冈底斯中段早侏罗世辉长岩-花岗岩杂岩体成因及其对新特提斯构造演化的启示:以日喀则东嘎岩体为例*
2015-03-15邱检生王睿强赵姣龙喻思斌
邱检生 王睿强 赵姣龙 喻思斌
QIU JianSheng,WANG RuiQiang,ZHAO JiaoLong and YU SiBin
南京大学地球科学与工程学院,内生金属矿床成矿机制研究国家重点实验室,南京 210023
State Key Laboratory for Mineral Deposits Research,School of Earth Sciences and Engineering,Nanjing University,Nanjing 210023,China
2015-05-01 收稿,2015-07-08 改回.
汇聚板块边缘是岩浆作用发生的主要场所,也是壳幔相互作用最强烈的地区,其岩浆作用的产物以大规模的花岗质岩石为代表,但也常伴随有少量的辉长质岩石。这些辉长岩与花岗岩形成时间相近,空间上紧密共存,构成辉长岩-花岗岩杂岩体。由于这类杂岩体较之单纯的辉长岩或花岗岩体蕴含有更丰富的深部壳幔相互作用过程信息,并具有明确的构造指示意义,因而成为示踪构造-岩浆演化的重要研究对象(Sisson et al.,1996;Renna et al.,2007;Zhang et al.,2009;Li et al.,2012)。
西藏冈底斯发育一条巨型花岗岩带,它大致夹持于洛巴堆-米拉山断裂以南、印度河-雅鲁藏布缝合带以北(图1a,Zhu et al.,2011),是冈底斯带岩浆岩最集中的地区。在该岩带的南缘断续分布一系列辉长质侵入体,它们与相伴产出的花岗质岩体形成年龄基本一致,构成辉长岩-花岗岩杂岩体(图1b)。以往的研究认为这些杂岩体主要形成于始新世(53 ~40Ma),是新特提斯洋板片俯冲过程中由基性岩浆底侵及其诱发壳幔岩浆混合作用的产物(董国臣等,2006,2008),而对其他时代(特别是侏罗纪)这类杂岩体的研究较少,因而制约了对新特提斯洋板片俯冲演化过程的全面理解。为此,本次研究以日喀则东嘎早侏罗世辉长岩-花岗岩杂岩体为例,通过对辉长岩、花岗岩及其中镁铁质包体年代学、元素地球化学和锆石Hf 同位素组成的系统研究,阐明了杂岩体的成因,并探讨了其对新特提斯构造演化的启示。
图1 青藏高原构造格架(a,据Zhu et al.,2011)、冈底斯中段辉长岩分布(b,据西藏自治区地质矿产厅,1997a①西藏自治区地质矿产厅.1997a.谢通门幅1∶20 万地质图,b②西藏自治区地质矿产厅.1997b.南木林幅1∶20 万地质图;西藏自治区地质矿产局,1993③西藏自治区地质矿产局. 1993.曲水幅1∶20 万地质图编绘)及日喀则东嘎辉长岩-花岗岩杂岩体地质略图(c,据西藏自治区地质矿产厅,1997a 修改)IYZSZ:印度河-雅鲁藏布缝合带;LMF:洛巴堆-米拉山断裂;SNMZ:狮泉河-纳木错蛇绿混杂岩带;BNSZ:班公湖-怒江缝合带;JSSZ:金沙江缝合带Fig.1 Schematic geological map showing tectonic framework of the Tibetan Plateau (a,after Zhu et al.,2011),distribution of gabbros in the middle segment of the Gangdese belt (b),and the Dongga gabbro-granite complex in Xi’gaze (c)IYZSZ:Indus-Yarlung Zangbo Suture Zone;LMF:Luobadui-Milashan Fault;SNMZ:Shiquan River-Nam Tso Mélange Zone;BNSZ:Bangong-Nujiang suture zone;JSSZ:Jinsha suture zone
图2 日喀则东嘎英云闪长岩-花岗闪长岩中形态各异的镁铁质包体(a-c)及辉长岩(d)、英云闪长岩(e)和其中镁铁质包体(f)的显微照片(正交偏光下)Fig.2 Mafic enclaves with various shapes in tonalites and granodiorites (a-c),and microphotographs of the gabbro (d),tonalite(e)and mafic enclave (f)in Dongga gabbro-granite complex,Xi’gaze (under CPL)
1 地质概况及岩石学特征
西藏冈底斯复合辉长岩-花岗岩杂岩体主要分布于岩带中段的南缘,以曲水-谢通门一线最为发育(图1b)。本次研究的东嘎辉长岩-花岗岩杂岩体位于日喀则市附近雅鲁藏布江北侧的东嘎乡一带。辉长质岩体多呈小岩株、岩瘤或岩滴产出(图1c),岩性主要为角闪辉长岩,局部发育堆晶辉石岩及辉长质伟晶岩等。辉长质岩体的围岩主要是以英云闪长岩、花岗闪长岩为主的TTG 岩石组合,二者界线不明显,呈过渡接触。在这些TTG 花岗质岩石中常含形态各异的镁铁质包体,其岩性主要为微粒-细粒闪长岩或辉长闪长岩。包体大小不一,多呈椭圆形、纺锤形、透镜状或水滴状的塑变形态(图2a-c),与寄主岩之间的界线一般较清晰,但也有包体边缘呈锯齿状或港湾状(图2a),包体中可见寄主岩中的长石捕虏晶(图2b)。
角闪辉长岩呈灰黑色,主要由角闪石(45% ~50%)和基性斜长石(50% ~55%)组成(图2d),缺乏辉石类矿物或含量极少,副矿物有锆石、磷灰石、磁铁矿和榍石等,其中以磁铁矿为主。角闪石呈半自形粒状,多色性明显,Ng' = 深黄绿,Np' =浅黄绿,部分颗粒弱绿泥石化;斜长石呈半自形板条状,An 值较高(=54 ~74),种属主要为拉长石,部分颗粒为培长石,其中多数颗粒与角闪石互嵌构成辉长结构,另有少数斜长石颗粒镶嵌(或包裹)在角闪石颗粒内构成基底辉绿结构。英云闪长岩呈中细粒似斑状花岗结构(图2e),组成矿物主要为石英(25% ~30%)、斜长石(55% ~60%)、角闪石(15% ~20%)、钾长石(5% ~10%)和少量黑云母(3%~5%),副矿物主要为锆石、磁铁矿和榍石等。石英多呈他形粒状充填在其它矿物之间,可见波状消光和亚颗粒结构,反映受到应力作用的影响;斜长石呈半自形板条状,聚片双晶发育,局部可见环带结构;角闪石多呈半自形短柱状,多色性显著,Ng' =深蓝绿,Np' =浅黄绿。英云闪长岩随矿物组成中角闪石含量的降低和钾长石含量的增多过渡到花岗闪长岩。镁铁质包体的矿物组合与寄主花岗岩相似(图2f),但铁镁矿物(主要为角闪石)含量更高,石英含量偏低,粒度明显偏细。从岩相观察可以看出,辉长岩、花岗岩和镁铁质包体三者的铁镁矿物均主要为角闪石,且这些角闪石在岩相学特征上具有明显的相似性。
2 年代学
本次对东嘎杂岩体中的辉长岩、花岗岩及其中的镁铁质包体均采集了典型样品进行锆石分离,但辉长岩中因锆石数量少且颗粒细小,未能分离出足量的锆石样品,因此,本次仅对英云闪长岩及其中的镁铁质包体进行了LA-ICP-MS 锆石U-Pb 年龄测定,表1 列出了被测样品的定年结果,图3 为年龄谐和图。
表1 日喀则东嘎英云闪长岩及其中镁铁质包体的锆石LA-ICP-MS U-Pb 定年结果Table 1 Zircon LA-ICP-MS U-Pb dating results of tonalites and their enclosed mafic enclaves from Dongga,Xi’gaze
英云闪长岩(TB-1-6)中被测锆石多为无色-淡褐色,透明-半透明,均呈棱柱状自形晶,长径主要变化于150 ~250μm,长宽比介于1.5∶1 ~3∶1,阴极发光图像均显示出清晰的振荡环带结构,且所测锆石的Th/U 比值均较高,变化于0.45 ~0.73 之间(表1),表明它们均为典型的岩浆结晶锆石(Corfu et al.,2003;Wu and Zheng,2004),且没有发生显著的Pb 丢失(Connelly,2001)。对该样品本次共获得19 个有效测试点数据,在206Pb/238U-207Pb/235U 谐和图上,这些数据点均投影在谐和线上(图3a),表明被测锆石未遭受明显的后期热事件的影响。它们的206Pb/238U 年龄介于175 ~184Ma 之间,经计算获得的206Pb/238U 年龄统计权重平均值为179.7 ±1.7Ma(MSWD=0.5,2σ),结果精确度较高,可以准确反映岩体的成岩年龄。
图3 日喀则东嘎英云闪长岩(a)及其中镁铁质包体(b)的锆石U-Pb 谐和图Fig.3 U-Pb concordia diagrams of zircons from tonalites (a)and their enclosed mafic enclaves (b)from Dongga,Xi’gaze
镁铁质包体(TB-1-4)中被测锆石多无色透明,呈棱柱状或长柱状自形晶,长径主要变化于100 ~300μm,长宽比介于1∶1 ~3∶1。CL 图像依晶形不同存在一定差别,棱柱状锆石的CL 图像同样显示出较清晰的岩浆振荡环带结构,但长柱状锆石的CL 图像多表现出条带状吸收,偶尔也出现不明显的韵律环带,这些特征与基性岩起源的锆石CL 图像一致(Corfu et al.,2003)。被测锆石的Th/U 比值均较高,变化于0.41 ~0.99 之间(表1),同样指示它们应为岩浆结晶锆石。本次对该样品共获得20 个有效测试点数据,在206Pb/238U-207Pb/235U 谐和图上,这些数据点也均投影在谐和线上(图3b),20 个测试点的206Pb/238U 年龄变化于174 ~182Ma,经计算获得的206Pb/238U 年龄统计权重平均值为177.4 ±1.7Ma(MSWD=0.3,2σ),代表镁铁质包体的形成年龄。
从上述定年结果可以看出,镁铁质包体与寄主岩的形成年龄十分接近,表明它们应同时形成,包体呈塑变形态也印证了结果的合理性。尽管本次研究我们未获得辉长质侵入体的年龄,但谭陈诚(2012)获得东嘎辉长质侵入体的锆石U-Pb 年龄为178.9 ±0.6Ma(MSWD =1.06,2σ),这一年龄与花岗质侵入体及其中镁铁质包体的年龄在测试误差范围内基本一致,因而构成典型的辉长岩-花岗岩复合杂岩体,三者年龄的一致性说明它们在成因上存在密切联系。
3 元素地球化学
表2 列出了东嘎杂岩体中辉长岩、英云闪长岩及其中镁铁质包体代表性样品的主量、微量和稀土元素测定结果。
3.1 主量元素
主量元素组成上,东嘎辉长岩硅、碱(尤其是钾)含量较低(SiO2= 44.56% ~48.73%,K2O + Na2O = 1.40% ~3.06%,K2O=0.20% ~0.23%),在TAS 关系图上落在亚碱性系列范围内(图4a),在SiO2-K2O 关系图上落在低钾拉斑系列或钙碱性系列区内(图4b)。富铁(Fe2O3T=10.25% ~11.20%),钙、镁含量较低(CaO =10.23% ~13.04%,MgO=7.14% ~11.61%),Mg#指数也较低(=0.56 ~0.69),在AFM 三角图解上落在拉斑系列区(图略)。辉长岩在化学组成上的另一重要特征是富铝(Al2O3=17.25% ~19.05%),与岛弧和大陆边缘地区产出的高铝玄武岩化学组成十分相似,如印尼苏门答腊北部Barren 现代火山产出的高铝玄武岩均为低钾拉斑系列,Al2O3含量最高可达22.80%(Luhr and Haldar,2006)。
与辉长岩富铝的特点不同,英云闪长岩的铝含量低(Al2O3=16.39% ~16.54%,A/NKC =0.89 ~0.91)。其硅含量也较低(SiO2=62.31% ~62.73%),相对贫碱但较富钠(K2O+Na2O=5.23% ~5.25%,K2O/Na2O =0.34 ~0.38),里特曼指数(σ)介于1.40 ~1.42,属典型的准铝钙碱性I 型花岗岩。镁铁质包体贫硅(SiO2=49.23% ~50.55%),按TAS 分类,其岩性为二长辉长岩(图4a),化学组成较之辉长岩相对富碱富钾(图4a,b),钙、镁、铁含量介于辉长岩与英云闪长岩之间,且三者主要氧化物与SiO2之间具有明显的协变关系(图5a-c),足见它们在成因上具密切联系。
3.2 微量及稀土元素
图4 日喀则东嘎辉长岩、英云闪长岩及其中镁铁质包体的SiO2-K2O+Na2O(a,底图据Middlemost,1994)和SiO2-K2O(b,底图据Peccerillo and Taylor,1976)关系图Fig.4 SiO2-K2O+Na2O (a,base map after Middlemost,1994)and SiO2-K2O (b,base map after Peccerillo and Taylor,1976)plots of gabbros,tonalites and their enclosed mafic enclaves from Dongga,Xi’gaze
图5 日喀则东嘎辉长岩、英云闪长岩及其中镁铁质包体的主量元素协变关系图图例同图4Fig.5 Major element correlation plots of gabbros,tonalites and their enclosed mafic enclaves from Dongga,Xi’gazeThe legends are the same as those in Fig.4
微量元素组成上,东嘎辉长岩富集大离子亲石元素(K、Sr、Pb),亏损高场强元素(Nb、Ta、Zr、Hf,图6a),表现出消减带岩浆岩的典型特征(Kelemen et al.,1990),指示岩浆源区受到了俯冲相关组分的影响,并与受俯冲板片析出流体(熔体)交代地幔楔部分熔融形成的辉长质侵入体(Wang et al.,2013)十分相似。英云闪长岩及其中镁铁质包体的微量元素分布模式与辉长岩相似,但其元素(尤其是大离子亲石元素)丰度较辉长岩明显偏高(图6a)。英云闪长岩的Pb、Sr 等大离子亲石元素含量较镁铁质包体反而偏低(表2、图6a),说明二者并非同源岩浆分异演化的产物。
东嘎辉长质侵入体稀土总量偏低,∑REE=11.82 ×10-6~48.64 ×10-6,尤其是Mg#最高的TB-3 样品,其稀土总量最低(表2);它们均中等富集轻稀土,(La/Yb)N=1.52 ~2.26,相对于球粒陨石标准化的稀土配分型式呈缓右倾型(图6b);TB-3 样品出现一定程度的铕正异常(δEu=1.37),说明存在一定的斜长石的堆晶作用,高铝玄武岩也常出现弱的铕正异常,Luhr and Haldar(2006)认为可能是受到橄长质岩石的混染所致。英云闪长岩和镁铁质包体均富轻稀土,二者均缺乏明显的Eu 异常,但英云闪长岩轻重稀土的分异程度较镁铁质包体更显著,其特征与岛弧及大陆边缘地区钙碱性I型花岗质岩石(Shinjoe,1997)相似。镁铁质包体的稀土总量较英云闪长岩明显偏高(表2、图6b),同样暗示其不是寄主岩浆早期结晶分异产物的堆积体,因为REE 为强不相容元素,倘若镁铁质包体是花岗质岩浆早期结晶分异产物的堆积体,则其REE 含量应该较寄主花岗质岩石低,REE 配分曲线也应当位于寄主花岗质岩石的下方。
表2 日喀则东嘎辉长岩、英云闪长岩及其中镁铁质包体的主量(wt%)、微量和稀土元素含量(×10 -6)Table 2 Major (wt%),trace and rare earth element contents(× 10 -6) of gabbros,tonalites and their enclosed mafic enclaves from Dongga,Xi’gaze
4 锆石Hf 同位素组成
本次对前面2 件已做U-Pb 定年的英云闪长岩和镁铁质包体样品进行了系统的Hf 同位素组成测定,表3 列出了测试结果及根据年龄计算的有关参数。由表中数据可看出,英云闪长岩和镁铁质包体均具有显著亏损的Hf 同位素组成,二者的εHf(t)值均为很高的正值(分别为+11.4 ~+15.0 和+14.4 ~+18.6),二阶段模式年龄(tDM2)均很年轻(分别为261 ~492Ma 和31 ~302Ma)。这一结果基本落在前人总结的冈底斯岩基中生代花岗岩锆石Hf 同位素组成范围内(εHf(t)= + 10.2 ~ + 17.6,tDM2= 55 ~746Ma,Ji et al.,2009),说明它们的岩浆源区应为与亏损地幔同位素组成相似的初生地壳。
5 讨论
5.1 岩石成因
尽管本次未获得东嘎辉长质侵入体的Hf 同位素组成,但已报道的拉萨地块南部晚白垩世角闪辉长岩的εHf(t)值(= +11.8 ~+17.2,管琪等,2011)与花岗质岩石十分接近。前人的研究也表明,冈底斯岩基中段南缘花岗质岩石中的镁铁质包体和寄主花岗岩、基性和酸性岩脉与被穿截的花岗岩都具有相近的年龄和Hf 同位素特征,同时期发育的不同岩性的岩石(如辉长岩和花岗岩等)Hf 同位素特征都比较相似(Ji et al.,2009),说明东嘎辉长岩也应起源于高度亏损的地幔。但正如前述,这些辉长质侵入体同时具有富轻稀土和大离子亲石元素、亏损高场强元素的地球化学特征,岩石的La/Nb、Ba/Nb 比值(分别为1.28 ~3.50 和17.8 ~78.0)远高于亏损地幔起源的洋脊玄武岩(分别为1.07 和4.30,Weaver,1991),Ce/Pb 比值(=1.38 ~5.32)与全球平均大洋沉积物(Ce/Pb=2.9,Plank and Langmuir,1998)接近,Nb/U、Ta/U 比值(分别为3.29 ~30.82 和0.29 ~2.36)明显偏低,与遭受俯冲板片析出流体交代作用地幔楔部分熔融派生岩浆的特点相似(Ayers,1998),上述元素和同位素组成的解耦现象被认为是源区亏损地幔在部分熔融形成岩浆之前遭受过近期交代作用所致,因为交代作用发生的时间距今较近,使得放射成因同位素的积累有限,因而保留了亏损地幔的同位素印记(支霞臣,1990),因此,东嘎辉长质侵入体最可能为近期遭受俯冲板片析出流体交代作用的亏损地幔部分熔融的产物。
表3 日喀则东嘎英云闪长岩及其中镁铁质包体的锆石Hf 同位素分析结果Table 3 Zircon Hf isotopic compositions of tonalites and their enclosed mafic enclaves from Dongga,Xi’gaze
图6 日喀则东嘎辉长岩、英云闪长岩及其中镁铁质包体的原始地幔标准化微量元素蛛网图(a,标准化值据McDonough and Sun,1995)和球粒陨石标准化稀土元素配分曲线(b,标准化值据Boynton,1984)Fig.6 Primitive mantle-normalized trace element spidergrams (a,normalized values after McDonough and Sun,1995)and chondrite-normalized REE distribution patterns (b,normalized values after Boynton,1984)of gabbros,tonalites and their enclosed mafic enclaves from Dongga,Xi’gaze
东嘎地区花岗质岩石以英云闪长岩、花岗闪长岩为主,具有岛弧和被动大陆边缘地区的TTG 岩石组合特征,成因类型属钙碱性的I 型花岗岩类,同位素组成指示其源区与辉长质基性侵入体相似,均具有显著亏损的特征。由于地幔的部分熔融不可能获得显著数量的花岗质或奥长花岗质岩浆(Leake,1990),因此,对于这类花岗岩的成因目前普遍认为经历了二阶段的成岩过程,即由幔源岩浆首先底侵至地壳底部形成初生地壳,然后在后期热事件的影响下,这种初生地壳发生再次熔融形成(Pitcher et al.,1985)。前人的研究也表明,冈底斯岩基中生代花岗岩中不存在反映古老基底的同位素信息,也很少发现古生代以前的继承锆石(Ji et al.,2009),Sr、Nd、Hf 同位素组成一致显示冈底斯岩基中生代花岗岩源区具有新生地壳特征(Chu et al.,2006;Ji et al.,2009),因此,东嘎花岗质岩石应为初生地壳部分熔融的产物。
东嘎花岗质岩石中的镁铁质包体具有典型的火成结构,成岩年龄与寄主岩基本一致,组成矿物的种类与寄主岩相似,但粒度偏细,暗色矿物含量偏高。包体多呈塑变形态(图2a-c),可见反向脉(图2a)及寄主岩中的长石捕虏晶(图2b),镁铁质包体中的斜长石发育复杂的核边环带结构(图2f),上述特征说明镁铁质包体最可能为镁铁质岩浆与其诱发地壳物质熔融形成的长英质岩浆混合的产物。在主量元素协变关系图解上,辉长岩、镁铁质包体及寄主花岗岩三者的SiO2与FeOT、MgO、CaO 具显著的负消长线性演化关系(图5a-c);在同分母的氧化物比值相关图上(如Al2O3/CaONa2O/CaO、SiO2/CaO-Na2O/CaO 和Al2O3/MgO-SiO2/MgO,图5d-f)也构成良好的线性相关,上述协变关系说明镁铁质包体应为辉长质岩浆与花岗质岩浆二者经混合作用的产物,因为在分离结晶作用过程中,由于受固溶体矿物晶出的影响,其演化线多为曲线,而不是直线(周珣若,1994)。
图7 日喀则东嘎辉长岩-花岗岩杂岩体成岩模式略图(1)俯冲大洋板片脱水交代上覆亏损地幔楔,并诱发其熔融产生镁铁质岩浆;(2)镁铁质岩浆底侵至地壳底部形成初生地壳;(3)持续的底侵导致初生地壳熔融产生壳源岩浆;(4)壳源岩浆经进一步分异演化结晶形成英云闪长岩/花岗闪长岩,同时镁铁质岩浆注入部分结晶的英云闪长岩/花岗闪长岩岩浆中经不均匀机械混合形成镁铁质包体;(5)少量镁铁质岩浆沿通道直接上升至地壳浅部结晶形成辉长质侵入体Fig.7 Schematic illustration showing the generation and emplacement of the gabbro-granite complex in Dongga,Xi’gaze
基于上述讨论,我们可以初步构想东嘎辉长岩、英云闪长岩及其中镁铁质包体的成岩过程(图7):即在侏罗纪时期,由于新特提斯板片俯冲消减析出流体交代亏损的上覆地幔楔,并诱发其熔融产生镁铁质岩浆,这一镁铁质岩浆底侵至地壳底部形成初生地壳;随后在持续的岩浆底侵事件影响下,导致初生地壳发生熔融形成壳源岩浆,壳源岩浆经进一步的分异演化,形成英云闪长质岩石的母岩浆。当基性的镁铁质岩浆注入已部分结晶的英云闪长质岩浆中时,由于二种共存岩浆之间存在较大的粘度差,使得彼此之间不能发生完全的化学混合形成均一的岩浆,而主要表现为机械混合(Fernandez and Barbarin,1991),这时未完全均匀混合的囊状或液粒状基性岩浆即形成镁铁质微粒包体,少量的镁铁质岩浆沿岩浆通道上侵到地壳内部直接结晶即形成辉长质侵入体,这一模式能较好地解释目前所观测到的杂岩体的各类地质地球化学特征。
5.2 对新特提斯构造演化的启示
新特提斯洋的开合是青藏高原地质研究中备受关注的重要科学问题,沿冈底斯带发育的岩浆岩记录着这一构造演化过程的丰富信息。通过30 余年来的研究,目前已普遍认识到,新特提斯洋板片的俯冲经历了长期的演化历程,尽管对其持续时间尚存在分歧,但主流观点认为应发生在>205~40Ma,期间经历了复杂的动力学过程,如Ji et al.(2009)认为晚三叠世-白垩纪新特提斯洋板片为稳定的斜向俯冲,并引发了冈底斯岩基的连续岩浆活动;从早白垩世中后期(~110Ma)开始由于板片俯冲角度逐渐增加,使岩浆活动持续南移,并逐渐增强;进入新生代,由于板片俯冲角度变陡,岩浆活动主要集中在拉萨地块南缘;此后随着印度-欧亚板块碰撞而在50Ma 左右发生断离。但对中生代早期(晚三叠-早侏罗)岩浆作用的动力学背景尚存在分歧,部分学者认为可能形成于班公湖-怒江洋板片南向俯冲诱发的弧后伸展背景,如朱弟成等(2009)认为在230 ~140Ma 期间,拉萨微陆块南缘仍为被动大陆边缘,直至侏罗纪晚期-白垩纪早期(~140Ma),因冈底斯-羌塘碰撞才触发了雅鲁藏布新特提斯洋壳岩石圈的北向俯冲。
本次研究的东嘎辉长岩-花岗岩复合杂岩体位于冈底斯南缘,形成于早侏罗世晚期(~178Ma),其辉长岩中铁镁矿物主要为角闪石,斜长石主要为牌号高的钙质斜长石。研究表明,在大洋板块俯冲过程中,俯冲带物质的再循环可以使来自地幔楔部分熔融产生的原生玄武岩浆含相当量的水,在这种环境下形成的基性侵入体其铁镁矿物主要为角闪石而贫辉石(Beard,1986;Sisson et al.,1996),同时由于有足够的水加入,PH2O的增高,降低了An-Ab 二元系的液相线及固相线温度,导致在给定的温度下,水含量高的岩浆结晶出An值高的斜长石(Sisson and Grove,1993)。因此,东嘎辉长质侵入体所具有的特殊矿物组合指示其形成应与新特提斯洋板片的俯冲密切相关。辉长质侵入体属拉斑系列,微量元素组成与受俯冲板片析出流体(熔体)交代地幔楔部分熔融所形成的岩浆相似,共生的花岗质岩石具有弧型岩浆岩组合特点及相应的地球化学组成,这些岩石学与地球化学特征均表明侏罗纪时期冈底斯南缘应处于新特提斯洋板片俯冲的构造背景。
另一方面,以往认为区内辉长质侵入体主要形成于53 ~40Ma(董国臣等,2008),指示冈底斯南缘在始新世期间存在着强烈的岩浆底侵和岩浆混合作用。本次对东嘎杂岩体的研究表明,冈底斯南缘在侏罗纪时期也存在岩浆底侵及相关的壳幔岩浆混合作用,此外,近年来在冈底斯带东段的朗县至米林一带先后报道有98 ~88Ma 的角闪辉长岩(管琪等,2011)和约93Ma 的苏长岩与角闪石岩(Ma et al.,2013),这些镁铁质岩石均被认为是相应时段新特提斯洋板片俯冲诱发幔源基性岩浆上侵的产物,结合冈底斯岩带在始新世之前的花岗质岩石中均不同程度地含有镁铁质包体,我们有理由认为,在新特提斯洋板片的整个俯冲过程中(>205 ~40Ma,Ji et al.,2009),冈底斯南缘应存在多次的基性岩浆底侵及其诱发的壳幔岩浆混合作用。
6 结论
(1)东嘎英云闪长岩和镁铁质包体的成岩年龄十分接近,且与辉长岩的年龄基本一致,均为177 ~180Ma,构成典型的辉长岩-花岗岩复合杂岩体。
(2)东嘎辉长质侵入体组成矿物主要为角闪石和基性斜长石,缺乏辉石,化学组成上贫碱、富铝、富轻稀土和大离子亲石元素、贫高场强元素,为遭受俯冲板片析出流体交代作用的亏损地幔部分熔融的产物。
(3)东嘎花岗质侵入体主要为以英云闪长岩、花岗闪长岩为主体的TTG 岩石组合,化学成分上贫碱、准铝、富钠,具有显著亏损的锆石Hf 同位素组成(εHf(t)= + 11.4 ~+15.0),为初生地壳部分熔融的产物。
(4)东嘎花岗质岩石中的镁铁质包体呈塑变形态,具有与寄主岩相似的矿物组成和微量元素分布模式及锆石Hf 同位素组成(εHf(t)= +14.4 ~+18.6),为辉长质岩浆与花岗质岩浆二者经混合作用的产物。
(5)冈底斯南缘在早侏罗世时期应处于新特提斯洋板片俯冲的构造背景,在新特提斯洋板片的整个俯冲过程中(>205 ~40Ma),冈底斯南缘应存在多次的基性岩浆底侵及其诱发的壳幔岩浆混合作用。
致谢 本项研究得到许志琴院士的指导与支持,贺振宇博士和陈希节博士提供了多方面的帮助,谨此一并表示衷心的感谢。
Ayers J. 1998. Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones. Contributions to Mineralogy and Petrology,132(4):390 -404
Beard JS. 1986. Characteristic mineralogy of arc-related cumulate gabbros:Implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology,14(10):848 -851
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters,148(1 -2):243 -258
Boynton WV. 1984. Geochemistry of the rare earth elements:Meteorite studies. In: Henderson P (ed.). Rare Earth Elements Geochemistry. Amsterdam:Elservier,63 -144
Chu MF,Chung SL,Song B,Liu DY,O’Reilly SY,Pearson NJ,Ji JQ and Wen D. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of Southern Tibet. Geology,34(9):745 -748
Connelly JN. 2001. Degree of preservation of igneous zonation in zircon as a signpost for concordancy in U/Pb geochronology. Chemical Geology,172(1 -2):25 -39
Corfu F,Hanchar JM,Hoskin PWO and Kinny P. 2003. Altas of zircon textures. Reviews in Mineralogy and Geochemistry,53(1):469-500
Dong GC,Mo XX,Zhao ZD,Zhu DC,Wang LL,Chen T and Li B.2006. Magma mixing in middle part of Gangdese magma belt:Evidences from granitoid complex. Acta Petrologica Sinica,22(4):835 -844 (in Chinese with English abstract)
Dong GC,Mo XX,Zhao ZD,Zhu DC,Song YT and Wang L. 2008.Gabbros from southern Gangdese:Implication for mass exchange between mantle and crust. Acta Petrologica Sinica,24(2):203 -210 (in Chinese with English abstract)
Fernandez AN and Barbarin B. 1991. Relative rheology of coeval mafic and felsic magmas:Nature of resulting interaction processes and shape and mineral fabrics of mafic microgranular enclaves. In:Dider J and Barbarin B (eds.). Enclaves and Granite Petrology.Amsterdam:Elsevier,263 -276
Gao JF,Lu JJ,Lai MY,Lin YP and Pu W. 2003. Analysis of trace elements in rock samples using HR-ICPMS. Journal of Nanjing University (Natural Sciences),39(6):844 -850 (in Chinese with English abstract)
Griffin WL,Wang X,Jackson SE,Pearson NJ,O’Reilly SY,Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing,SE China:In-situ analysis of Hf isotopes,Tonglu and Pingtan Igneous complexes. Lithos,61(3 -4):237 -269
Guan Q,Zhu DC,Zhao ZD,Dong GC,Mo XX,Liu YS,Hu ZC and Yuan HL. 2011. Zircon U-Pb chronology,geochemistry of the Late Cretaceous mafic magmatism in the southern Lhasa Terrane and its implications. Acta Petrologica Sinica,27(7):2083 - 2094 (in Chinese with English abstract)
Ji WQ,Wu FY,Liu CZ and Chung SL. 2009. Geochronology and petrogenesis of granitic rocks in Gangdese batholith,southern Tibet.Science in China (Series D),52(9):1240 -1261
Kelemen PB,Johnson KTM,Kinzler RJ and Irving AJ. 1990. High-fieldstrength element depletions in arc basalts due to mantle-magma interaction. Nature,345(6275):521 -524
Leake BE. 1990. Granite magmas:Their sources,initiation and consequences of emplacement. Journal of the Geological Society,147(4):579 -589
Li Z,Qiu JS and Xu XS. 2012. Geochronological,geochemical and Sr-Nd-Hf isotopic constraints on petrogenesis of Late Mesozoic gabbrogranite complexes on the southeast coast of Fujian,South China:Insights into a depleted mantle source region and crust-mantle interactions. Geological Magazine,149(3):459 -482
Liu YS,Gao S,Hu ZC,Gao CG,Zong KQ and Wang DB. 2010.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology,51(1 -2):537 -571
Luhr JF and Haldar D. 2006. Barren Island Volcano (NE Indian Ocean):Island-arc high-alumina basalts produced by troctolite contamination. Journal of Volcanology and Geothermal Research,149(3 -4):177 -212
Ma L,Wang Q,Li ZX,Wyman DA,Jiang ZQ,Yang JH,Gou GN and Guo HF. 2013. Early Late Cretaceous (ca. 93Ma)norites and hornblendites in the Milin area,eastern Gangdese:Lithosphereasthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100 ~80Ma)magmatic‘flare-up’in southern Lhasa (Tibet). Lithos,172 -173:17 -30
McDonough WF and Sun SS. 1995. The composition of the Earth.Chemical Geology,120(3 -4):223 -253
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews,37(3 -4):215 -224
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey.Contributions to Mineralogy and Petrology,58(1):63 -91
Pitcher WS,Atherton MP,Cobbing EJ and Beckinsale RD. 1985.Magmatism at a Plate Edge:The Peruvian Andes. Glasgow:Springer,1 -328
Plank T and Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle.Chemical Geology,145(3 -4):325 -394
Renna MR,Tribuzio R and Tiepolo M. 2007. Origin and timing of the post-Variscan gabbro-granite complex of Porto (Western Corsica).Contributions to Mineralogy and Petrology,154(5):493 -517
Scherer E,Münker C and Mezger K. 2001. Calibration of the lutetiumhafnium clock. Science,293(5530):683 -687
Shinjoe H. 1997. Origin of the granodiorite in the forearc region of Southwest Japan:Melting of the Shimanto accretionary prism.Chemical Geology,134(4):237 -255
Sisson TW and Grove TL. 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism.Contributions to Mineralogy and Petrology,113(2):143 -166
Sisson TW,Grove TL and Coleman DS. 1996. Hornblende gabbro sill complex at Onion Valley,California,and a mixing origin for the Sierra Nevada batholith. Contributions to Mineralogy and Petrology,126(1 -2):81 -108
Tan CC. 2012. The age and tectonic evolution of the Dongga instrusive of Gangdese in north of Shigatse. Master Degree Thesis. Beijing:China University of Geosciences,1 - 73 (in Chinese with English summary)
Vervoort JD and Blichert-Toft J. 1999. Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta,63(3 -4):533 -556
Wang YJ,Zhang AM,Fan WM,Zhang YH and Zhang YZ. 2013. Origin of paleosubduction-modified mantle for Silurian gabbro in the Cathaysia Block: Geochronological and geochemical evidence.Lithos,160 -161:37 -54
Weaver BL. 1991. The origin of ocean island basalt end-member compositions:Trace element and isotopic constraints. Earth and Planetary Science Letters,104(2 -4):381 -397
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin,49(15):1554-1569
Yuan HL,Gao S,Dai MN,Zong CL,Günther D,Fontaine GH,Liu XM and Diwu CR. 2008. Simultaneous determinations of U-Pb age,Hf isotopes and trace element compositions of zircon by excimer laserablation quadrupole and multiple-collector ICP-MS. Chemical Geology,247(1 -2):100 -118
Zhang SH,Zhao Y,Kröner A,Liu XM,Xie LW and Chen FK. 2009.Early Permian plutons from the northern North China Block:Constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. International Journal of Earth Sciences,98(6):1441 -1467
Zhi XC. 1990. Trace element geochemistry and petrogenesis of Cenozoic alkalic basalts from the Penglai and Lingju areas, Shandong Province,Geological Review,36(5):385 -393 (in Chinese with English abstract)
Zhou XR. 1994. Hybridization in the genesis of granitoids. Earth Science Frontiers,1(1 -2):87 -97 (in Chinese with English abstract)
Zhu DC,Mo XX,Zhao ZD,Niu YL,Pan GT,Wang LQ and Liao ZL.2009. Permian and Early Cretaceous tectonomagmatism in southern Tibet and Tethyan evolution:New perspective. Earth Science Frontiers,16(2):1 -20 (in Chinese with English abstract)
Zhu DC,Zhao ZD,Niu YL,Mo XX,Chung SL,Hou ZQ,Wang LQ and Wu FY. 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters,301(1 -2):241 -255
附中文参考文献
董国臣,莫宣学,赵志丹,朱弟成,王亮亮,陈涛,李冰. 2006. 冈底斯岩浆岩带中段岩浆混合作用:来自花岗杂岩的证据. 岩石学报,22(4):835 -844
董国臣,莫宣学,赵志丹,朱弟成,宋云涛,王磊. 2008. 西藏冈底斯南带辉长岩及其所反映的壳幔作用信息. 岩石学报,24(2):203 -210
高剑峰,陆建军,赖鸣远,林雨萍,濮巍. 2003. 岩石样品中微量元素的高分辨率等离子质谱分析. 南京大学学报(自然科学),39(6):844 -850
管琪,朱弟成,赵志丹,董国臣,莫宣学,刘勇胜,胡兆初,袁洪林.2011. 西藏拉萨地块南缘晚白垩世镁铁质岩浆作用的年代学、地球化学及意义. 岩石学报,27(7):2083 -2094
谭陈诚. 2012. 日喀则东嘎乡冈底斯岩体的形成年代及成因. 硕士学位论文. 北京:中国地质大学,1 -73
支霞臣. 1990. 山东蓬莱、临朐新生代碱性玄武岩的痕量元素和岩石成因. 地质论评,36(5):385 -393
周珣若. 1994. 花岗岩混合作用. 地学前缘,1(1 -2):87 -97
朱弟成,莫宣学,赵志丹,牛耀龄,潘桂棠,王立全,廖忠礼. 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点. 地学前缘,16(2):1 -20