型走滑构造(侯增谦等,2006;Hou and Cook,2009),伴随大规模走滑,在兰坪盆地西缘形成碧罗雪山-崇山剪切带、东缘形成雪龙山-点苍山剪切带(Wang and Burchfiel,1997;刘俊来等,2006;Zhang et al.,2012)。
茅草坪脉状Cu 矿床位于兰坪盆地西缘脉状Cu 矿带的南段,发育在强烈变形的崇山剪切带内(图1)。矿区内岩石全部发生剪切变形,原岩地层层面已难以恢复。矿区内主要发育中、新生代地层,其中,侏罗纪和白垩纪为矿区内出露的主要地层,两者南北贯穿整个矿区沿澜沧江西侧展布(图2)。侏罗纪地层出露在矿区中部,中侏罗统花开左组(J2h),为矿区主要地层,大面积出露,可分为上、下两段:下段(J2h1)岩性为浅灰绿色片岩夹变质石英砂岩、粉砂岩;上段(J2h2)岩性为灰白色、浅绿色片岩、千枚岩夹大理岩。上侏罗统坝注路组(J3b)岩性为黑色、浅灰色、浅灰绿色片岩、千枚岩夹变质石英砂岩(图2)。下白垩统景星组(K1j)出露面积广泛,为矿区次主要地层,分布于矿区东部,可分为上下两段:下段(K1j1)为浅灰色-灰白色中-厚层状变质细粒岩屑钙质石英砂岩夹浅灰绿色、暗灰色粉砂质板岩,局部夹绢云母板岩;上段(K1j2)为浅灰绿色、暗灰色局部浅肉红色薄层状钙质粉砂质板岩夹变质泥质粉砂岩、细砂岩。矿区西部出露一套片麻岩,其时代不清;西南侧出露花岗岩体,为灰白色含电气石二云母花岗岩,岩体边部局部糜棱岩化、片麻岩化,并见大量电气石呈细脉状、团块状产出(成祥,2014),其形成时代约22Ma(薛传东等,未发表资料)。矿区内地层受构造变质作用影响强烈。受东西向的强烈挤压,区内断裂多呈NS 走向分布,褶皱、劈理较为发育,主要构造线呈N-S 走向展布,与兰坪盆地长轴方向基本一致。
矿体呈脉状、透镜状,近N-S 走向、陡倾产出,赋矿围岩主要是中侏罗统花开左组的粉砂质泥岩和大理岩,均发生糜棱岩化。单条矿脉多呈脉状、网脉状、透镜状产出,脉宽0.2~3m,走向330°,倾角70° ~90°,走向长300 ~500m,倾向延伸200 ~300m(成祥,2014),总体顺围岩剪切面理发育(图3a)。矿脉由密集的石英-碳酸盐脉组成,矿石矿物主要有黄铜矿,含有少量黄铁矿和磁铁矿。脉石矿物以电气石、石英、方解石和白云石为主,并见白云母。矿石结构较为简单,矿物结晶大多呈自形-半自形粒状结构,晶粒结构以中粒为主,交代结构发育。矿石构造主要为团块状构造、浸染状构造、脉状构造等。
根据矿床热液矿物的共生组合、结构构造、生长方式及蚀变交代、穿切关系,矿化赋存形式可分为以下3 种(程杨等,2015):(1)富电气石蚀变晕(图3a,b),呈脉状生长于围岩中。由电气石、石英以及少量黄铁矿和磁铁矿组成,无含Cu 硫化物。相对于脉体内矿物,蚀变晕内电气石和石英粒度较小,受剪切变形作用强烈地定向排列,长轴方向与剪切面理近平行(图3d,e)。少量的黄铁矿和磁铁矿在此阶段呈稀疏浸染状产出,也具有定向排列的特点;(2)平行剪切面理的脉体(A1 脉),呈拉长的透镜状产出(图3b),由石英、电气石、方解石、白云母组成,含黄铜矿和少量黄铁矿、磁铁矿。相对于蚀变晕内矿物,A1 脉中矿物的粒度明显变粗,具有定向或弱定向生长特点,长轴方向与脉壁及围岩的剪切面理大致平行(图3d,e),显示出同构造期脉体特征。其中,少数脉体内电气石和石英的长轴方向斜交或垂直于剪切面理,并对壁生长,与多数A2 脉相似(见下文);(3)横切剪切面理的脉体(A2 脉),产状与剪切面理和A1 脉近垂直,缓倾(图3c),呈短脉状或短透镜状产出。脉体内矿物由石英、方解石、白云石、电气石、白云母组成,含黄铜矿。多数A2 脉与A1 脉体相连,或切穿A1 脉(图3c)。脉体内各类矿物或自由生长,或对壁梳状生长,不具有定向性(图3f)。个别A2 脉虽从宏观上横切剪切面理和A1 脉,但脉中矿物生长特点与A1 脉内一致(电气石长轴方向近平行于剪切面理),表现出A1 脉向A2 脉逐渐过渡的生长特点。这3 种形式出现的矿物在空间上紧密伴生,连续过渡,但其之间又存在一定穿插关系,为同一时期形成,只是不同脉体内矿物沉淀略有早晚。矿化过程为富电气石蚀变晕→平行剪切面理的脉体(A1 脉)→横切剪切面理的脉体(A2 脉)3 个阶段。其中,A1 脉和A2 脉中硫化物含量较高,代表主成矿阶段的产物。
3 流体包裹体特征
3.1 样品及测试方法
进行流体包裹体观察的样品采自茅草坪脉状Cu 矿床1号矿洞和矿部矿石堆,经纬度坐标分别为25°55'00″N,99°07'29″E,具体位置见图2 所示。
对所采样品磨制厚约0.2mm 的双面剖光薄片,用于流体包裹体岩相学观察、激光拉曼光谱分析和显微测温。包裹体激光拉曼光谱分析在中国地质科学院矿产资源研究所的激光拉曼光谱实验室完成。测试仪器为英国Renishaw 公司产RM-2000 型激光共焦显微拉曼光谱仪,r+激光器,激光波长514.5nm,激光功率20mW;分辨率1 ~2cm-1;扫描范围100 ~4500cm-1;50 倍物镜,最小激光光斑直径1μm;实验室温度25℃,相对湿度50%。流体包裹体的显微测温工作在中国地质科学院矿产资源研究所流体包裹体实验室完成。测试仪器为Linkam THMSC 600 型冷热台,测温范围为-196~+ 600℃,冷冻数据和加热数据精度分别为± 0.1℃和±2℃。
进行包裹体测温数据处理时,利用含NaCl 子矿物熔化温度估算含石盐子晶包裹体的盐度(卢焕章等,2004);根据Bodnar(1993)对NaCl-H2O 体系流体包裹体冰点估算富液相包裹体的盐度;富气相包裹体的盐度是采用Collins(1979)CO2笼合物熔化温度计算。
3.2 流体包裹体岩相学
茅草坪矿床早阶段富电气石蚀变晕中无含铜硫化物,且石英快速结晶形成,颗粒较小,难以观察到流体包裹体。因此本次工作对主成矿期的不同阶段脉体(A1 脉和A2 脉)石英中流体包裹体进行岩相学观察,流体包裹体主要有3 种类型:(1)富液相包裹体(W 型,溶液相充填度约大于50%);(2)富气相包裹体(C 型,气相充填度约大于50%);(3)含石盐子晶包裹体(S 型)(图4a-d)。
图3 滇西兰坪盆地茅草坪脉状Cu 矿床矿化特征(a)矿体呈脉状、透镜状近N-S 走向、陡倾产出,矿脉为电气石-石英-碳酸盐-硫化物脉;(b)富电气石蚀变晕、平行剪切面理的脉体(A1 脉)及横切剪切面理的脉体(A2 脉);(c)横切剪切面理的脉体(A2 脉)切穿平行剪切面理的脉体(A1 脉);(d)A1 脉内石英受剪切呈波状消光,发育晶内裂隙,正交偏光;(e)A1 脉内电气石弱定向生长,正交偏光;(f)A2 脉内电气石梳状生长,显示脉体张性充填特点,透射光. Cp-黄铜矿;Qz-石英;Cal-方解石;Dol-白云石;Mus-白云母;Tur-电气石. 红色箭头指示矿物长轴方向Fig.3 Mineralization features in Maocaoping vein Cu deposit in Lanping basin,western Yunnan(a)the attitude of the orebody is veined,lenticular and steep dip with a trend of nearly north to south. The veins are composed of tourmaline,quartz,carbonate and sulfide;(b)hydrothermal alteration halo enriched in tourmaline,ore-bearing vein paralleling to shear foliation (A1 vein)and orebearing vein crosscutting shear foliation (A2 vein);(c)A2 veins crosscutting A1 veins;(d)An A1 vein composed of quartz with undulatory extinction and intracrystalline fractures,cross-polarized light;(e)weakly-orientated tourmaline and quartz crystals in an ore-bearing vein paralleling to shear foliation (A1 vein),cross-polarized light;(f)tourmaline with comb texture in an A2 vein,indicating extensional veins,transmission light. Cpchalcopyrite;Qz-quartz;Cal-calcite;Dol-dolomite;Mus-muscovite;Tur-tourmaline. Red arrow indicates mineral macroaxis
富液相包裹体(W 型)在A1 脉和A2 脉中均大量出现,个体直径介于3 ~12μm 之间,形态多呈椭圆状,也有不规则形,气相充填度为10% ~40%;富气相包裹体(C 型)在A1脉和A2 脉中也大量分布,直径多介于3 ~20μm 之间,形态多样,常见椭圆形、负晶形和不规则形,气相充填度为60% ~80%。根据其在室温下的相态特征又可细划分为两相型(L(H2O)+V(CO2))和三相型(L(H2O)+ L(CO2)+V(CO2))富气相包裹体。有时包裹体气相充填度较高,可见纯CO2包裹体,室温下呈棕褐色,缺乏可见的H2O 液相;含石盐子晶包裹体主要出现在A1 脉中,由气相、液相和石盐子晶组成,直径介于8 ~12μm 之间,包裹体形态多呈椭圆形、不规则形,石盐子晶形态呈立方体,气相充填度为10% ~25%。原生包裹体多呈孤立状分布,而次生包裹体多沿矿物裂隙成线状分布。
图4 滇西兰坪盆地茅草坪脉状Cu 矿床流体包裹体显微特征(a)含石盐子晶包裹体;(b、c)富液相包裹体;(d)富气相包裹体;(e)第Ⅰ组包裹体组合:Ⅰ-S 型与Ⅰ-W 型包裹体共存;(f)第Ⅰ组包裹体组合,Ⅰ-S 型与Ⅰ-W 型和Ⅱ-C 型包裹体共存;(g)第Ⅱ组包裹体组合:Ⅱ-W 型与Ⅱ-C 型包裹体共存;(h)第Ⅲ组包裹体组合:Ⅲ-W 型与Ⅲ-C 型包裹体共存Fig.4 Microphotos of fluid inclusions in the Maocaoping vein Cu deposit in Lanping basin,western Yunnan(a)halite-bearing inclusion;(b,c)inclusions enriched in aqueous;(d)inclusions enriched in vapor;(e)the first group of inclusion combination:Ⅰ-S type and Ⅰ-W type of inclusions occurring together;(f)the first group of inclusion combination:Ⅰ-S type,Ⅰ-W type and Ⅱ-C type of inclusions occurring together;(g)the second inclusion combination:Ⅱ-W type and Ⅱ-C type of inclusions occurring together;(h)the third inclusion combination:Ⅲ-W type and Ⅲ-C type of inclusions occurring together
3.3 流体包裹体激光拉曼光谱分析
对不同类型流体包裹体进行激光拉曼成分分析,结果表明不论是富液相包裹体、富气相包裹体还是含石盐子晶包裹体,气相成分均以CO2为主,液相成分以H2O 为主(图5)。
3.4 流体包裹体显微测温
对石英中的原生包裹体进行了详细的显微测温研究,发现包裹体在镜下不同视域里具有不同的的共生组合,这可能反映了包裹体并不是同一阶段流体演化的产物,而是不同阶段流体特征的体现。因此,我们将具有同时捕获特征的包裹体划分成组(图4)(即同一阶段的流体形成的包裹体,通常以同一有限视域内共生的包裹体特征为划分依据),茅草坪脉状Cu 矿床的流体包裹体可分为3 组流体包裹体组合:
A1 脉石英中原生流体包裹体组合分为两组:第I 组为含石盐子晶(S 型)、富液相(水溶液相)(W 型)和富气相(C型)包裹体共生;第Ⅱ组无含石盐子晶包裹体,为富液相(水溶液相)(W 型)和富气相(C 型)包裹体共生;A2 脉石英中原生流体包裹体仅出现一组(为第Ⅲ组),可见富液相(水溶液相)(W 型)和富气相(C 型)包裹体共生,为了突出不同组中包裹体的共生特点,将第I 组包裹体记为I-S 型、I-W 型和I-C 型(图4e,f),第Ⅱ组和第Ⅲ组包裹体分别记为Ⅱ-W 型、Ⅱ-C 型(图4g)和Ⅲ-W 型、Ⅲ-C 型(图4h)。
表1 滇西兰坪盆地茅草坪脉状Cu 矿床流体包裹体显微测温结果Table 1 Microthermometric data of fluid inclusion in Maocaoping vein Cu deposits in Lanping basin,western Yunnan
图5 滇西兰坪盆地茅草坪脉状Cu 矿床流体包裹体激光拉曼光谱分析结果(a)测试含石盐子晶包裹体的气相(V);(b)测试富液相包裹体的气相(V);(c)测试富气相包裹体的液相(L);(d)测试富气相包裹体的气相(V)Fig.5 Representative Raman spectra of fluid inclusions in Maocaoping vein Cu deposit in Lanping basin,western Yunnan(a)testing vapor phase in halite-bearing inclusions;(b)testing vapor phase in rich aqueous inclusions;(c)testing liquid phase in rich vapor inclusions;(d)testing vapor phase in rich vapor inclusions
显微测温结果显示于表1、图6 和图7,可见上述3 组流体包裹体的均一温度和盐度具有一定的差异。
(1)第I 组:I-S 型包裹体多数石盐子晶较气泡先消失,盐子晶熔化温度为248 ~320℃,包裹体最后形成均一的液相,少数均一呈气相,完全均一温度为293 ~370℃,盐度为30.06% ~39.76% NaCleqv;I-W 型包裹体仅获得2 个有效数据,包裹体均一温度分别为400℃和490℃,盐度为11.10%~13.94% NaCleqv;所观察到I-C 型包裹体多接近纯CO2气相包裹体,难以观察是否完全均一,且多数在加热过程中爆裂,未获得有效均一温度。(图6a,b)
(2)第Ⅱ组:Ⅱ-W 型包裹体多均一至液相,均一温度为302 ~490℃,盐度为1.23% ~18.63% NaCleqv;Ⅱ-C 型包裹体初熔温度为-60.5 ~-57.2℃,略低于纯CO2三相点温度(-56.6℃),可能含有其他挥发份。包裹体CO2部分均一温度为16.2 ~29.9℃,多均一至液相,完全均一温度为307 ~400℃,多均一至液相,部分均一至气相。盐度为0.02% ~13.82% NaCleqv(图6c,d)。
(3)第Ⅲ组:Ⅲ-W 型包裹体均一温度为263 ~400℃,盐度为1.20% ~11.34% NaCleqv;Ⅲ-C 型包裹体CO2部分均一温度为23.5 ~30.9℃,多均一至气相,部分均一至液相,完全均一温度为280 ~330℃,多均一至液相。盐度为0.02% ~6.30% NaCleqv(图6e,f)。
4 稳定同位素组成
4.1 样品及测试方法
图6 滇西兰坪盆地茅草坪脉状Cu 矿床流体包裹体均一温度直方图和盐度直方图(a)A1 脉I 组包裹体组合中含石盐子晶(I-S 型)和富液相(I-W 型)包裹体均一温度直方图;(b)A1 脉I 组包裹体组合中含石盐子晶(I-S型)和富液相(I-W 型)包裹体盐度直方图;(c)A1 脉Ⅱ组包裹体组合中富液相(Ⅱ-W 型)和富气相(Ⅱ-C 型)包裹体均一温度直方图;(d)A1 脉Ⅱ组包裹体组合中富液相(Ⅱ-W 型)和富气相(Ⅱ-C 型)包裹体盐度直方图;(e)A2 脉Ⅲ组包裹体组合中富液相(Ⅲ-W 型)和富气相(Ⅲ-C 型)包裹体均一温度直方图;(f)A2 脉Ⅲ组包裹体组合中富液相(Ⅲ-W 型)和富气相(Ⅲ-C 型)包裹体盐度直方图Fig.6 Histograms of homogenization temperatures and salinity of fluid inclusions in Maocaoping vein Cu deposit in Lanping basin,western Yunnan(a)homogenization temperature histograms of I-S type and I-W type of inclusions from Group I in A1 vein;(b)salinity Histograms of I-S type and IW type of inclusions from Group I in A1 vein;(c)homogenization temperature histograms of Ⅱ-W type and Ⅱ-C type of inclusions from GroupⅡin A1 vein;(d)salinity histograms of Ⅱ-W type and Ⅱ-V type of inclusions from GroupⅡin A1 vein;(e)homogenization temperatures histograms ofⅢ-L type and Ⅲ-C type of inclusions from Group Ⅲin A2 vein;(f)salinity histograms of Ⅲ-W type and Ⅲ-C type of inclusions from Group Ⅲin A2 vein
本文用于测试的样品采自茅草坪脉状Cu 矿床矿部1 号矿洞,经纬度坐标分别为25°55'00″N,99°07'29″E,具体位置见图2 所示。由于多数A1 脉与A2 脉相连,且A2 脉宽度较窄,因此在挑选单矿物时难以将A1 脉与A2 脉的石英、方解石区分挑出,并且黄铁矿含量较少,难以挑出足够量的单矿物。故本次测试工作选取与含铜硫化物同期形成的石英进行H-O 同位素、方解石C-O 同位素以及黄铜矿S 同位素分析。
图7 滇西兰坪盆地茅草坪脉状Cu 矿床流体包裹体均一温度与盐度散点图Fig.7 Homogenization temperature versus salinity of fluid inclusions in Maocaoping vein Cu deposit in Lanping basin,western Yunnan
石英H-O 同位素分析在核工业北京地质研究院分析测试研究中心Delta V Plus 质谱仪上完成。分析精度分别为±2‰和±0.2‰,相对标准均为SMOW。实验分析测试流程为:选取40 ~60 目的纯净样品,在150℃低温下真空去气4h以上,以彻底除去表面吸附水和次生包裹体水,在400℃高温下用爆裂法提取出包裹体中的水,进行收集、冷凝和纯化处理,然后用金属锌置换出水中的氢,在质谱仪上测试氢的组成。热液方解石C-O 同位素分析在南京大学内生金属矿床成矿机制研究国家重点实验室完成,利用碳酸盐矿物中碳、氧同位素组成磷酸法测定。实验过程如下:选取200 目的纯净样品,浸入正磷酸中反应24h,反应温度维持在50℃,以产生CO2。使用DELTA plus+XP+Gas Bench 型稳定同位素质谱仪对CO2中C、O 同位素进行测量,利用中国GBW00405标准碳酸盐对实验结果进行校正,测量误差δ13CV-PDB为±0.1‰,δ18OV-PDB为±0.1‰,方解石样品根据δ18OV-SMOW=1.03086 ×δ18OV-PDB+30.86(Friedman and O’Neil,1977)进行O 的V-SMOW 标准化。黄铜矿S 同位素分析在核工业北京地质研究院分析测试研究中心完成。实验过程如下:选取200 目的纯净样品,和氧化亚铜按一定比例混合均匀,在真空达2.0 ×10-2Pa 状态下加热,进行氧化反应,反应温度为980℃,生成二氧化硫气体。真空条件下,用冷冻法收集二氧化硫气体,并用Delta V Plus 气体同位素质谱分析硫同位素组成。测量结果以V-CDT 为标准,记为δ34SV-CDT(‰)。分析精度优于±0.2‰(2σ)。
4.2 分析结果
4.2.1 石英H-O 同位素
图8 滇西茅草坪脉状Cu 矿床和区域其他脉状Cu 矿床成矿流体δDV-SMOW-δ18OV-SMOW同位素图解大气降水线据陈骏和王鹤年,2004;Michigan 盆地趋势据Clayton et al. ,1966;Alberta 盆地趋势据Hitchon and Friedman,1969;原生岩浆水和变质水D-O 同位素范围据Misra,2000;其他脉状Cu矿床前人的石英样品数据来自肖荣阁,1989;李峰等,1992,1994,1995;季宏兵和李朝阳,1998;王光辉,2010;张锦让等,2012Fig. 8 Diagram of δDV-SMOW vs. δ18 OV-SMOW of the hydrothermal fluid in Maocaoping and other vein Cu deposits in regional area in Lanping basin,western YunnanLine for meteoric waters are from Chen and Wang (2004);trends of Michigan basins and Alberta basin are from Clayton et al. (1966)and Hitchon and Friedman (1969),respectively;fields of primary magmatic and metamorphic waters are from Misra (2000);previous published data from hydrothermal quartz in other vein Cu deposits are from Xiao (1989);Li et al. (1992,1994,1995);Ji and Li(1998);Wang (2010);Zhang et al. (2012)
茅草坪矿床中石英的δ18OV-SMOW值变化在16.7‰ ~18.2‰之 间,流 体 中 δDV-SMOW变 化 范 围 在 -94.6‰ ~-56.2‰之间。根据热液矿物(石英)-水体系的氧同位素分馏方程:103lnα石英-水= 3.306 × 106/T2- 2.71(张 理 刚 等,1990),结合流体包裹体显微测温结果(“真实”捕获温度280℃,见文中讨论),计算出成矿流体的δ18OV-SMOW值在+8.1‰~+9.6‰之间(表2)。在δ18OV-SMOW-δDV-SMOW同位素图解中(图8),茅草坪矿床数据点分布较集中,除了个别样品数据落在变质水和岩浆水区域,其余大部分都落在岩浆水下方区域,具有相对均一的δ18OV-SMOW值,而δDV-SMOW值较原生岩浆水明显降低。
4.2.2 方解石C-O 同位素
茅草坪矿床矿区内未见与方解石共生的石墨等含碳矿物,因此方解石的C 同位素值可以近似作为该矿床成矿热液中总碳同位素组成。方解石C 同位素组成总体上分布在相对窄的范围内,除了一个样品的数据δ13CV-PDB值为-2.4‰,其余样品δ13CV-PDB值为-8.3‰ ~-8.1‰,δ18OV-SMOW变化范围为14.46‰~16.63‰(表3)。在δ13CV-PDB-δ18OV-SMOW图解中,数据点均位于岩浆、地幔与海相碳酸盐C-O 同位素组成之间偏下方的区域(图9)。
表2 滇西兰坪盆地茅草坪脉状Cu 矿床和区域其他脉状Cu 矿床石英的H、O 同位素组成Table 2 H and O isotopic composition of quartz from Maocaoping and other vein Cu deposits in regional area in Lanping basin,western Yunnan
表3 滇西兰坪盆地脉状Cu 矿床和脉状Pb-Zn 矿床碳酸盐的C、O 同位素组成Table 3 C and O isotopic composition of carbonate from vein Cu deposits and vein Pb-Zn deposits in Lanping basin,western Yunnan
4.2.3 黄铜矿S 同位素
茅草坪矿床硫化物与石英和方解石伴生,缺乏硫酸盐,因此硫化物黄铜矿S 同位素组成大致可以代表成矿流体的S 同位素组成。黄铜矿S 同位素组成变化范围较窄,集中在-6.4‰ ~-3.9‰之间,平均值为-4.9‰(表4、图10)。
5 讨论
5.1 成矿流体特征
前文已述,茅草坪矿床的流体包裹体主要为含CO2盐水包裹体,表明成矿流体为CO2盐水体系。同时,不论第I 组、第Ⅱ组还是第Ⅲ组,每组中均可见不同类型的包裹体(S 型、W 型或C 型)在同一微观视域内共存,且包裹体的气/液相比变化大(图4e-h),具有相似的完全均一温度,表明包裹体捕获时,流体始终处于不均一态(卢焕章等,2004)。
表4 滇西兰坪盆地脉状Cu 矿床和砂岩型Cu 矿床硫化物S同位素组成Table 4 Sulfur isotope composition of sulfide from vein Cu deposits and sediment-hosted stratiform Cu deposits in Lanping basin,western Yunnan
图9 滇西兰坪盆地脉状Cu 矿床和脉状Pb-Zn 矿床热液碳酸盐矿物的δ13CV-PDB-δ18OV-SMOW图解(底图据刘建明和刘家军,1997 修改)脉状Cu 矿床前人碳酸盐样品数据来自肖荣阁等,1994;颜文,1993;李峰等,1995;季宏兵和李朝阳,1998;刘家军等,2000;徐启东和李建威,2003;张锦让等,2012;脉状Pb-Zn 矿床前人碳酸盐样品数据来自陈开旭等,2000;刘家军等,2004;薛伟等,2012;邹志超等,2013Fig.9 Diagram of δ13CV-PDB vs. δ18OV-SMOW of hydrothermal carbonate in vein Cu deposits and vein Pb-Zn deposits in Lanping basin,western Yunnan (original figure after Liu and Liu,1997)Previous published data from hydrothermal carbonate in vein Cu deposits are from Xiao et al. (1994);Yan (1993);Li et al.(1995);Jiand Li(1998);Liu et al. (2000);Xu and Li(2003);Zhang et al. (2012);previous published data from hydrothermal carbonate in vein Pb-Zn deposits are from Chen et al. (2000);Liu et al. (2004);Xue et al. (2012);Zou et al. (2013)
由于流体为不均一体系,包裹体捕获时的流体多数不是单一的液相或气相,而是同时捕获了不同比例的气相和液相。因此,多数包裹体加热后所处均一状态时的均一温度并不是流体包裹体捕获时的温度,而高于“真实”捕获温度。此体系中,捕获纯液相(或纯气相)的包裹体的温度等同于捕获温度,他们往往具有最低的均一温度值(Bodnar,2003)。但在实际测温过程中,很难判断哪些包裹体完全捕获了纯的液相或气相,因此,通常将获得的均一温度中低值部分近似地视为“真实”捕获温度。茅草坪矿床中,第I 组与第Ⅱ组流体包裹体的最低均一温度相近,在280 ~320℃之间,而第Ⅲ组流体包裹体的最低均一温度为260 ~280℃(图7),显示出第I 组与第Ⅱ组流体包裹体的捕获温度稍高,第Ⅲ组流体包裹体较低。
图10 滇西兰坪盆地脉状Cu 矿床和砂岩型Cu 矿床硫化物δ34SV-CDT同位素分布图脉状Cu 矿床数据包括茅草坪、金满、连城、水泄和科登涧矿床的黄铜矿、斑铜矿/砷铜矿、辉钼矿、辉铜矿和黄铁矿的S 同位素,除茅草坪矿床数据为本文测得外,其他矿床据第三地质大队,1975;肖荣阁和李朝阳,1993;王根等,1991;李峰等,1992,1997;季宏兵和李朝阳,1998;吴南平等,2003;张立生,2000;张锦让等,2012;砂岩型Cu 矿床数据包括瑶家山、白洋厂、德安和南坡矿床的黄铜矿、斑铜矿/砷铜矿、黄铁矿、方铅矿和辉铜矿的S 同位素,据颜文,1993;李峰等,1997Fig.10 Sulfur isotope of sulfide from vein Cu deposits and sediment-hosted stratiform Cu deposits in Lanping basin,western YunnanS isotopic data of chalcopyrite,bornite/tennantite,molybdenite,molybdenite and pyriteare from vein Cu deposits of Jinman,Lianchen,Shuixie and Kedengjian deposits from Xiao and Li (1993);Wang et al. (1991);Li et al. (1992,1997);Ji and Li (1998);Wu et al. (2003);Zhang(2000);Zhang et al. (2012),of Maocaoping deposit from this study;S isotopic data of chalcopyrite,bornite/arsenic copper,pyrite,galena and molybdenite from sediment-hosted stratiform Cu deposits of Yaojiashan,Baiyangchang,Dean and Nanpo deposits from Yan (1993);Li et al. (1997)
结合流体包裹体的组合特征和盐度数据,我们推测茅草坪矿床成矿流体可能经历了如下演化(图7):(1)以第I 组包裹体代表的高盐度含CO2的流体,在280 ~320℃左右,流体处于不均一状态,由于一些水分配到气相中,导致液相盐度增高,并可能伴有石盐子晶析出;(2)成矿流体温度没有变化,流体仍处于不均一态,但随着石盐子晶析出,流体总体盐度降低,此时形成了较第I 组流体包裹体盐度低的第Ⅱ组Ⅱ-W 包裹体和Ⅱ-C 包裹体,无含石盐子晶包裹体;(3)流体温度随着矿化的进行降低至260 ~280℃,仍处于不均一态,盐度较第Ⅱ组变化不大,此时形成了较Ⅱ-W 包裹体和Ⅱ-C 包裹体温度低的第Ⅲ组Ⅲ-W 包裹体和Ⅲ-C 包裹体。
5.2 成矿流体来源
在δ18OV-SMOW-δDV-SMOW同位素图解中(图8),茅草坪脉状Cu 矿床H-O 同位素组成与前人金满、连城等脉状Cu 矿床H-O 同位素组成基本一致,显示出与其他脉状Cu 矿床成矿流体同源的特征。数据点分布较集中,既没有落在大气降水和盆地卤水区域,也没有落在两者与变质水/岩浆水之间区域,从而排除大气降水和盆地卤水来源,以及两者与变质水/岩浆水混合来源。同时,除了个别样品数据落在变质水和岩浆水区域,其余大部分数据都落在岩浆水下方区域,具有相对均一的δ18OV-SMOW值。这是由于岩浆脱气作用会导致D 优先向气相分配,18O 优先向液相分配,从而导致残余岩浆水的δDV-SMOW值降低和δ18OV-SMOW值升高,但δ18OV-SMOW值变化很小(Shmulovich et al.,1999)。故图8 所示茅草坪等脉状Cu 矿床δDV-SMOW值较原生岩浆水明显降低,而δ18OV-SMOW值变化不大,指示成矿流体来自发生过脱气作用的岩浆水。由于茅草坪矿床成矿流体D 同位素较原生岩浆水降低至少达到30‰,这在封闭体系的岩浆脱气作用下不能实现(Shmulovich et al.,1999),但是开放系统下可以实现,后者能导致残余岩浆水中δDV-SMOW值较原生岩浆水降低50‰ ~80‰(Taylor,1986),因此,矿床成矿流体是来自开放系统下脱气的岩浆水。
在δ13CV-PDB-δ18OV-SMOW图解中,茅草坪矿床C-O 同位素组成与兰坪盆地西缘的其他脉状Cu 矿床的C-O 同位素组成基本一致,均位于岩浆、地幔与海相碳酸盐C-O 同位素组成之间偏下方的区域(图9)。δ18OV-SMOW值相对均一,δ13CV-PDB值变化较大。其中,除了一个方解石样品的C 同位素组成较高外,多数样品的C 同位素组成相对较低。指示盆地西缘脉状Cu 矿床碳和氧可能来源于岩浆、地幔以及海相碳酸盐。但是,比较盆地内脉状Pb-Zn 矿床C-O 同位素组成,两者数据趋势显示出明显差异。后者C-O 同位素数据基本沿近平行的δ18OV-SMOW轴分布,主要落在了海相碳酸盐溶解作用形成的范围内(图9),表明成矿过程中流体溶解了围岩中的碳酸盐(陈开旭等,2000;刘家军等,2004;薛伟等,2012;邹志超等,2013),其中,部分样品δ18OV-SMOW值偏低,可能指示大气降水对成矿的影响。因此,茅草坪等脉状Cu 矿床与脉状Pb-Zn 矿床的流体来源明显不同,成矿流体中碳和氧主要来源于岩浆、地幔等深源流体(δ13CV-PDB值为-7‰ ~-2‰,Deines et al.,1991;Cartigny et al.,1998;Goldfarb et al.,2005),岩浆流体与碳酸盐反应释放CO2。数据偏向岩浆岩,指示岩浆提供了主要的CO2。而少数偏高的δ13CV-PDB值表明个别矿床碳酸盐岩围岩可能提供了部分碳和氧。
在δ34SV-CDT同位素分布图中显示(图10),茅草坪矿床硫化物的δ34SV-CDT值在-6.4‰~-3.9‰之间,分布比较集中,在脉状Cu 矿床的δ34SV-CDT同位素组成(-11‰ ~+5‰)范围内。从数据分布上看,硫的来源可以有多种解释:(1)海相硫酸盐提供。假设硫酸盐的δ34SV-CDT值在+15‰ ~+25‰(不同地质历史时期海水值,Claypool et al.,1980;高广立,1991),即使经过硫酸盐热化学反应(TSR)也难以产生茅草坪Cu 矿床的δ34SV-CDT值和多数脉状Cu 矿床的δ34SV-CDT值,故排除TSR 成因。同样,理论上,茅草坪等脉状Cu 矿床的δ34SV-CDT值可以由硫酸盐的生物还原作用(BSR)产生(Detmers et al.,2001),然而,与兰坪盆地内砂岩型矿床Cu矿床相比,脉状Cu 矿床的δ34SV-CDT值分布相对集中,呈塔式分布,而砂岩型Cu 矿床的δ34SV-CDT值分布分散,总体偏负,而后者为典型的BSR 成因(李峰和甫为民,2000),故尽管茅草坪等脉状Cu 矿床的值δ34SV-CDT理论上可以用于BSR 成因解释,但其与典型的BSR 形成的δ34SV-CDT值分布特点相差较大。因此,用BSR 解释茅草坪等脉状Cu 矿床的δ34SV-CDT值不理想。(2)岩浆硫。岩浆成因硫化物的δ34SV-CDT值在-3.0‰ ~+2.5‰之间(Taylor,1986),若还原性的岩浆经历开放系统下的岩浆脱气作用,可以导致岩石中硫化物显著亏损34S,其δ34SV-CDT值向负值偏移(0‰ ~ - 8‰,Zheng,1990;郑永飞等,1996)。因此,岩浆脱气后残余岩浆中的硫可产生茅草坪等脉状Cu 矿床的S 同位素值。
上述分析表明,成矿流体是来自开放系统下脱气的岩浆水,并且,茅草坪矿区西南侧发育花岗岩体的成岩年龄为22Ma(薛传东等,未发表资料)与成矿年龄20Ma(程杨等,2015)一致,进一步指示了成矿流体来源于岩浆水。滇西其他脉状Cu 矿床如金满、连城矿床,虽然矿区内未见出露的岩浆岩,但可能存在着隐伏岩体,成矿流体可能与隐伏岩浆的活动有关。
6 结论
(1)矿床流体包裹体主要有富液相(水溶液相)包裹体、富气相包裹体和含石盐子晶包裹体3 种类型。成矿流体体系为一套H2O-CO2-NaCl 体系,流体始终为不均一态。流体包裹体组合第I 组与第Ⅱ组流体温度相近,为280 ~320℃,其中第I 组盐度较高,有11.10% ~13.94% NaCleqv 和30.06% ~39.76% NaCleqv 两个峰区,;Ⅱ组盐度降低至0.02% ~18.63% NaCleqv;Ⅲ组流体温度降至260 ~280℃,但盐度变化不大,为0.02% ~11.34% NaCleqv。
(2)茅草坪矿床与盆地内其他脉状Cu 矿床计算的δ18OV-SMOW值和流体中的δDV-SMOW值都落在原生岩浆水区域的下方,表明流体来源于岩浆水,但经历了开放系统下的脱气作用,没有盆地流体或大气降水的参与;热液碳酸盐方解石的C-O 同位素组成与盆地内其他脉状Cu 矿床碳酸盐的C-O 同位素组成相似,黄铜矿δ34SV-CDT值也处于区域其他脉状Cu 矿床的S 同位素组成范围内,推测CO2和硫可能也来自脱气的岩浆水。因此,茅草坪矿床等脉状Cu 矿床成矿流体可能来自开放系统下经历脱气的岩浆水,没有大气降水和盆地卤水的参与。
致谢 感谢中国地质科学院陈伟十老师在流体包裹体测温工作中提供的帮助,徐文艺老师在流体包裹体激光拉曼光谱分析中给予的指导。感谢昆明理工大学成祥同学在滇西野外工作中的热情相助,中国地质大学(北京)赵晓燕、裴英茹同学在成文过程中的有益探讨。感谢审稿专家的建设性意见!
Bodnar RJ. 1993. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim.Acta,57(3):683 -684
Cao SY,Liu JL,Leiss B,Neubauer F,Genser J and Zhao CQ. 2011.Oligo-Miocene shearing along the Ailao Shan-Red River shear zone:Constraints from structural analysis and zircon U/Pb geochronology of magmatic rocks in the Diancang Shan massif,SE Tibet,China.Gondwana Research,19(4):975 -993
Cartigny P,Harris JW and Javoy M. 1998. Eclogitic diamond formation at Jwaneng:No room for a recycled component. Science,280(5368):1421 -1424
Chen J and Wang HN. 2004. Geochemistry. Beijing:Science Press,116-117 (in Chinese)
Chen KX,He LQ,Yang ZQ,Wei JQ and Yang AP. 2000. Oxygen and carbon isotope geochemlstry in Sanshan-Baiyangping copper-sliver polymetallogenic enrichment district,Langping,Yunnan. Geology Mineral Resources of South China,(4):1 -8 (in Chinese with English abstract)
Cheng X. 2014. Geoligical-geochemical characteristics and genesis of Maocaoping vein Cu-Pb-Zn (-Ag)deposit,northwest Yunnan.Master Degree Thesis. Kunming:Kunming University of Science and Technology,20 -22 (in Chinese)
Cheng Y,Song YC,Xue CD and Huang SQ. 2015. A synthetic study of veins structure and mineralogenetic epoch of Maocaoping vein-type Cu deposit,western Yunnan. Acta Geologica Sinica,89(3):583 -598 (in Chinese with English abstract)
Chi GX and Xue CJ. 2011. Abundance of CO2-rich fluid inclusions in a sedimentary basin-hosted Cu deposit at Jinman,Yunnan,China:Implications for mineralization environment and classification of the deposit. Minerium Deposita,46:365 -380
Claypool GE,Holser WT,Kaplan LR,Sakai H and Zak L. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology,28:199 -260
Clayton RN,Friedman I,Graf DL,Mayeda TK,Meents WF and Shimp NF. 1966. The origin of saline formation waters:1. Isotopic composition. Journal of Geophysical Research,71 (16):3869-3882
Collins PLF. 1979. Gas hydrates in CO2-bearing fluid inclusion and the use of freezing data for estimation of salinity. Econ. Geol.,74(6):1435 -1444
Deines P,Harris JW and Gurney JJ. 1991. The carbon isotopic composition and nitrogen content of lithospheric and asthenospheric diamonds from the Jagersfontein and Koffiefontein kimberlite,South Africa. Geochimica et Cosmochimica Acta,55(9):2615 -2625
Deng J,Wang QF,Li GJ and Santosh M. 2014a. Cenozoic tectonomagmatic and metallogenic processes in the Sanjiang region,southwestern China. Earth-Science Reviews,138:268 -299
Deng J,Wang QF,Li GJ,Li CS and Wang CM. 2014b. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region,SW China. Gondwana Research,26(2):419 -437
Deng J and Wang QF. 2015. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research,doi:10.1016/j.gr.2015.10.003
Detmers J,Brüchert V,Habicht KS and Kuever J. 2001. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Applied and Environmental Microbiology,67(2):888 -894
Gao GL. 1991. Formation age and involved problems on anhydrite ore in Jinding lead-zinc ore area. Yunnan Geology,10(2):191 -205 (in Chinese with English abstract)
Ge LS,Deng J,Yang LQ,Wang ZH,Guo XD and Yuan SS. 2012.Characteristics of deep-seated structure and its controlaction for magmatic activity and mineralization in western Yunnan Province.Acta Petrologica Sinica,28(5):1387 - 1400 (in Chinese with English abstract)
Goldfarb R,Baker T,Dube B,Groves DI,Hart CJR and Gosselin P.2005. Distribution,character and genesis of gold deposits in metamorphic terranes. In: Hedenquist JW, Thompson JFH,Goldfarb RG and Richards JP (eds.). Economic Geology,100thAnniversary Volume:407 -450
He LQ,Song YC,Chen KX,Hou ZQ,Yu FM and Yang ZS. 2009.Thrust-controlled, sediment-hosted, Himalayan Zn-Pb-Cu-Ag deposits in the Lanping foreland fold belt,eastern margin of Tibetan Plateau. Ore Geology Reviews,36:106 -132
Hitchon B and Friedman I. 1969. Geochemistry and origin of formation waters in the western Canada sedimentary basin-I. Stable isotopes of hydrogen and oxygen. Geochimica et Cosmochimica Acta,33(11):1321 -1349
Hou ZQ,Mo XX,Yang ZM,Wang AJ,Pan GT,Qu XM and Nie FJ.2006. Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau:Tectonic setting,tempo-spatial distribution and ore deposit types. Geology in China,33(2):340 - 351 (in Chinese with English abstract)
Hou ZQ and Cook NJ. 2009. Metallogenesis of the Tibetan collisional orogen:A review and introduction to the special issue. Ore Geology Reviews,36(1 -3):2 -24
Ji HB and Li CY. 1998. Geochemical characteristics and source of oreforming fluid for Jinman copper deposit in western Yunnan Province,China. Acta Mineralogica Sinica,18(1):28 -37 (in Chinese with English abstract)
Li F,Fu WM and Ran CY. 1992. On the source of the ore-forming materials in the Jinman copper deposits,Lanping. Journal of Kunming Institute of Technology,17(4):8 -15,23 (in Chinese with English abstract)
Li F,Huang DY and Fu WM. 1994. On the geological characteristics and genesis of Shuixie copper deposit in Yongping. Yunnan Geology,13(4):341 -349 (in Chinese with English abstract)
Li F,Huang DY and Fu WM. 1995. Metallogenic law of red-bed copper deposits of the Lanping-Simao basin,Yunnan,China. Geotectoniea et Metallogenia,19 (4):322 - 335 (in Chinese with English abstract)
Li F,Fu WM and Li L. 1997. The material origin of the regional metallogenesis of Cu deposits in red beds of West Yunnan. Yunnan Geology,16(3):233 -244 (in Chinese with English abstract)
Li F and Fu WM. 2000. Geology of Red-bed Cu Deposits,Western Yunnan. Kunming:Yunnan University Press (in Chinese)
Liu JJ,Li CY,Pan JY,Hu RZ,Liu XF and Zhang Q. 2000. Isotopic geochemistry of copper deposits from sandstone and shale of Lanping-Simao basin,western Yunnan. Mineral Deposits,19(3):223 -234(in Chinese with English abstract)
Liu JJ,He MQ,Li ZM,Liu YP,Li CY,Zhang Q,Yang WG and Yang AP. 2004. Oxygen and carbon isotopic geochemistry of Baiyangping silver copper polymetallic ore concentration area in Lanping basin of Yunnan Province and its significance. Mineral Deposits,23(1):1-10 (in Chinese with English abstract)
Liu JL,Song ZJ,Cao SY,Zhai YF,Wang AJ,Gao L,Xiu QY and Cao DH. 2006. The dynamic setting and processes of tectonic and magmatic cvolution of the oblique collision zone between Indian and Eurasian plate:Exemplified by the tectonic evolution of the Three River region,eastern Tibet. Acta Petrologica Sinica,22(4):775 -786 (in Chinese with English abstract)
Liu JM and Liu JJ. 1997. Basin fluid genetic model of sediment-hosted micro-disseminated gold deposits in the gold-triangle area between Guizhou,Guangxi and Yunnan. Acta Mineralogica Sinica,17(4):448 -456 (in Chinese with English abstract)
Lu HZ,Fan HR,Ni P,Ou GX,Shen K and Zhang WH. 2004. Fluid Inclusion. Beijing:Science Press,1 -487 (in Chinese)
Misra KC. 2000. Understanding Mineral Deposits. London:Kluwer Academic Publisher,574 -612
Peng TP,Wang YJ,Zhao GC,Fan WM and Peng BX. 2008. Arc-like volcanic rocks from the southern Lancangjiang zone,SW China:Geochronological and geochemical constraints on their petrogenesis and tectonic implications. Lithos,102(1 -2):358 -373
Que MY,Cheng DM,Zhang LS,Xia WJ and Zhu CY. 1998. Copper Deposits in the Lanping-Simao Basin. Beijing:Geological Publishing House (in Chinese)
Shmulovich KI,Landwehr D,Simon K and Heinrich W. 1999. Stable isotope fractionation between liquid and vapour in water-salt systems up to 600℃. Chemical Geology,157(3 -4):343 -354
Song YC,Hou ZQ,Yang TN,Zhang HR,Yang ZS,Tian SH,Liu YC,Wang XH,Liu YX,Xue CD,Wang GH and Li Z. 2011. Sedimenthosted Himalayan base metal deposits in Sanjiang region:Characteristics and genetic types. Acta Petrologica et Mineralogiga,30(3):355 -380 (in Chinese with English abstract)
Tang Y,Yin FG,Wang LQ,Wang DB,Liao SY,Sun ZM and Sun J.2013. Structural characterization of and geochronological constraints on sinistral strike-slip shearing along the southern segment of Chongshan shear zone,western Yunnan. Acta Petrologica Sinica,29(4):1311 -1324 (in Chinese with English abstract)
Taylor BE. 1986. Magmatic volatiles:Isotopic variation of C,H,and S.Reviews in Mineralogy and Geochemistry,16(1):185 -225
Teng YG,Liu JD,Zhang CJ,Ni SJ and Peng XH. 2000. Geological and geochemical in formation of deep ore fluid in Lanping basin,Yunnan Province. Geological Prospecting Review,15(4):314 -319 (in Chinese with English abstract)
Wang CM,Deng J,Carranza EJM and Santosh M. 2014. Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain:Nature,deposit types,and tectonic setting.Gondwana Research,26(2):576 -593
Wang EQ and Burchfiel BC. 1997. Interpretation of Cenozic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis. Int. Geol. Rev.,39(3):191 -219
Wang G,Chen L,Zhang FS,Zhang DH and Duan SJ. 1991. Sandstonetype and hydrothermal-type copper deposits in Lanping-Simao basin,western Yunnan. Southwest Mineral Geology,5(4):6 - 35 (in Chinese)
Wang GH. 2010. A study of genesis in Jinman-Liancheng vein Cu deposit in Lanping basin, western Yunnan. Master Degree Thesis.Kunming:Kunming University of Science and Technology,43 -56(in Chinese)
Wang JH,Yin A,Harrison TM,Grove M,Zhang YQ and Xie GH.2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters,188(1 -2):123 -133
Wang XH,Song YC,Hou ZQ,Zhang HR,Wang Z,Zhuang TM,Zhang C and Zhang TF. 2011. Geological characteristics of the Baiyangping Pb-Zn-Cu-Ag polymetallic deposit in northern Lanping basin. Acta Petrologica et Mineralogica,30(3):507 -518 (in Chinese with English abstract)
Warren JK. 2000. Evaporites,brines and base metals:Low-temperature ore emplacement controlled by evaporite diagenesis. Australian Journal of Earth Sciences,47(2):179 -208
Wu NP,Jiang SY,Liao QL,Pan JY and Dai BZ. 2003. Lead and sulfur isotope geochemistry and the ore sources of the vein-type copper deposits in Lanping-Simao Basin,Yunan Province. Acta Petrologica Sinica,19(4):799 -807 (in Chinese with English abstract)
Xiao RG. 1989. Reservation of thermal brine with ore-forming materials and abrupt mineralization. Post-Doctor Research Report. Guiyang:Institute of Geochemistry,Chinese Academy of Sciences (in Chinese)
Xiao RG and Li CY. 1993. The discovery of a mineralized body in spurting fluid deposits of the Lajing hot spring,Lanping,Yunnan,and its geological implication. Geological Review,39(1):73 -78(in Chinese with English abstract)
Xiao RG,Chen HQ,Shuai KY and Yang ZF. 1994. Mineralization of Jinman copper deposit in Mesozoic sedimentary rocks in Lanping,Yunnan Province. Geoscience,8(4):490 -496 (in Chinese with English abstract)
Xu QD and Li JW. 2003. Migration of ore-forming fluids and its relation to zoning of mineralization in northern Lanping Cu-polymetallic area,Yunnan Province: Evidence from fluid inclusions and stable isotopes. Mineral Deposits,22(4):365 - 376 (in Chinese with English abstract)
Xu SH,Gu XX,Tang JX,Chen JP and Dong SY. 2005. Stable isotopic geochemistry of three major types of Cu-Ag polymetallic deposits in the Lanping basin,Yunnan. Bulletin of Mineralogy,Petrology and Geochemistry,24 (4):309 - 316 (in Chinese with English abstract)
Xu XC,Xie QQ,Lu SM,Chen TH,Huang Z and Yue SC. 2005. Fluid inclusion characteristics of copper deposits on the western border of Lanping Basin,Yunnan Province. Acta Mineralogica Sinica,25(2):170 -176 (in Chinese with English abstract)
Xue W,Xue CJ,Li HJ,Chi GX and Zeng R. 2012. Sources of the oreforming material of the Baiyangping poly-metallic deposit in Lanping basin,northwestern Yunnan:Constraints from C,H,O,S and Pb isotope geochemistry. Geoscience,26(4):663 -672 (in Chinese with English abstract)
Yan W. 1993. Geochemical study of a new type of copper deposit. Ph.D. Dissertation. Guiyang:Institute of Geochemistry,Chinese Academy of Sciences (in Chinese with English summary)
Yan W and Li CY. 1995. The material source of a new type of copper deposits:Evidence from stable isotopes. Chinese Journal of Geochemistry,14 (2):168 - 178Yan W and Li CY. 1997.Geochemical characteristics and their hydrothermal sedmentaray genesis of a new type of copper deposit. Geochimica,26(1):54 -63 (in Chinese with English abstract)
Zhang B,Zhuang JJ,Zhong DL,Wang XX,Qu JF and Guo L. 2011.Structural feature and its significance of the northernmost segment of the Tertiary Biluoxueshan-Chongshan shear zone,east of the Eastern Himalayan Syntaxis. Science China (Earth Sciences),54(7):959-974
Zhang J,Deng J,Chen HY,Yang LQ,Cooke D,Danyushevsky L and Gong QJ. 2014. LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit,Sanjiang region,China:Implication for oreforming process. Gondwana Research,26(2):557 -575
Zhang JR,Wen HJ,Qin CJ and Wang JS. 2012. Fluid inclusion and stable isotopes study of Liancheng Cu-Mo polymetallic deposit in Lanping Basin,Yunnan Province. Acta Petrologica Sinica,28(5):1373 -1386 (in Chinese with English abstract)
Zhang L,Zheng Y and Chen YJ. 2012. Ore geology and fluid inclusion geochemistry of the Tiemurt Pb-Zn-Cu deposit,Altay,Xinjiang,China:A case study of oeogenic-type Pb-Zn systems. Journal of Asian Earth Sciences,49:69 -79
Zhang LG,Liu JX,Zhou HB and Chen ZS. 1990. Oxygen isotope fraction in the quartz water-salt system. Mineral Deposits,9(2):158 -166 (in Chinese with English abstract)
Zhang LS. 2000. Stable isotope compositions and their implications for ore genesis of vein tetrahedrite-type copper deposits. Sedimentary Geology and Tethyan Geology,20(2):74 -82 (in Chinese with English abstract)
Zhao DK. 2004. Broomlike structural zone and its ore-controlling in Baiyangping silver multimetallic ore field, Yunlong. Yunnan Geology,23(3):370 -377 (in Chinese with English abstract)
Zhao HB. 2006. Study on the characteristics and metallogenic condition of copper-polymetallic deposits in middle-northern Lanping Basin,western Yunnan. Ph. D. Dissertation. Beijing:China University of Geosciences,77 -81 (in Chinese with English summary)
Zheng YF. 1990. Sulfur isotope fractionation in magmatic systems:Models of Rayleigh distillation and selective flux. Chinese Journal of Geochemistry,9(1):27 -45
Zheng YF,Fu B and Zhang XH. 1996. Effects of magma degassing on the carbon and sulfur isotope compositions of igneous rocks. Scientia Geologica Sinica,31 (1):43 - 53 (in Chinese with English abstract)
Zhu JJ,Hu RZ,Bi XW,Zhong H and Chen H. 2011. Zircon U-Pb ages,Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone,SW China:Constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean.Lithos,126(3 -4):248 -264
Zou ZC,Hu RZ,Bi XW,Wu LY,Feng CX and Tang YY. 2012. Study on isotope geochemistry compositions of the Baiyangping silver-copper polymetallic ore deposit area,Yunnan Province. Geochimica,41(6):515 -529 (in Chinese with English abstract)
附中文参考文献
陈骏,王鹤年. 2004. 地球化学. 北京:科学出版社,116 -117
陈开旭,何龙清,杨振强,魏君奇,杨爱平. 2000. 云南兰坪三山-白秧坪铜银多金属成矿富集区的碳氧同位素地球化学. 华南地质与矿产,(4):1 -8
成祥. 2014. 滇西北云龙茅草坪脉状Cu-Pb-Zn(-Ag)矿床地质-地球化学特征及成因. 硕士学位论文. 昆明:昆明理工大学,20 -22
程杨,宋玉财,薛传东,黄世强. 2015. 滇西兰坪盆地茅草坪脉状铜矿床脉体构造与成矿时代研究. 地质学报,89(3):583 -598
高广立. 1991. 金顶铅锌矿区硬石膏矿的形成时代及其所涉及的问题. 云南地质,10(2):191 -205
葛良胜,邓军,杨立强,王治华,郭晓东,袁士松. 2012. 滇西地区深部构造特征及其对成岩-成矿的控制作用. 岩石学报,28(5):1387 -1400
侯增谦,莫宣学,杨志明,王安建,潘桂棠,曲晓明,聂凤军. 2006.青藏高原碰撞造山带成矿作用:构造背景,时空分布和主要类型. 中国地质,33(2):340 -351
季宏兵,李朝阳. 1998. 滇西金满铜矿床成矿流体地球化学特征及来源. 矿物学报,18(1):28 -37
李峰,甫为民,冉崇英. 1992. 兰坪金满铜矿床成矿物质来源研究.昆明工学院学报,17(4):8 -15,23
李峰,黄敦义,甫为民. 1994. 永平水泄铜矿床地质特征及其成因.云南地质,13(4):341 -349
李峰,黄敦义,甫为民. 1995. 兰坪-思茅盆地红层铜矿成矿规律. 大地构造与成矿学,19(4):322 -335
李峰,甫为民,李雷. 1997. 滇西红层铜矿区域成矿物质来源. 云南地质,16(3):233 -244
李峰,甫为民. 2000. 滇西红层铜矿地质. 昆明:云南大学出版社
刘家军,李朝阳,潘家永,胡瑞忠,刘显凡,张乾. 2000. 兰坪-思茅盆地砂页岩中铜矿床同位素地球化学. 矿床地质,19(3):223-234
刘家军,何明勤,李志明,刘玉平,李朝阳,张乾,杨伟光,杨爱平.2004. 云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义. 矿床地质,23(1):1 -10
刘俊来,宋志杰,曹淑云,翟云峰,王安建,高兰,修群业,曹殿华.2006. 印度-欧亚侧向碰撞带构造-岩浆演化的动力学背景与过程——以藏东三江地区构造演化为例. 岩石学报,22(4):775-786
刘建明,刘家军. 1997. 滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式. 矿物学报,17(4):448 -456
卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮. 2004. 流体包裹体.北京:科学出版社,1 -487
阙梅英,程敦模,张立生,夏文杰,朱创业. 1998. 兰坪-思茅盆地铜矿床. 北京:地质出版社
宋玉财,侯增谦,杨天南,张洪瑞,杨竹森,田世洪,刘英超,王晓虎,刘燕学,薛传东,王光辉,李政. 2011.“三江”喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型. 岩石矿物学杂志,30(3):355 -380
唐渊,尹福光,王立全,王冬兵,廖世勇,孙志明,孙洁. 2013. 滇西崇山剪切带南段左行走滑作用的构造特征及时代约束. 岩石学报,29(4):1311 -1324
滕彦国,刘家铎,张成江,倪师军,彭秀红. 2000. 兰坪盆地深源流体成矿的地质-地球化学信息. 地质找矿论丛,15(4):314-319
王根,陈玲,张佛生,张道红,段生杰. 1991. 云南兰坪-思茅盆地砂岩型和热液型铜矿成因探讨. 西南矿产地质,5(4):6 -35
王光辉. 2010. 滇西兰坪盆地金满-连城脉状铜矿床成因研究. 硕士学位论文. 昆明:昆明理工大学,43 -56
王晓虎,宋玉财,侯增谦,张洪瑞,王哲,庄天明,张翀,张天福.2011. 兰坪盆地北部白秧坪铅锌铜银多金属矿床地质特征. 岩石矿物学杂志,30(3):507 -518
吴南平,蒋少涌,廖启林,潘家永,戴宝章. 2003. 云南兰坪-思茅盆地脉状铜矿床铅、硫同位素地球化学与成矿物质来源研究. 岩石学报,19(4):799 -807
肖荣阁. 1989. 含矿热卤水储备与突发成矿作用. 博士后科研报告.贵阳:中国科学院地球化学研究所
肖荣阁,李朝阳. 1993. 云南兰坪啦井温泉喷流沉积矿化体的发现及其地质意义. 地质论评,39(1):73 -78
肖荣阁,陈卉泉,帅开业,杨忠芳. 1994. 云南兰坪金满中生代沉积岩中的铜矿成矿作用. 现代地质,8(4):490 -496
徐启东,李建威. 2003. 云南兰坪北部铜多金属矿化区成矿流体流动与矿化分带——流体包裹体和稳定同位素证据. 矿床地质,22(4):365 -376
徐仕海,顾雪祥,唐菊兴,陈建平,董树义. 2005. 兰坪盆地三类主要铜银多金属矿床的稳定同位素地球化学. 矿物岩石地球化学通报,24(4):309 -316
徐晓春,谢巧勤,陆三明,陈天虎,黄震,岳书仓. 2005. 滇西兰坪盆地西缘铜矿床矿物流体包裹体研究. 矿物学报,25(2):170-176
薛伟,薛春纪,李洪军,池国祥,曾荣. 2012. 滇西北兰坪盆地白秧坪多金属矿床成矿物质来源:C,H,O,S 和Pb 同位素制约. 现代地质,26(4):663 -672
颜文. 1993. 一种新类型铜矿床的地球化学研究. 博士学位论文. 贵阳:中国科学院地球化学研究所
颜文,李朝阳. 1997. 一种新类型铜矿床的地球化学特征及其热水沉积成因. 地球化学,26(1):54 -63
张锦让,温汉捷,秦朝建,王加昇. 2012. 兰坪盆地连城Cu-Mo 多金属矿床流体包裹体和稳定同位素地球化学研究. 岩石学报,28(5):1373 -1386
张理刚,刘敬秀,周环波,陈振胜. 1990. 石英-水-盐体系氧同位素分馏作用. 矿床地质,9(2):158 -166
张立生. 2000. 脉状黝铜矿型铜矿床的稳定同位素组成及其成因意义. 沉积与特提斯地质,20(2):74 -82
赵大康. 2004. 云龙白洋厂银多金属矿区帚状构造带及其控矿作用.云南地质,23(3):370 -377 、
赵海滨. 2006. 滇西兰坪盆地中北部铜多金属矿床成矿地质特征及地质条件. 博士学位论文. 北京:中国地质大学,77 -81
郑永飞,傅斌,张学华. 1996. 岩浆去气作用的碳硫同位素效应. 地质科学,31(1):43 -53
邹志超,胡瑞忠,毕献武,武丽艳,冯彩霞,唐永永. 2013. 云南白秧坪银铜多金属矿集区成矿流体的稳定同位素地球化学研究.地球化学,41(6):515 -529