柴西北地区碎屑锆石裂变径迹年龄记录的阿尔金山早新生代隆升事件
2015-03-07王亚东郑建京孙国强郑有伟刘兴旺
王亚东,郑建京,孙国强,郑有伟,刘兴旺
1.中国科学院地质与地球物理研究所兰州油气资源研究中心/甘肃省油气资源研究重点实验室,兰州 730000 2.中国科学院油气资源研究重点实验室,兰州 730000 3.School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ,UK
柴西北地区碎屑锆石裂变径迹年龄记录的阿尔金山早新生代隆升事件
王亚东1, 2, 3,郑建京1, 2,孙国强1, 2,郑有伟1, 2,刘兴旺1, 2
1.中国科学院地质与地球物理研究所兰州油气资源研究中心/甘肃省油气资源研究重点实验室,兰州 730000 2.中国科学院油气资源研究重点实验室,兰州 730000 3.School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ,UK
阿尔金山新生代隆升历史一直倍受关注,大量热年代学数据显示,渐新世(40~30 Ma)以来发生阶段性隆升,而新生代初期隆升的热年代学记录极少。柴达木盆地西北地区(柴西北地区)新生界碎屑锆石裂变径迹年龄研究表明,其物源区单一且在新生代早期古新世--中晚始新世(65~50 Ma)发生快速隆升剥露,为该区提供陆源碎屑。前人通过物源分析发现,柴西北时期的碎屑物主要来源于阿尔金山。同时,该区路乐河组--下干柴沟组沉积地层残余厚度及沉积相特征表明,此时(65~50 Ma)阿尔金山存在一次短暂抬升,但幅度较小,与盆地高差不大,使柴西地区地形东高西低、北高南低。结合前人研究成果,本研究锆石裂变径迹热年代学数据以及沉积学指标所记录的阿尔金山东段65~50 Ma构造隆升事件,是对新生代印度--欧亚板块碰撞的最初响应,也为青藏高原新生代隆升具有南北同步性提供了新的证据。
热年代学;锆石;阿尔金山;柴西北地区;构造隆升;早新生代
0 引言
阿尔金山作为青藏高原地理意义上的北界,对限定青藏高原的隆升和变形机制有重要意义[1-6]。研究阿尔金山体系在响应印度--欧亚板块碰撞过程中构造演化特性的工作,已经广泛开展[3, 5, 7-20]。同时,围绕阿尔金山隆升历史的研究,积累了大量热年代学资料[21-27],袁四化等[28]、Wang等[29]和肖安成等[30]分别对这些热年代学数据进行总结得出,明显的峰值区间主要集中在早中侏罗世、白垩纪、晚始新世--早渐新世(40~30 Ma)、早中新世(22~17 Ma)、中中新世(10~7 Ma)、上新世(5.5~4.5 Ma)和更新世(2.11~1.18 Ma)[28-30]。其中,发生在晚始新世--渐新世时期的构造隆升事件广泛发育[8, 14-15, 18, 31-33],但是古新世--早始新世时期的隆升报道较少[16, 23, 25-26, 34],已有的热年代学记录均来自山体基岩[23, 25-26]。山体是其相邻盆地的主要物源,盆地碎屑矿物若未发生退火,其记录的信息对理解山体隆升特征及历史至关重要。
青藏高原北部大型盆地广泛发育巨厚的新生代沉积物,记录了与印度欧亚板块碰撞相关的陆内变形及古气候演化信息,使揭示该区区域造山运动历史成为可能。柴达木盆地位于青藏高原北缘阿尔金断裂东南侧(图1),是青藏高原内部最大的沉积盆地,夹持在昆仑山、阿尔金山和祁连山之间,整体呈不规则菱形。盆地新生代发展演化受周边山体隆升及断裂活动的控制,尤其是柴西北地区,地表构造行迹表现为受阿尔金断裂走滑和挤压作用[35-36],发育一系列走向NW--SE近平行的背斜,其沉积和构造特征与阿尔金山和阿尔金断裂的演化息息相关。
图1 柴达木盆地西部地区构造地质图Fig.1 Structural and geological map of the western Qaidam basin
锆石因其耐风化可经受长距离搬运而在盆地碎屑沉积物中广泛分布,又因其具有良好的热稳定性, 即使遭受超过180 ℃的热事件,也不会把其中蕴藏的源区信息全部清除[40];因此,锆石的矿物学、地球化学特征及其热年代学年龄谱是进行源区示踪并反演源区构造演化历史的首选指标。此外,根据沉积补偿原理,地层厚度尤其是盆地内地层厚度变化,在一定程度上能有效反映湖底沉降幅度和古地形的基本轮廓,可用来进行古构造分析[41]。在气候条件已知的情况下,沉积相发育特征可定性地限定盆地的物源方位及二者之间相对高差。为此, 笔者选择在阿尔金山南侧柴达木盆地西北部的新生代地层中开展碎屑锆石裂变径迹测年工作, 并结合沉积地层残余厚度和沉积相分析,以期获得阿尔金山新生代早期的隆升信息,为青藏高原形成演化提供新的证据。
1 锆石裂变径迹测试结果及地质意义
1.1 样品处理与分析
文中分析的5个锆石样品分别采自柴达木盆地西北油泉子背斜、南翼山背斜、鄂博梁Ⅰ号和鄂博梁Ⅱ号背斜构造的钻井(图1),样品主要分布在古近纪末期下干柴沟组和新近纪早期上干柴沟组地层中的砂岩或含砂层,地层年代为44~22 Ma。具体采样层位、深度及测年参数详见表1。样品及井位资料由中国石油青海油田公司提供。
样品粉碎后,用标准重液和磁选技术分离出锆石单矿物,制成聚全氟乙丙烯塑料样片,并抛光为光薄片,在220 ℃的碱性溶液中蚀刻33 h,采用外探测器法定年。样品置于反应堆内辐照后将云母外探测器置于25 ℃的HF酸中蚀刻35 min,揭示诱发裂变径迹。年龄计算采用Zata常数法,并获得锆石的Zeta常数为132.7±6.4。样品的分析处理在中国科学院高能物理研究所完成。P(χ2)值用于评价所测单颗粒是否属于同一年龄组的概率[42],P(χ2)<5%是单颗粒年龄不均匀分布的证据。由于样品主要来自钻井岩心,受样品量所限,每个样品获得的锆石颗粒数较少(7~17粒)。虽然样品量很少,但从热年代学参数及结果可知,其所记录的构造事件并不是偶然性的,在文中几个样品中均有记录,可见其结果是可信的。测试结果见表1,放射图和年龄分布图见图2。
图2 柴达木盆地西部地区锆石裂变径迹放射图、年龄分布图和BinomFit分解图Fig.2 Zircon fission track radial plots, single grain age distribution,and decomposed age distribution in western Qaidam basin
井位层位深度/m颗粒数ρs/(105/cm)(Ns)ρi/(105/cm)(Ni)ρd/(105/cm)(Nd)γsiP(χ2)/%池年龄(±1σ)/Ma平均年龄(±1σ)/Ma中心年龄(±1σ)/Ma鄂3井E232394.51739.304(842)18.065(387)3.422(3463)0.9021.349.2±3.953.4±5.749.3±4.3南1井E33602.51776.487(620)27.14(220)3.422(3463)0.3947.563.7±6.070.7±6.263.7±6.0鄂2井N13631.28783.904(251)25.740(77)3.422(3463)0.569.073.6±10.354.1±8.958.2±11.5油南1井E33512.41376.980(364)28.127(133)3.422(3463)0.5244.861.8±7.066.2±7.061.7±7.2油6井N12399.81785.822(911)21.856(232)3.422(3463)0.652.088.5±7.984.2±9.180.8±9.2
注:ρs为矿物中自发裂变径迹密度;ρi为矿物中诱发裂变径迹密度;ρd为标准铀玻璃的外探测器云母记录的裂变径迹密度。Ns为自发径迹数;Ni为诱发径迹数;Nd为标准铀玻璃的外探测器白云母记录的径迹数。γsi为Ns和Ni之间的相关系数。
1.2 锆石裂变径迹年龄分解和统计的意义
通常,沉积岩中碎屑矿物的最小年龄组年龄是连接盆地沉积与源区活动的纽带,可探讨源区基岩的冷却/抬升、剥露过程及构造变动[39]。
锆石裂变径迹的部分退火带温度为(220±40)℃,即锆石遭受高于260 ℃的地质事件影响时其裂变径迹将被全部消除,低于180 ℃时则全部保留,介于二者之间则一部分径迹被消除[43-44]。Qiu等[45-46]对柴达木盆地西部地区大地热流和地温梯度变化特征的研究表明,始新世时期柴西中部及北部地区地温梯度为35~42 ℃/km,地表温度为5 ℃,即使按最大地温梯度计算深度最大的鄂2井(表1),其古地温为~160 ℃,远低于锆石裂变径迹退火带。同时,柴西北地区新生代地层的锆石裂变径迹年龄远大于地层沉积年龄(表1),也说明锆石在沉积后没有受热重置或退火,它们代表源区的(构造)热事件或冷却年龄。5件样品除油6井外其余P(χ2)均大于5.0%,表明碎屑锆石来自于遭受相同热历史改造的蚀源区(表1)。各样品的池年龄(pooled age)为(49.2±3.9)~(88.5±7.9) Ma,离散性不大,反映其来源较单一。依据锆石单颗粒年龄的频率(在某一年龄范围内单颗粒年龄出现的次数)分布及BinomFit[47]分解结果(图2)对其可能的地质意义进行探讨。
长期以来,碎屑矿物热年代学中比较年轻的年龄组分受到更多的关注,因为它们的产生通常被归因于源区地形的活动过程。如果锆石裂变径迹年轻年龄组的年龄接近或者与地层年龄一致,它们很可能来自一个火山活动的源区[48];如果沉积物来自没有火山活动的汇聚造山带,且具有年轻的年龄峰值,则表明造山带核心深部就位的变质岩发生快速剥露事件[49]。来自这类岩石的锆石在区域变质作用发生时已经被完全重置,它们的冷却年龄代表源区最近一次的热历史。此外,在沉积剖面上,每出现一次新的最年轻年龄组,则预示出现了一个更年轻的蚀源区,代表源区一次快速的剥露/冷却或抬升事件;最年轻年龄组年龄突然变大代表盆地中有再循环物质加入或蚀源区的变更[39]。同时,来自大洋和陆地的证据显示,白垩纪时全球处于极端温室状态[50-51],即使西藏地区的白垩纪大洋红层也是在底层水高度氧化的深水环境下形成[52-53],我国西北地区在晚白垩世末期之前,一直处于一种半湿润--湿润的气候环境下[54];因此该时期中国西部地区气候对山脉剥露作用影响较小,山脉剥露过程主要受控于区域构造变形。
由此可知,上述5个锆石裂变径迹样品记录了物源区在65~50 Ma期间的一次快速隆升剥露事件。陈国俊等[41]、付玲等[55]分别通过钻孔岩屑特征、重矿物组合及母岩特性对比进行物源分析,认为柴达木盆地西北地区新生代以来干柴沟--鄂博梁--碱山地区以阿尔金山为物源区,且属于近源快速堆积。因此,文中碎屑锆石年龄记录了阿尔金山在新生代早期65~50 Ma的一次构造隆升事件。
2 柴西地区古地形及沉积相演化特征
2.1 柴西地区中生代--古近纪古地形演化
根据青海油田勘探开发研究院的研究成果,对盆内有关钻孔地层分层校正分别做柴达木盆地中生代及古近系路乐河组和下干柴沟组沉积残余厚度图(图3, 4)。因存在地层压实的影响,只能应用残余厚度来分析阿尔金山前古地形特征。由图4可知,柴西地区进入新生代后发生连续沉积,古近纪未发生大规模的剥蚀[41],不同地层组残余厚度的变化可反映柴西地区古近纪受构造运动影响所造成的古地形演化。
由柴达木盆地西部中生代沉积残余地层厚度(图3)可知,该时期柴达木盆地西部地层沉积厚度自阿尔金山前至盆地内部基本一致,最大残余厚度1 500 m零星分布且范围很小,没有明显的沉积中心,正处于盆地演化初期,所受到的构造应力很小,具备盆地雏形[57-58]。
图3 柴达木盆地西部地区中生代沉积地层残余厚度图[56]Fig.3 Cenozoic residual thickness of western Qaidam basin
至路乐河组与下干柴沟组时期(图4),在柴达木盆地西部地层残余厚度均呈向阿尔金山逐渐减薄趋势以至于尖灭。整体表现为北西--北北西向厚与薄间互的分布规律,说明研究区古近纪构造呈北北西--南东向的隆凹相间格局,且由路乐河组到下干柴沟组这种格局逐渐明显。陈国俊等[41]研究表明,柴西地区路乐河组呈填平补齐式沉积,至下干柴沟组沉积期,柴西地区古地形大致呈北高南低之势,各地高差虽不大,但沿阿尔金山前已开始出现独立于盆地内部的沉降中心。由此可知,此时阿尔金山在路乐河组甚至以前已开始隆升,但幅度不大,向湖盆内坡度相对较缓。
图4 柴达木盆地西部地区路乐河组(a)与下干柴沟组(b)沉积地层残余厚度图[56]Fig.4 Residual thickness of Lulehe (a) and Xiaganchaigou (b) Formations in western Qaidam basin
2.2 柴西地区古近纪沉积相发育特征
路乐河组时期,柴达木盆地进入新生代发育期,盆地开始整体下沉[57-58],在阿尔金山前西部和东部分别发育了洪积扇-辫状河-三角洲-洪泛平原相和洪积扇-辫状河-洪泛平原相沉积(图5),盆地主体以冲积沉积为主,没有明显的沉积中心,但在山前西部油砂山--狮子沟和东部一里坪地区存在小的沉积凹陷,水体较浅。
图5 柴达木盆地西部地区路乐河组(a)与下干柴沟组(b)沉积相分布图[59]Fig.5 Sedimentary facies of Lulehe (a) and Xiaganchaigou (b) Formations in western Qaidam basin
下干柴沟组时期,阿尔金山前湖相发育区基本保持不变,但西段油砂山-狮子沟地区湖相范围缩小,辫状河-三角洲相进一步向盆内推进;一里坪地区的湖相范围稍有扩大。该时期阿尔金山前西部地区主要发育三角洲相沉积,而洪积扇-辫状河沉积相主要分布于阿尔金山前东段地区,这些冲积相沉积前端以指状向盆地内部延伸,洪泛平原相沉积范围明显变小,与此时的残余厚度图发育模式比较匹配。
综合柴达木盆地西部新生代早期地层残余厚度及沉积相,结合前人研究认为:随着新生代印度洋板块向欧亚板块碰撞挤压,青藏高原开始抬升,柴达木盆地开始沉降发育;但路乐河组时期湖盆面积较小,水体较浅,尤其在阿尔金山前以冲积扇相与扇三角洲相为主。青海油田分公司勘探开发敦煌研究院研究获得的路乐河组沉积残余厚度图和沉积相平面图印证了这一事实,并揭示了当时盆地地势为东高西低、北高南低(图4,图5)。到下干柴沟组沉积时期,盆地发生大面积湖侵,湖岸线到达祁连山前及阿尔金山前,扇三角洲相和湖相广泛发育,盆地沉积中心位于狮子沟--茫崖一带(图4, 图5),指示盆地处在南北挤压环境之下。结合该时期中国西部气候特征[41],路乐河组--下干柴沟组沉积残余厚度和沉积相演化说明,在印度--欧亚板块碰撞柴达木盆地发育初期,阿尔金山即响应这次构造运动而抬升,成为柴达木盆地西部地区物源区,但抬升幅度不大,与盆地的相对高差较小;下干柴沟组时期进入相对稳定期,山体被剥蚀,高差减小,水体扩大,发育该时期特征沉积相。
3 柴达木盆地周缘地区中--新生代隆升事件
柴达木盆地周边地区阿尔金山、东昆仑山系及祁连山等的磷灰石裂变径迹结果统计(图6)显示,该区域新生代早期65~40 Ma的构造热事件记录虽然较少,但仍然有分布;说明在青藏高原北部地区,新生代早期响应印度与欧亚板块碰撞,山体发生了一次隆升冷却事件。然而,阿尔金山系山体基岩记录65~50 Ma的构造事件主要来自E--W向山脉(图6中黑色圆点),NE和NNE向山系的基岩几乎未能得到该次事件;可能是因为其与EW向山系具有不同的动力学机制、在新生代早期未发生构造抬升,或是因为其记录被剥蚀沉积在盆地中,这需要更深入的物源分析等工作来进行判识。但由图6可知,青藏高原东北部地区新生代早期的构造事件是普遍存在的,尤其在阿尔金山地区,其新生代构造隆升阶段也并非前人所划分的晚始新世40~30 Ma开始,而是古近纪时期已经开始。阿尔金山早新生代隆升事件,前人也通过其他研究手段所捕获。Yin等[5]根据沉积记录,认为阿尔金断裂走滑运动始于始新世早期(~50 Ma);任收麦等[34]通过分析柴达木盆地西部地区路乐河组和塔里木盆地东南地区喀什群陆相沉积的特征,认为阿尔金山隆升时间始于古新世--始新世;李海兵等[16]的研究表明,早期阿尔金断裂的活动从60 Ma持续至40 Ma左右。综合上述,本文锆石裂变径迹热年代学数据以及沉积学指标所记录的阿尔金山东段的65~50 Ma构造隆升事件,是青藏高原北部对新生代印度--欧亚板块碰撞的最初响应的一期普遍存在的构造隆升事件,也为青藏高原新生代隆升具有南北同步性提供了新的证据。
4 结论
综合上述柴西地区锆石裂变径迹热年代学、古近系沉积残余地层厚度及沉积相资料,结合区域构造地质背景,得出以下几点结论:
1)柴达木盆地西部地区碎屑锆石裂变径迹记录了物源区阿尔金山新生代早期65~50 Ma期间,发生一次快速抬升剥露事件。
2)古新世--始新世期间阿尔金山隆升幅度较小,与盆地之间高差较小,且持续时间较短,随后进入稳定剥蚀阶段,柴达木盆地发育水进系列。由下干柴沟组沉积相发育特征可知,此次抬升在阿尔金山不同部位存在差异。
3)阿尔金山新生代早期快速抬升剥露期事件几乎与印度与欧亚大陆的碰撞同时发生,反映青藏高原北缘对强构造抬升期的准同时协同响应,支持高原南北同步隆升模式。
对提供样品及钻井资料的青海油田勘探开发研究院研究人员表示诚挚感谢,也感谢在样品数据分析过程中给予指导和建议的Roderick Brown教授。
[1] Meyer B, Tapponnier P, Bourjot L, et al. Crustal Thickening in Gansu-Qinghai, Lithospheric Mantle Subduction, and Oblique, Strike-Slip Controlled Growth of the Tibet Plateau[J]. Geophysics Journal International, 1998, 135: 1-47.
[2] Sobel E R. Basin Analysis of the Jurassic-Lower Cretaceous Southwest Tarim Basin, Northwest China[J]. Global Science American Bulletin, 1999, 111: 709-724.
[3] Yue Yongjun, Liou J G. Two-Stage Evolution Model for the Altyn Tagh Fault, China[J]. Geology, 1999, 27: 227-230.
[4] Tapponnier P, Xu Zhiqin, Roger F, et al. Oblique Stepwise Rise and Growth of the Tibet Plateau[J]. Science, 2001, 294: 1671-1677.
[5] Yin An, Rumelhart P E, Butler R, et al. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation[J]. Global Science American Bulletin, 2002, 114: 1257-1295.
[6] Cowgill E, Yin An, Harrison T M, et al. Reconstruction of the Altyn Tagh Fault Based on U-Pb Geochronology: Role of Back Thrusts, Mantle Sutures, and Heterogeneous Crustal Strength in Forming the Tibetan Plateau[J]. Journal Geophysical Research, 2003, 108: 1-28.
[7] Yue Yongjun, Ritts B D, Graham S A. Initiation and Long-Term Slip History of the Altyn Tagh Fault[J]. International Geology Review, 2001, 43: 1087-1093.
[8] Chen Yan, Gilder S, Halim N, et al. New Paleomagnetic Constraints on Central Asian Kinematics: Displacement Along the Altyn Tagh Fault and Rotation of the Qaidam Basin[J]. Tectonics, 2002, 21(5): 1042, doi:10.1029/2001TC901030.
[9] Wang Xiaoming, Wang Banyue, Qiu Zhanxiang, et al. Danghe Area (Western Gansu, China) Biostratigraphy and Implications for Depositional History and Tec-tonics of Northern Tibetan Plateau[J]. Earth and Planetary Science Letters, 2003, 208: 253-269.
[10] Yue Yongjun, Ritts B D, Graham S A, et al. Slowing Extrusion Tectonics: Lowered Estimate of Post-Early Miocene Slip Rate for the Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2004, 217: 111-122.
[11] Yue Yongjun, Ritts B D, Hanson A D, et al. Sedimentary Evidence Against Large Strike-slip Translation on the Northern Altyn Tagh Fault, NW China[J]. Earth and Planetary Science Letters, 2004, 228: 311-323.
[12] Ritts B D, Yue Yongjun, Graham S A. Oligocene-Miocene Tectonics and Sedimentation Along the Altyn Tagh Fault, Northern Tibetan Plateau: Analysis of the Xorkol, Subei, and Aksay Basins[J]. The Journal of Geology, 2004, 112: 207-229.
[13] Ritts B D, Yue Yongjun, Graham S A, et al. From Sea Level to High Elevation in 15 Million Years: Uplift History of the Northern Tibetan Plateau Margin in the Altun Shan[J]. American Journal of Science, 2008, 308: 657-678.
[14] Sun Jimin, Zhu Rixiang, An Zhisheng. Tectonic Uplift in the Northern Tibetan Plateau Since 13.7 Ma Ago Inferred from Molasse Deposits Along the Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2005, 235: 641-653.
[15] Sun Zhiming,Yang Zhenyu, Pei Junling, et al. Magnetostratigraphy of Paleogene Sediments from Northern Qaidam Basin, China: Implications for Tectonic Uplift and Block Rotation in Northern Tibetan Plateau[J]. Earth and Planetary Science Letters, 2005, 237: 635-646.
[16] 李海兵, 杨经绥, 许志琴, 等. 阿尔金断裂带对青藏高原北部生长、隆升的制约[J]. 地学前缘, 2006, 13(4): 59-79. Li Haibing, Yang Jingsui, Xu Zhiqin, et al. The Constraint of the Altyn Tagh Fault System to the Growth and Rise of the Northern Tibetan Plateau[J]. Earth Science Frontiers, 2006, 13(4): 59-79.
[17] Wang Erqi, Xu Fengyin, Zhou Jianxun, et al. Eastward Migration of the Qaidam Basin and Its Implications for Cenozoic Evolution of the Altyn Tagh Fault and Associated River Systems[J]. The Geological Society American Bulletin, 2006, 118: 349-365.
[18] Liu Yongjiang, Franz N B, Johann G, et al. Geochronology of the Initiation and Displacement of the Altyn Strike-Slip Fault, Western China[J]. Journal of Asian Earth Sciences, 2007, 29: 243-252.
[19] Zhuang Guangsheng, Hourigan J K, Ritts B D, et al. Cenozoic Multiple-Phase Tectonic Evolution of the Northern Tibetan Plateau: Constraints from Sedimentary Records from Qaidam Basin,Hexi Corridor,and Subei Basin,Northwest China[J].American Journal of Science, 2011, 311: 116-152.
[20] Lu Haijian, Wang Erchie, Meng Kai. Paleomagnetism and Anisotropy of Magnetic Susceptibility of the Tertiary Janggalsay Section (Southeast Tarim Basin): Implications for Miocene Tectonic Evolution of the Altyn Tagh Range[J]. Tectonophysics, 2014, doi: 10.1016/j.tecto.2014.01.031.
[21] 柏道远, 孟德保, 刘耀荣, 等. 青藏高原北缘昆仑山中段构造隆升的磷灰石裂变径迹记录[J]. 中国地质, 2003, 30(3): 240-246. Bai Daoyuan, Meng Debao, Liu Yaorong, et al. Apatite Fission-Track Records of the Tectonic Uplift of the Central Segment of the Kunlun Mountains on the Northern Margin of the Qinghai-Tibet Plateau[J]. Geology in China, 2003, 30(3): 240-246.
[22] 拜永山, 任二峰, 范桂兰, 等. 青藏高原西北缘祁漫塔格山中新世快速抬升的磷灰石裂变径迹证据[J]. 地质通报, 2008, 27(7): 1044-1048. Bai Yongshan, Ren Erfeng, Fan Guilan, et al. Apatite Fission Track Evidence for the Miocene Rapid Uplift of the Qimantag Mountains on the Northwes-tern Margin of the Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2008, 27(7): 1044-1048.
[23] 陈正乐, 宫红良, 李丽, 等. 阿尔金山脉新生代隆升-剥露过程[J]. 地学前缘, 2006, 13(4): 91-102. Chen Zhengle, Gong Hongliang, Li Li, et al. Cenozoic Uplifting and Exhumation Process of the Altyn Tagh Mountains[J]. Earth Science Frontiers, 2006, 13(4): 91-102.
[24] 陈正乐, 万景林, 王小凤, 等. 阿尔金断裂带8 Ma左右的快速走滑及其地质意义[J]. 地球学报, 2002, 23(4): 295-300. Chen Zhengle, Wan Jinglin, Wang Xiaofeng, et al. Rapid Strike Slip of the Altyn Tagh Fault at 8 Ma and Its Geological Implications[J]. Acta Geoscientia Sinica, 2001, 23(4): 295-300.
[25] 陈正乐, 张岳桥, 王小凤, 等. 新生代阿尔金山脉隆升历史的裂变径迹证据[J]. 地球学报, 2001, 22(5): 413-418. Chen Zhengle, Zhang Yueqiao, Wang Xiaofeng, et al. Fission Track Dating of Apatite Constrains on the Cenozoic Uplift of the Altyn Tagh Mountain[J]. Acta Geoscientia Sinica, 2001, 22(5): 413-418.
[26] 万景林, 王瑜, 李齐, 等. 阿尔金山北段晚新生代山体抬升的裂变径迹证据[J]. 矿物岩石地球化学通报, 2001, 20(4): 222-224. Wan Jinglin, Wang Yu, Li Qi, et al. FT Evidence of Northern Altyn Uplift in Late-Cenozoic[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4): 222-224.
[27] 王瑜, 万景林, 李齐, 等. 阿尔金山北段阿克塞--当金山口一带新生代山体抬升和剥蚀的裂变径迹证据[J]. 地质学报, 2002, 76(2): 191-198. Wang Yu, Wan Jinglin, Li Qi, et al. Fission-Track Evidence for the Cenozoic Uplift and Erosion of the Northern Segment of the Altyn Tagh Fault Zone at the Aksay-Dangjin Pass[J]. Acta Geologica Sinica, 2002, 76(2): 191-198.
[28] 袁四化, 刘永江, 葛肖虹, 等. 阿尔金山中新生代隆升历史研究进展[J]. 世界地质, 2006, 25(2): 164-171. Yuan Sihua, Liu Yongjiang, Ge Xiaohong, et al. Adwance in Study of Mesozoic-Cenozoic Uplift History of the Altyn Mountains[J]. Global Geology, 2006, 25(2): 164-171.
[29] Wang Guocan, Cao Kai, Zhang Kexin, et al. Spatio-Temporal Framework of Tectonic Uplift Stages of the Tibetan Plateau in Cenozoic[J]. Science China Earth Science, 2011, 54: 29-44.
[30] 肖安成, 吴磊, 李洪革, 等. 阿尔金断裂新生代活动方式及其与柴达木盆地的耦合分析[J]. 岩石学报, 2013, 29(8): 2826-2836. Xiao Ancheng, Wu Lei, Li Hongge, et al. Tectonic Processes of the Cenozoic Altyn Tagh Fault and Its Coupling with the Qaidam Basin, NW China[J]. Acta Petrologica Sinica, 2013, 29(8): 2826-2836.
[31] Jolivet M, Brunel M, Seward D, et al. Mesozoic and Cenozoic Tectonics of the Northern Edge of the Tibetan Plateau: Fission-Track Constraints[J]. Tectonophysics, 2001, 343:111-134.
[32] 刘永江, Franz N, 葛肖虹, 等. 阿尔金断裂带年代学和阿尔金山隆升[J]. 地质科学, 2007, 42(1): 134-146. Liu Yongjiang, Franz N, Ge Xiaohong, et al. Geochronology of the Altun Fault Zone and Rising of the Altun Mountains[J]. Chinese Journal of Geology, 2007, 42(1): 134-146.
[33] Yin An, Dang Yuqi, Zhang Min, et al. Cenozoic Tectonic Evolution of the Qaidam Basin and Its Surrounding Regions: Part 3: Structural Geology, Sedimentation, and Regional Tectonic Reconstruction[J]. The Geological Society of America, 2008, 120(7/8): 847-876.
[34] 任收麦, 葛肖虹, 刘永江, 等. 晚白垩世以来沿阿尔金断裂带的阶段性走滑隆升[J]. 地质通报, 2004, 23(9/10): 926-932. Ren Shoumai, Ge Xiaohong, Liu Yongjiang, et al. Multi-Stage Strik-Slip Motion and Uplift Along the Altyn Tagh Fault Since the Late Cretaceous[J]. Geological Bulletin of China, 2004, 23(9/10): 926-932.
[35] 尹成明, 任收麦, 田丽艳. 阿尔金断裂对柴达木盆地西南地区的影响:来自构造节理分析的证据[J]. 吉林大学学报: 地球科学版, 2011, 41(3): 724-734. Yin Chengming, Ren Shoumai, Tian Liyan. Effect of Altyn Tagh Fault to Southwest Qaidam Basin: Evidences from Analysis of Joints Data[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(3): 724-734.
[36] 刘重庆, 周建勋. 阿尔金断裂走滑运动对柴达木盆地的侧向效应[J]. 西安科技大学学报, 2013, 33(3): 291-297. Liu Chongqing, Zhou Jianxun. Lateral Effect of Altyn Fault Strike-Slip Movement on Qaidam Basin[J]. Journal of Xi’an University of Science and Technology, 2013, 33(3): 291-297.
[37] Fang Xiaomin, Zhang Weilin, Meng Qingquan, et al. High-Resolution Magneto Stratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258: 293-306.
[38] Lu Haijian, Xiong Shangfa. Magnetostratigraphy of the Dahonggou Section, Northern Qaidam Basin and Its Bearing on Cenozoic Tectonic Evolution of the Qilian Shan and Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2009, 288: 539-550.
[39] Wang Yadong, Zheng Jianjing, Zhang Weilin, et al. Cenozoic Uplift of the Tibetan Plateau: Evidence from the Tectonic-Sedimentary Evolution of the Western Qaidam Basin[J]. Geoscience Frontiers, 2012, 3(2): 175-187.
[40] Bernet M, Garver J I. Fission-Track Analysis of Detrital Zircon[J]. Reviews in Mineralogy & Geoche-mistry, 2005, 58: 205-238.
[41] 陈国俊, 杜贵超, 吕成福, 等. 柴达木盆地西北地区古近纪沉积充填过程与主控因素分析[J]. 沉积学报, 2011, 29(5): 866-874. Chen Guojun, Du Guichao, Lü Chengfu, et al. Sedimentary Filling History and Analysis of Its Controlling Factors in the Paleogene of the Northwestern Qaidam Basin, China[J]. Acta Sedimentologica Sinica, 2011, 29(5): 866-874.
[42] Green P F. A New Look at Statistics in Fission-Track Dating[J]. Nuclear Tracks, 1981, 5(1/2): 77-86.
[43] Brandon M T, Roden-Tice M K, Garver J I. Late Cenozoic Exhumation of the Cascadia Accretionary Wedge in the Olympic Mountains, Northwest Wa-shington State[J]. The Geological Society of American Bulletin, 1998, 110: 985-1009.
[44] Bernet M, Brandon M T, Garver J I, et al. Determining the Zircon Fission-Track Closure Temperature[C]//98th Annual Meeting Abstract with Programs 34. [S.l.]:The Geological Society of American Cordilleran Section, 2002: 18.
[45] Qiu Nansheng, Kang Yongshang, Jin Zhijun. Temperature and Pressure Field in the Tertiary Succession of the Western Qaidam Basin, Northeast Qinghai-Tibet Plateau, China[J]. Marine and Petroleum Geology, 2003, 20: 493-507.
[46] Qiu Nansheng. Tectono-Thermal Evolution of the Qaidam Basin, China: Evidence from Ro and Apatite Fission Track Data[J]. Petroleum Geoscience, 2002, 8: 279-285.
[47] Brandon M T. Decomposition of Mixed Grain Age Distributions Using Binom Fit[J]. On Track, 2002, 24: 13-18.
[48] Garver J I, Soloviev A V, Bullen M E, et al. Towards a More Complete Record of Magmatism and Exhumation in Continental Arcs Using Detrital Fission-Track Thermochronometry[J]. Physics and Chemistry of Earth, 2000, 25: 565-570.
[49] Brandon T Mark, Vance A Joseph. Tectonic Evolution of the Cenozoic Olympic Subduction Complex, Washington State, as Deduced from Fission Track Ages for Detrital Zircons[J]. American Journal Science, 1992, 292: 565-636.
[50] Huber T B, Norris D R, MacLeod G K. Deep Sea Paleotemperature Record of Extreme Warmth During the Cretaceous[J]. Geology, 2002, 30: 123-126.
[51] Robert A Spicer, Judith T Parrish. Late Cretaceous-Early Tertiary Palaeoclimates of Northern High Latitudes: A Quantitative View[J]. Journal of the Geological Society London, 1990, 147: 329-341.
[52] Wang Chengshan, Hu Xiumian, Jansa L, et al. The Cenomanian-Turonian Anoxic Event in Southern Tibet[J]. Cretaceous Research, 2001, 22: 675-676.
[53] Hu Xiumian, Jansa L, Wang Chengshan, et al. Upper Cretaceous Oceanic Red Beds (CORB) in the Tethys: Occurrence, Lithofacies, Age and Environment[J].Cretaceous Research, 2005, 26: 3-20.
[54] 戴霜, 张明震, 彭栋祥, 等. 中国西北地区中--新生代构造与气候格局演化[J]. 海洋地质与第四纪地质, 2013, 33(4): 153-168. Dai Shuang, Zhang Mingzhen, Peng Dongxiang, et al. The Mesozoic-Cenozoic Evolution of the Tectonic and Climatic Patterns, NW China[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 153-168.
[55] 付玲, 关平, 赵为永, 等. 柴达木盆地古近系路乐河组重矿物特征与物源分析[J]. 岩石学报, 2013, 29(8): 2867-2875. Fu Ling, Guan Ping, Zhao Weiyong, et al. Heavy Mineral Feature and Provenance Analysis of Paleogene Lulehe Formation in Qaidam Basin[J]. Acta Petrologica Sinica, 2013, 29(8): 2867-2875.
[56] 中国石油青海油田勘探开发研究院. 柴达木盆地西部构造-地层动态演化与有效圈闭的识别和筛分, 青海油田内部报告[R]. 敦煌:中国石油青海油田勘探开发研究院, 2004. Research Institute of Exploration and Development, Qinghai Oilfield, China Petroleum. The Dynamic Evolution of Structural-Stratigraphic and Identifying and Screening of the Effective Traps in the Western Qaidam Basin, Internal Report of Qinghai Oilfield[R]. Dunhuang: Research Institute of Exploration and Development, Qinghai Oilfield, China Petroleum, 2004.
[57] 孙国强, 郑建京, 苏龙, 等. 柴达木盆地西北区中--新生代构造演化过程研究[J]. 天然气地球科学, 2010, 21(2): 212-217. Sun Guoqiang,Zheng Jianjing,Su Long,et al.Mesozoic-Cenozoic Tectonic Evolution in Northwestern Qaidam Basin[J]. Natural Gas Geoscience, 2010, 21(2): 212-217.
[58] 孙国强, 苏龙, 王旭红, 等. 柴达木盆地西部地区构造演化的裂变径迹揭示[J]. 天然气工业, 2009, 29(2): 27-31. Sun Guoqiang, Su Long, Wang Xuhong, et al. Fission Track Evidences of Tectonic Evolution in West Qaidam Basin[J]. Natural Gas Industry, 2009, 29(2): 27-31.
[59] 苏妮娜, 金振奎, 宋璠, 等. 柴达木盆地古近系沉积相研究[J]. 中国石油大学学报: 自然科学版, 2014, 38(3): 1-9. Su Nina, Jin Zhenkui, Song Fan, et al. Sedimentary Facies of the Paleogene in Qaidam Basin[J]. Journal of China University of Petroleum, 2014, 38(3): 1-9.
[60] 万景林, 郑德文, 郑文俊, 等. MDD法和裂变径迹法相结合模拟样品的低温热历史:以柴达木盆地北缘赛什腾山中新生代构造演化为例[J]. 地震地质, 2011, 33(2): 369-382. Wan Jinglin, Zheng Dewen, Zheng Wenjun, et al. Modeling Thermal History During Low Temperature by K-Feldspar MDD and Fission Track: Example from Meso-Cenozoic Tectonic Evolution in Saishitengshan in the Northern Margin of Qaidam Basin[J]. Seismology and Geology, 2011, 33(2): 369-382.
[61] 孙岳, 陈正乐, 陈柏林, 等. 阿尔金北缘EW向山脉新生代隆升剥露的裂变径迹证据[J]. 地球学报, 2014, 35(1): 67-75. Sun Yue, Chen Zhengle, Chen Bailin, et al. Cenozoic Uplift and Denudation of the EW-Trending Range of Northern Altun Mountains: Evidence from Apatite Fission Track Data[J]. Acta Geoscientica Sinica, 2014, 35(1): 67-75.
[62] 王国灿, 向树元, 王岸, 等. 东昆仑及相邻地区中生代--新生代早期构造过程的热年代学记录[J]. 地球科学: 中国地质大学学报, 2007, 32(5): 605-614. Wang Guocan, Xiang Shuyuan, Wang An, et al. Thermochronological Constraint to the Processes of the East Kunlun and Adjacent Areas in Mesozoic-Early Cenozoic[J]. Earth Science: Journal of China University of Geosciences, 2007, 32(5): 605-614.
[63] Yuan Wanming, Dong Jinquan, Wang Shicheng, et al. Apatite Fission Track Evidence for Neogene Uplift in the Eastern Kunlun Mountains, Northern Qinghai-Tibet Plateau, China[J]. Journal of Asian Earth Sciences, 2006, 27: 847-856.
[64] Wang Fei, Lo Chinghua, Li Qi, et al. Onset Timing of Significant Unroofing Around Qaidam Basin, Northern Tibet, China: Constraints from40Ar/39Ar and FT Thermochronology on Granitoids[J]. Journal of Asian Earth Sciences, 2004, 24: 59-69.
[65] Lu Haijian,Wang Erchie,Shi Xuhua,et al.Cenozoic Tectonic Evolution of the Elashan Range and Its Surroundings, Northern Tibetan Plateau as Constrained by Paleomagnetism and Apatite Fission Track Analyses[J]. Tectonophysics, 2012, 580: 150-161.
[66] 陈宣华, Michael W M, 李丽, 等. 东昆仑造山带多期隆升历史的地质热年代学证据[J]. 地质通报, 2011, 30(11): 1647-1660. Chen Xuanhua, Michael W M, Li Li, et al. Thermochronological Evidence for Multi-Phase Uplifting of the East Kunlun Mountains, Northern Tibetan Plateau[J]. Geological Bulletin of China, 2011, 30(11): 1647-1660.
[67] 王岸, 王国灿, 张克信, 等. 东昆仑造山带新生代早期构造事件的碎屑裂变径迹年代学证据[J]. 地球科学: 中国地质大学学报, 2010, 35(5): 737-746. Wang An, Wang Guocan, Zhang Kexin, et al. An Early Cenozoic Tectonic Event in Eastern Kunlun Orogen, Evidence from Detrital Fission Track Geochronology[J]. Earth Science: Journal of China University of Geosciences, 2010, 35(5): 737-746.
[68] 姜少飞. 北祁连山磷灰石裂变径迹热年代学初步研究[D]. 兰州: 兰州大学, 2011. Jiang Shaofei. Study on Apatite Fission-Track Thermochronology in Northern Qilian Mountain[D]. Lanzhou: Lanzhou University, 2011.
Early Cenozoic Altyn Mountains Uplift Recorded by Detrital Zircon Fission Track Age in Northwest Qaidam Basin
Wang Yadong1, 2, 3, Zheng Jianjing1, 2, Sun Guoqiang1, 2, Zheng Youwei1, 2, Liu Xingwang1, 2
1.LanzhouCenterforOilandGasResources,InstituteofGeologyandGeophysics,CAS/GansuProvincialKeyLaboratoryofPetroleumResources,Lanzhou730000,China2.KeyLaboratoryofPetroleumResourcesResearch,ChineseAcademyofSciences,Lanzhou730000,China3.SchoolofGeographicalandEarthSciences,UniversityofGlasgow,GlasgowG12 8QQ,UK
The Cenozoic uplift of Altyn Mountains has been closely concerned. A large number of thermochronology dates show that Altyn Mountains have periodically uplifted since Late Eocene (40-30 Ma). However, the thermochronology records of the early Cenozoic uplift of Altyn Mountains are rarely documented. The Cenozoic detrital zircon fission track age in the northwestern Qaidam basin shows that the detrital zircons came from the same source which did rapid uplift and exposed to the air in Early Cenozoic Paleocene-Middle Eocene(65-50 Ma), and provided the terrene clast. The previously reported analysis results suggested that the source of the western Qaidam basin were from Altyn Mountains. In consideration of the residual thickness of the sedimentary strata and sedimentary facies of Lulehe-Xiaganchaigou Formations in the western Qaidam basin, a brief and small-scale uplift of Altyn Mountains occurred in Early Cenozoic; which resulted in the small elevation difference between the mountains and the basin. Under the influence of the uplift, Qaidam terrain is high at southeast and low at northwest. The uplift represents the response of Altyn Mountains to the initial stage of collision between India and Eurasian plates. The zircon fission track thermal chronology data recorded the tectonic events of the middle-east part of Altyn Mountains in 65-50 Ma, which indicates the Cenozoic synchronicity uplifts of Tibetan plateau throughout south to north.
thermal chronology; zircon; Altyn Mountains; northwestern Qaidam basin; tectonic uplift;Early Cenozic
10.13278/j.cnki.jjuese.201505116.
2014-12-12
中国科学院西部行动计划项目(KZCX2-XB3-02); 中国科学院“西部之光”人才培养计划“西部博士资助项目”( 2013-01-01)
王亚东(1980--),女,助理研究员,博士,主要从事含油气盆地及造山带裂变径迹热年代学研究,E-mail:wangyd2015@lzb.ac.cn。
10.13278/j.cnki.jjuese.201505116
P588.212; P542.2
A
王亚东,郑建京,孙国强,等.柴西北地区碎屑锆石裂变径迹年龄记录的阿尔金山早新生代隆升事件.吉林大学学报:地球科学版,2015,45(5):1447-1459.
Wang Yadong, Zheng Jianjing, Sun Guoqiang, et al. Early Cenozoic Altyn Mountains Uplift Recorded by Detrital Zircon Fission Track Age in Northwest Qaidam Basin.Journal of Jilin University:Earth Science Edition,2015,45(5):1447-1459.doi:10.13278/j.cnki.jjuese.201505116.