APP下载

施氮对空心莲子草(Alternantheraphiloxeroides)和莲子草(Alternantherasessilis)种间关系的影响

2015-02-13李红丽罗芳丽黄文军张明祥于飞海

生态学报 2015年24期
关键词:种间施氮莲子

周 建,李红丽,罗芳丽, *,黄文军,张明祥,于飞海

1北京林业大学 自然保护区学院,北京 100083 2四川省林业科学研究院,成都 610081

施氮对空心莲子草(Alternantheraphiloxeroides)和莲子草(Alternantherasessilis)种间关系的影响

周 建1,李红丽1,罗芳丽1, *,黄文军2,张明祥1,于飞海1

1北京林业大学 自然保护区学院,北京 100083 2四川省林业科学研究院,成都 610081

自然界的氮素释放总是呈现出空间和时间上的异质性,但关于异质性氮释放对于入侵植物和本地植物种间关系影响的研究相对较少。将入侵植物空心莲子草(Alternantheraphiloxeroides)和同属本地植物莲子草(Alternantherasessilis)分别进行单种种植(12株,无种间竞争)和混种种植(每种6株,有种间竞争),模拟大气氮湿沉降设置由两种不同施氮总量(15g N m-2a-1和30g N m-2a-1)和两种不同施氮频率(每5天1次和每15天1次)交叉组成的4种施氮处理,并以不施氮为对照。施氮总量的增加显著促进了两种植物的生长,但对两种植物的种间竞争关系没有显著影响。施氮频率对两种植物的生长以及种间竞争关系都没有显著影响。两种植物在面对竞争时表现出不同的生物量分配策略,空心莲子草将更多的生物量分配到茎,而莲子草将更多的生物量分配到根。在全球变化的背景下,大气氮湿沉降可能会改变两种植物的种群结构和动态,但可能对这两种植物的种间关系影响较小。

氮沉降;克隆植物;种间竞争;入侵植物;本地植物;脉冲式施氮;相对产量

氮素是影响植物生长的重要营养元素之一[1-2]。自然界中氮素的供给并不是持续不断,而总是以不同的频率释放,呈现出时空上的异质性[3-7]。时间上的异质性常常指短时间的大量氮素供给,如降雨和融雪会在短时间内提高土壤中的氮素含量[8-9]。相应的,某些植物对氮素的利用也可以在很短的时间内完成[10]。有研究发现,与持续施氮相比,集中的大量氮沉降会显著促进植物的生长[3,11]。由于不同植物对氮沉降的响应能力存在差异[12-13],因此,氮沉降可能会引起植物种间关系的变化。

入侵植物对资源的有效利用是其成功入侵的重要原因之一[14-16]。相比较于本地植物,成功入侵的植物往往可以从环境中获得更多的营养,因而具有较强的竞争能力[17-20]。此外,许多外来物种具备在短时间内高效利用养分的能力也是其成功入侵本地植物群落的原因之一[21]。当养分水平在一定范围内增加,会有利于外来物种对本地植物群落的入侵[22-23]。当养分水平持续增加,养分不再是植物生长的限制因素时,种间竞争关系是否会发生变化还不清楚。当养分总量一定时,施氮频率能显著促进一些沙生植物的生长和种间竞争[24-26],然而对一些物种的生长和种间竞争无显著影响[27-29]。同时,有研究发现如果竞争物种对资源的利用效率较低,施加频率可能也不会显著影响物种间的竞争关系[26]。因此,假设施氮总量和频率的变化会改变入侵植物和本地植物的种间竞争关系。

将入侵植物空心莲子草(Alternantheraphiloxeroides(Mart.)Griseb.)和本地植物莲子草(Alternantherasessilis(Linn.)DC.)分别采用单独种植和混合种植的方式栽培。模拟大气氮湿沉降分别对其进行由两种不同施氮总量和两种不同施氮频率交叉组成的4种施氮处理,并以不施氮处理作为对照,拟回答以下科学问题:(1)施氮总量是否会影响这两种植物的生长和种间竞争关系?(2)施氮频率是否会影响这两种植物的生长和种间竞争关系?(3)如果施氮总量和频率对这两种植物的生长和种间竞争关系有显著效应,它们之间是否存在交互作用?

1 材料和方法

1.1 研究物种和实验材料培养

实验选用了在中国东南沿海普遍存在的恶性入侵植物空心莲子草和本地植物莲子草。这两种植物均属于苋科莲子草属,都具有匍匐生长,水陆两栖,无性繁殖能力强等特性。在野外这两种植物一般通过无性繁殖的方式进行扩张,其匍匐茎的节点可以产生根而成为独立存活的植株[30-31]。

空心莲子草,原产于南美洲,后来被引入澳大利亚、美国、中国等许多国家,成为当地恶性入侵的外来物种[32-34]。由于它对新环境具有较强的适应性和繁殖能力,在我国东南沿海地区已经对当地生态系统、经济发展以及人类健康造成巨大的危害[15,35-36]。莲子草原产于中国,在野外常与空心莲子草共生。

本实验所用的空心莲子草和莲子草于2011年5月初采集于浙江省西溪湿地公园,属于陆生型。然后,在北京林业大学科技股份有限公司的温室中进行培养。

1.2 实验设计

在实验开始之前,选取空心莲子草和莲子草植株各540棵,剪取每棵植株顶部20cm的茎节用于实验,将植株垂直的插入土壤中,土壤埋住植株末端的两个茎节。在之后的一周内,将死掉的植株替换以保证植物在实验开始时全部存活。实验容器为直径25cm,高30cm黑色塑料桶,桶内装有12cm高的基质,基质成分为底泥(2012年初取自北京翠湖湿地公园)、沙子和草炭,按照1∶1∶1的体积比均匀混合而成。

本实验设计采取替代系列实验[37-40],对两个物种均进行竞争和施氮处理,其中,竞争包含两个处理分别是:(1)单独种植12株空心莲子草或莲子草于一个培养容器中,分为3排4列,不存在种间竞争;(2)混合种植6株空心莲子草和6株莲子草于一个培养容器中,三排四列交叉种植,存在种间竞争。施氮包括5个处理,分别是:Control(对照组,不施氮)、LALF(低总量和低频率,总共施氮15g N m-2a-1,6次)、LAHF(低总量和高频率,总共施氮15g N m-2a-1,18次)、HALF(高总量和低频率,总共施氮30g N m-2a-1,6次)和HAHF(高总量和高频率,总共施氮30g N m-2a-1,18次)。因此,对每个物种,实验一共10个处理(5种施氮处理 × 2种竞争处理),每个处理设置6组重复。实验中的氮素总量和频率依据这两种植物在我国自然分布区域的大气氮湿沉降量和降水情况进行设置[41-42]。氮素是以硝酸铵溶液的形式溶解在去离子水中,使用喷雾器对植株及土壤进行喷施。5个施氮处理按照不同的频率施加硝酸铵溶液,实验每次施加硝酸铵溶液200mL,每次施加的溶液中硝酸铵含量分别为:0g(Control)、0.03g(LAHF)、0.06g(HAHF)、0.09g(LALF)、0.18g(HALF)。在实验过程中,高频处理共施氮18次,低频处理共施氮6次;高施氮总量处理共施氮30g N m-2a-1,低施氮总量处理共施氮15g N m-2a-1。在每次施氮处理时,对照处理每次喷施200mL去离子水。

实验于2012年7月3日开始,结束于2012年10月1日。在实验过程中,(1)除了施加硝酸铵溶液外,每周浇水2—3次以保证植物正常生长;(2)所有实验容器每月移动1次,以减少温室中环境异质性造成的实验误差。本实验是在北京林业大学科技股份有限公司温室中进行的,实验过程中的日均温度为25.0℃,平均湿度为74.2%。

1.3 实验数据采集

实验结束时,清数出每株植物的节数,并测量出每个植株的茎节长度和总叶面积。总叶面积使用WinFOLIA多功能叶面积仪测量(WinFOLIA Pro 2004a, Regent Instruments, Quebec, Canada)。随后,将植株的根、茎、叶分开,并在70℃的烘箱内烘干48h,分别测定各部分生物量。

1.4 数据分析

空心莲子草和莲子草的数据分别进行了分析。首先,运用双因素方差分析(Two-way ANOVA)的方法分析了竞争和施氮处理对两种植物的各生长和形态指标(包括总生物量、根生物量、茎生物量、叶生物量、总茎长、总节点数、叶面积和根冠比)的影响(表1)。

表1 种间竞争和施氮处理对空心莲子草和莲子草各生长指标的影响Table 1 Effects of interspecific competition (C) and nitrogen (N) addition on growth traits of Alternanthera philoxeroides and A.sessilis.

种间竞争和施氮处理以及它们的交互作用对两种植物的生长指标的影响采用双因素方差分析方法(Two-way ANOVA)进行分析;a: 数据经过开方处理;b: 数据经过自然对数转换

运用三因素方差分析(Three-way ANOVA)检验竞争、施氮总量和施氮频率3种因素对植物生长和形态指标的影响以及它们之间的交互作用(该分析不涉及对照组数据,表2)。方差分析之前,对不符合方差齐性检验的数据进行开二次方或者取自然对数的数据转换,已分别在方差分析表中标注。

为探讨两种莲子草属植物的种间关系对5种施氮处理的响应,基于两种植物的生物量指标,计算相对产量Relative Yield(RY)。已有研究表明,RY能有效地衡量植物的种间竞争强度[43-45],其计算公式如下:

RY=Yab/Ya

式中,Ya表示植物a在单独种植处理中每株植物生物量的平均值,Yab表示植物a在混合种植处理中每株植物生物量的平均值。当RY=1表明种内竞争强度与种间竞争强度相似;当RY>1表明种内竞争强度大于种间竞争强度;当RY<1表明种间竞争强度大于种内竞争强度。计算了两种植物总生物量的RY值,并运用了单因素方差分析(One-way ANOVA)检验不同施氮处理对植物总生物量RY值的影响。所有实验数据统计分析在SPSS(18.0)统计软件中进行。

2 结果

2.1 不同施氮处理对空心莲子草和莲子草生长的影响

施氮显著促进了空心莲子草和莲子草植株的生长和生物量的积累(表1,图1,图2),空心莲子草的根生物量例外(F4, 50=0.86,P=0.498, 表1)。排除对照组的三因素方差分析得出施氮总量显著影响了两种植物的叶生物量和所有形态指标,而施氮频率对两种植物生长的影响较小(表2)。施氮总量和频率的交互作用对两种植物的生长和生物量积累的无显著影响。

2.2 不同施氮处理对空心莲子草和莲子草种间竞争关系的影响

不同施氮处理对空心莲子草和莲子草植株的相对产量(RY)的影响差异都不显著(图3)。空心莲子草总生物量大于1和小于1的RY值各占一半,说明其种内竞争和种间竞争强度基本相似;而莲子草5种处理中的RY值均大于1,说明其种间竞争强度小于种内竞争(图3)。

表2 种间竞争(C)、施氮总量(A)和施氮频率(P)对空心莲子草和莲子草各生长指标的影响

Table 2 Effects of interspecific competition(C), nitrogen(N)amount(A)and nitrogen pulse(P)on growth traits of Alternanthera philoxeroides and A.sessilis

性状Trait种间竞争Competition施氮频率Pulse施氮总量AmountC×PC×AA×PC×A×P(1)空心莲子草A.philoxeroides总生物量Totalbiomass0.57ns1.88ns1.97ns6.53∗0.49ns0.38ns0.43ns根生物量Rootbiomass247.30∗∗0.61ns0.44ns3.30ns0.15ns0.16ns2.44ns茎生物量Stembiomassb16.15∗∗2.48ns2.12ns5.23∗1.10ns1.38ns0.04ns叶生物量Leafbiomass0.69ns0.66ns23.76∗∗0.19ns0.50ns0.31ns0.51ns总茎长Stemlength0.05ns0.02ns8.13∗∗1.20ns0.07ns0.04ns0.19ns总节数No.ofnodes0.48ns0.01ns8.86∗∗2.99ns0.07ns0.13ns0.52ns叶面积Leafarea0.11ns0.23ns11.39∗∗0.37ns0.02ns0.22ns0.08ns根冠比Root:shootratiob426.70∗∗2.85ns7.48∗∗0.76ns0.77ns0.30ns2.63ns(2)莲子草A.sessilis总生物量Totalbiomass4.85∗0.09ns2.21ns0.31ns0.72ns0.24ns1.68ns根生物量Rootbiomassa119.73∗∗0.41ns0.06ns0.06ns0.02ns0.51ns1.71ns茎生物量Stembiomass9.62∗∗0.23ns1.75ns0.01ns1.06ns1.31ns1.21ns叶生物量Leafbiomass1.44ns2.67ns9.34∗∗2.93ns0.00ns2.26ns0.10ns总茎长Stemlength0.30ns6.86∗14.30∗∗5.20∗0.68ns1.08ns0.22ns总节数No.ofnodesa0.06ns0.95ns19.50∗∗1.32ns0.05ns1.41ns0.14ns叶面积Leafarea0.92ns3.64ns9.90∗∗2.28ns0.06ns1.35ns0.47ns根冠比Root:shootratiob301.45∗∗0.46ns2.50ns0.20ns1.04ns3.14ns0.57ns

种间竞争、施氮总量和施氮频率以及它们的交互作用对两种植物的生长指标的影响采用三因素方差分析方法(Three-way ANOVA)进行分析;显著性水平:**P<0.01, * 0.010.05;表中所有数据的自由度均为(1,40);a: 数据经过开二次方处理;b: 数据经过自然对数转换

图1 种间竞争和施氮处理对空心莲子草植株总生物量、根生物量、茎生物量、叶生物量、总茎长、总节数、叶面积和根冠比的影响(均值+标准误差)Fig.1 Effects of interspecific competition and nitrogen (N) addition on total biomass, root biomass, stem biomass, leaf biomass, stem length, number of nodes, leaf area and root to shoot ratio (mean + SE) of Alternanthera philoxeroidesControl: 对照组,不施氮no N;LALF: 低总量和低频率low N amount and low N frequency;LAHF: 低总量和高频率low N amount and high N frequency;HALF: 高总量和低频率high N amount and low N frequency;HAHF: 高总量和高频率high N amount and high N frequency

图2 种间竞争和施氮处理对莲子草植株总生物量、根生物量、茎生物量、叶生物量、总茎长、总节数、叶面积和根冠比的影响(均值+标准误差)Fig.2 Effects of interspecific competition and nitrogen (N) addition on total biomass, root biomass, stem biomass, leaf biomass, stem length, number of nodes, leaf area and root to shoot ratio (mean + SE) of Alternanthera sessilis Control(对照组,不施氮no N);LALF: 低总量和低频率low N amount and low N frequency;LAHF: 低总量和高频率low N amount and high N frequency;HALF: 高总量和低频率high N amount and low N frequency;HAHF: 高总量和高频率high N amount and high N frequency

2.3 种间竞争对空心莲子草和莲子草生长的影响

种间竞争和施氮处理的交互作用对空心莲子草和莲子草植株的生长和生物量积累无显著影响(表1)。存在种间竞争时,种间竞争显著提高了空心莲子草植株茎生物量的积累(与无种间竞争处理的均值相比大约增加60%),降低了根生物量的积累(表1,图1)。因而,显著降低了植株的根冠比(F1, 50=338.04;P<0.001)。与空心莲子草不同,莲子草的总生物量积累显著增加;其适应策略是增加对根生物量的分配(与无种间竞争处理的均值相比大约增加250%),而降低对茎生物量的分配(表1,图2),相应地,显著提高了莲子草的根冠比。

图3 不同施氮处理对空心莲子草和莲子草总生物量相对产量(RY)的影响(均值+标准误差)Fig.3 Effects of nitrogen (N) addition on relative yield based on total biomass of Alternanthera philoxeroides and A.sessilis (mean + SE)单因素方差分析(One-way ANOVA)得出两种植物的相对产量在5个不同施氮处理之间均无显著差异;Control: 对照组,不施氮no N;LALF: 低总量和低频率low N amount and low N frequency;LAHF: 低总量和高频率low N amount and high N frequency;HALF: 高总量和低频率high N amount and low N frequency;HAHF: 高总量和高频率high N amount and high N frequency

3 讨论

氮素是限制植物生长的重要营养元素之一[1-2]。施氮会直接影响到植物的生长[46-47],因而可能影响植物种间的竞争关系。本研究结果表明,施氮总量的增加显著促进了两种植物的生长,但并没有显著影响两种植物的种间竞争关系(表1, 图3)。存在种间竞争时,两种莲子草属植物表现出几乎相同的竞争力,甚至更有利于本地植物莲子草的生长。对多样性-可入侵性假说的研究发现物种功能群多样性(C3禾本科植物、C4植物、非禾本科草本植物和豆科植物)与群落的可入侵性具有显著的负相关关系,即相同功能群的物种在群落中对资源和空间的竞争要比不同功能群之间的物种激烈[48]。莲子草和喜旱莲子草属于相同形态学功能群且同属,研究发现莲子草对空心莲子草的入侵有强烈的抵制作用。还有一些研究也发现,入侵植物在面对本地优势物种时也会表现出较低的竞争力[49-52]。陈跃等[53]研究也发现莲子草和空心莲子草在胁迫条件下表现出非常相似的形态适应特征。因此,施氮总量虽然促进了两种植物的生长,却并不显著影响两种植物的种间竞争关系可能是由于两个物种利用和竞争资源的能力相当。

在自然条件下,空心莲子草和莲子草具有极为相似的形态特征[54]。当存在种间竞争时,两种植物表现出不同的生物量分配策略(表1,图1和图2)。入侵物种空心莲子草将更多的生物量分配到茎的生长,加速扩大其占领空间以获取更多的资源如光照。在光照、养分和水分等资源充足且土壤营养元素(如氮素)的分布主要限于表层时,植物降低对根生物量的投资,而增加对地上部分(如匍匐茎)的投资将有助于提高其入侵能力,从而提高整个植株的适应性[31-32]。因此,空心莲子草在野外可以成功的入侵到各种生态系统,但是莲子草却不能成为入侵物种[30]。与之相对应地,本地种莲子草表现出更强的扎根能力并将更多的生物量用于根的生长,即在种间竞争处理中的根生物量的均值是单独种植处理中的3.5倍(图2)。在一定的空间和资源水平条件下,较多的根生物量分配增强了莲子草获取更多的土壤养分和水分能力。因此,莲子草表现出较强的种间竞争能力。

施氮频率对两种植物的生长和种间关系都没有显著影响(表2,图3)。国内外许多研究表明施氮频率对植物生长是否具有促进作用决定于物种对氮素的利用能力、植株发育阶段、施氮季节、施氮多少以及土壤含水量等因素[6,55-56]。在本实验中,为植物提供的水分和除氮素而外的养分很充足。实验中的低氮处理(15g N m-2a-1)已经能满足植株的生长需求[3,28]。在资源相对充足的条件下,不同的施氮频率可能就不会显著影响植物的生长,进而不会影响植物的种间竞争;其次,Grime[57]指出对环境胁迫具有较强耐受能力的植物对施氮频率不敏感。由于这两种植物对环境胁迫如土壤养分和水分含量都具有较强的耐受能力[30,54]。因此,它们可能对施氮频率的响应较弱。再次,施氮周期较短也可能会影响这两种植物对施氮频率的响应。

总之,施氮显著提高了两种植物的生长,却不影响其种间竞争强度。全球变化背景下的氮沉降可能改变两种植物的种群结构和动态。下一步的研究将在考虑土壤养分和水分条件、物种对环境胁迫的耐性以及施氮强度和季节的基础上,进一步研究施氮频率对两种植物生长和种间竞争的影响。

致谢:感谢王奥、姜星星、张秋秋、吕仁猛、郑立地和姚新颖在实验过程和收获中给予的帮助。

[1] Vitousek P M, Howarth R W.Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry, 1991, 13(2): 87-115.

[2] Bozzolo F H, Lipson D A.Differential responses of native and exotic coastal sage scrub plant species to N additions and the soil microbial community.Plant and Soil, 2013, 371(1/2): 37-51.

[3] Bilbrough C J, Caldwell M M.Exploitation of springtime ephemeral N pulses by six great basin plant species.Ecology, 1997, 78(1): 231-243.

[4] Cain M L, Subler S, Evans J P, Fortin M J.Sampling spatial and temporal variation in soil nitrogen availability.Oecologia, 1999, 118(4): 397-404.

[5] Hodge A.The plastic plant: root responses to heterogeneous supplies of nutrients.New Phytologist, 2004, 162(1): 9-24.

[6] Lamb E G, Stewart A C, Cahill J F Jr.Root system size determines plant performance following short-term soil nutrient pulses.Plant Ecology, 2012, 213(11): 1803-1812.

[7] Song L, Bao X M, Liu X J, Zhang F S.Impact of nitrogen addition on plant community in a semi-arid temperate steppe in China.Journal of Arid Land, 2012, 4(1): 3-10.

[8] Campbell B D, Grime J P.A comparative study of plant responsiveness to the duration of episodes of mineral nutrient enrichment.New Phytologist, 1989, 112(2): 261-267.

[9] Cabrera M L.Modeling the flush of nitrogen mineralization caused by drying and rewetting soils.Soil Science Society of America Journal, 1993, 57(1): 63-66.

[10] Gupta P L, Rorison I H.Seasonal differences in the availability of nutrients down a podzolic profile.The Journal of Ecology, 1975, 63(2): 521-534.

[11] Zhou J, Dong B C, Alpert P, Li H L, Zhang M X, Lei G C, Yu F H.Effects of soil nutrient heterogeneity on intraspecific competition in the invasive, clonal plantAlternantheraphiloxeroides.Annals of Botany, 2011, 109(4): 813-818.

[12] Benner B L, Bazzaz F A.Carbon and mineral element accumulation and allocation in two annual plant species in response to timing of nutrient addition.Journal of Ecology, 1988, 76(1): 19-40.

[13] Miao S L, Bazzaz F A.Responses to nutrient pulses of two colonizers requiring different disturbance frequencies.Ecology, 1990, 71(6): 2166-2178.

[14] Alpert P, Bone E, Holzapfel C.Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants.Perspectives in Plant Ecology, Evolution and Systematics, 2000, 3(1): 52-66.

[15] Mack R N, Simberloff D, Lonsdale W M, Evans H, Clout M, Bazzaz F A.Biotic invasions: causes, epidemiology, global consequences, and control.Ecological Applications, 2000, 10(3): 689-710.

[16] Ehrenfeld J G.Effects of exotic plant invasions on soil nutrient cycling processes.Ecosystems, 2003, 6(6): 503-523.

[17] Durand L Z, Goldstein G.Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii.Oecologia, 2001, 126(3): 345-354.

[18] Huston M A, Deangelis D L.Competition and coexistence: the effects of resource transport and supply rates.The American Naturalist, 1994, 144(6): 954-977.

[19] Leishman M R, Thomson V P.Experimental evidence for the effects of additional water, nutrients and physical disturbance on invasive plants in low fertility Hawkesbury Sandstone soils, Sydney, Australia.Journal of Ecology, 2005, 93(1): 38-49.

[20] Zhao Y J, Qing H, Zhao C J, Zhou C F, Zhang W G, Xiao Y, An S Q.Phenotypic plasticity ofSpartinaalternifloraandPhragmitesaustralisin response to nitrogen addition and intraspecific competition.Hydrobiologia, 2010, 637(1): 143-155.

[21] Olson B E, Blicker P S.Response of the invasiveCentaureamaculosaand two native grasses to N-pulses.Plant and Soil, 2003, 254(2): 457-467.

[22] Brewer J S, Cralle S P.Phosphorus addition reduces invasion of a longleaf pine savanna (Southeastern USA) by a non-indigenous grass (Imperatacylindrica).Plant Ecology, 2003, 167(2): 237-245.

[23] Burke N J W, Grime J P.An experimental study of plant community invisibility.Ecology, 1996, 77(3): 776-790.

[24] Cui M, Caldwell M M.Growth and nitrogen uptake byAgropyrondesertorumandPseudoroegneriaspicatawhen exposed to nitrate pulses of different duration.Australian Journal of Plant Physiology1997, 24(5): 637-642.

[25] Gebauer R L E, Ehleringer J R.Water and nitrogen uptake patterns following moisture pulses in a cold desert community.Ecology, 2000, 81(5): 1415-1424.

[26] James J J and Richards J H.Influence of temporal heterogeneity in nitrogen supply on competitive interactions in a desert shrub community.Oecologia, 2007, 152(4): 721-727.

[27] Gebauer R L E, Schwinning S, Ehleringer J R.Interspecific competition and resource pulse utilization in a cold desert community.Ecology, 2002, 83(9): 2602-2616.

[28] Yoder C, Caldwell M.Effects of perennial neighbors and nitrogen pulses on growth and nitrogen uptake byBromustectorum.Plant Ecology, 2002, 158(1): 77-84.

[29] Ivans C Y, Leffler A J, Spaulding U, Stark J M, Ryel R J, Caldwell M M.Root responses and nitrogen acquisition byArtemisiatridentataandAgropyrondesertorumfollowing small summer rainfall events.Oecologia, 2003, 134(3): 317-324.

[30] Geng Y P, Pan X Y, Xu C Y, Zhang W J, Li B, Chen J K, Lu B R, Song Z P.Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats.Biological Invasions, 2007, 9(3): 245-256.

[31] 潘晓云, 耿宇鹏, Sosa A, 张文驹, 李博, 陈家宽.入侵植物喜旱莲子草: 生物学、生态学及管理.植物分类学报, 2007, 45(6): 884-900.

[32] 马瑞燕, 王韧.喜旱莲子草在中国的入侵机理及其生物防治.应用与环境生物学报, 2005, 11(2): 246-250.

[33] Wang N, Yu F H, Li P X, He W M, Liu F H, Liu J M, Dong M.Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasiveAlternantheraphiloxeroidesunder severe stress.Annals of Botany, 2008, 101(5): 671-678.

[34] 于国磊.水淹对克隆植物空心莲子草种内关系的影响.植物生态学报, 2011, 35(9): 973-980.

[35] Pimentel D, Lach L, Zuniga R.Environmental and economic costs of nonindigenous species in the United States.BioScience, 2000, 50(1): 53-65.

[36] Evans R D, Rimer R, Sperry L, Belnap J.Exotic plant invasion alters nitrogen dynamics in an arid grassland.Ecological Applications, 2001, 11(5): 1301-1310.

[37] Gibson D J, Connolly J, Hartnett D C, Weidenhamer J D.Designs for greenhouse studies of interactions between plants.Journal of Ecology, 1999, 87(1): 1-16.

[38] Knee M, Thomas L C.Light utilization and competition betweenEchinaceapurpurea,PanicumvirgatumandRatibidapinnataunder greenhouse and field conditions.Ecological Research, 2002, 17(5): 591-599.

[39] Jolliffe P A.The replacement series.Journal of Ecology, 2000, 88(3): 371-385.

[40] Singh V, Singh H, Raghubanshi A S.Competitive interactions of wheat withPhalarisminororRumexdentatus: A replacement series study.International Journal of Pest Management, 2013, 59(4): 245-258.

[41] 樊后保, 廖迎春, 刘文飞, 袁颖红, 李燕燕, 黄荣珍.模拟氮沉降对杉木幼苗养分平衡的影响.生态学报, 2011, 31(12): 3277-3284.

[42] 李凯, 江洪, 由美娜, 曾波.模拟氮沉降对石栎和苦槠幼苗土壤呼吸的影响.生态学报, 2011,31(1): 82-89.

[43] Williams A C, McCarthy B C.A new index of interspecific competition for replacement and additive designs.Ecological Research, 2001, 16(1): 29-40.

[44] Weigelt A, Jolliffe P.Indices of plant competition.Journal of Ecology, 2003, 91(5): 707-720.

[45] Danieli-Silva A, Uhlmann A, Vicente-Silva J, Sturmer S L.How mycorrhizal associations and plant density influence intra-and inter-specific competition in two tropical tree species:Cabraleacanjerana(Vell.) Mart.andLafoensiapacariA.St.-Hil.Plant and Soil, 2010, 330(1-2): 185-193.

[46] Wedin D A, Tilman D.Influence of nitrogen loading and species composition on the carbon balance of grasslands.Science, 1996, 274(5293): 1720-1723.

[47] Fenn M E, Haeuber R, Tonnesen G S, Baron J S, Grossman-Clarke S, Hope D, Jaffe D A, Copeland S, Geiser L, Rueth H M, Sickman J O.Nitrogen emissions, deposition, and monitoring in the western United States.BioScience, 2003, 53(4): 391-403.

[48] 许凯扬, 叶万辉, 曹洪麟, 黄忠良.植物群落多样性及其可入侵性关系的实验研究.植物生态学报, 2004, 28(3): 385-391.

[49] Houlahan J E, Findlay C S.Effect of invasive plant species on temperate wetland plant diversity.Conservation Biology, 2004, 18(4): 1132-1138.

[50] Taylor K.Biological Flora of the British Isles:UrticadioicaL.Journal of Ecology, 2009, 97(6): 1436-1458.

[51] Hejda M, Pyšek P, Jarošik V.Impact of invasive plants on the species richness, diversity and composition of invaded communities.Journal of Ecology, 2009, 97(3): 393-403.

[52] Bottollier-Curtet M, Planty-Tabacchi A M, Tabacchi E.Competition between young exotic invasive and native dominant plant species: implications for invasions within riparian areas.Journal of Vegetation Science, 2013, 24(6): 1033-1042.

[53] Chen Y, Zhou Y, Yin T F, Liu C X, Luo F L.The invasive wetland plantAlternantheraphiloxeroidesshows a higher tolerance to waterlogging than its native congenerAlternantherasessilis.PLoS ONE, 2013, 8: e81456.

[54] Sun Y, Ding J, Frye M J.Effects of resource availability on tolerance of herbivory in the invasiveAlternantheraphiloxeroidesand the nativeAlternantherasessilis.Weed Research, 2010, 50(6): 527-536.

[55] James J J, Richards J H.Plant nitrogen capture in pulse-driven systems: interactions between root responses and soil processes.Journal of Ecology, 2006, 94(4): 765-777.

[56] Peek M S, Forseth I N.Positive effects of soil nitrogen pulses on individuals can have negative consequences for population growth during drought in a herbaceous desert perennial.Journal of Ecology, 2009, 97(3): 440-449.

[57] Grime J P.The role of plasticity in exploiting environmental heterogeneity // Caldwell M M, Pearcy R W.Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above-and Belowground.New York: Academic Press, 1994: 1-20.

Effects of nitrogen addition on interspecific competition betweenAlternantheraphiloxeroidesandAlternantherasessilis

ZHOU Jian1, LI Hongli1, LUO Fangli1,*, HUANG Wenjun2, ZHANG Mingxiang1, YU Feihai1

1SchoolofNatureConservation,BeijingForestryUniversity,Beijing100083,China2SichuanAcademyofForestry,Chengdu610081,China

Nitrogen (N) is one of the most important soil nutrients for plants, and the amount and frequency of N release in soils is heterogeneous.Many studies have focused on the effects of heterogeneous N addition on a single plant species, but little is known about the effects of N amount and short-term N pulse on interspecific competition between invasive and native plant species.A replacement series experiment was conducted under greenhouse conditions to examine the effects of N amount and frequency release on the growth and interspecific competition between an invasive wetland clonal plant,Alternantheraphiloxeroides(alligator weed), which is native in South America but highly invasive in China, and its native congenerAlternantherasessilis(sessile joyweed).Plant materials ofA.philoxeroidesandA.sessiliswere collected from five locations in Xixi Wetland Park in Hangzhou, Zhejiang Province, China.Stem fragments of similar length (20cm), with a stem tip for each species, were grown in monoculture (12ramets in one container, no interspecific competition) and in mixture (six invasive plants with six native plants, with interspecific competition) in five different N treatments: control (no N added), low amount and high frequency (a total of 15g N m-2a-1added every 5days), low amount and low frequency (a total of 15g N m-2a-1added every 15days), high amount and high frequency (a total of 30g N m-2a-1added every 5days), and high amount and low frequency (a total of 30g N m-2a-1added every 15days).The results showed that N addition significantly increased the growth of bothA.philoxeroidesandA.sessilis.No significant difference was observed between the control and treatments for the relative yield (yield of each species in mixture divided by yield in its monoculture) for both species, indicating that N addition did not significantly affect the interspecific competition between the two species.The probable reason is that both species are from the same functional group and may have comparable capacities to compete and utilize the soil nutrients.The N pulse did not significantly modify growth or interspecific competition for either species.The sufficient soil water content and availability of nutrients other than N may explain why there were no effects of a N pulse on competition between the two species.Alternatively, high tolerance of both species to low soil nutrients and water content may lead to weaker responsiveness to a N pulse.With interspecific competition, the invasive species,A.philoxeroides, invested more biomass to stems, i.e., the stem biomass increased by 60%, which significantly decreased the root to shoot ratio.The native species,A.sessilis, allocated more biomass to roots, i.e., the root biomass increased by 250%, which significantly increased the root to shoot ratio.The results indicate that increasing atmospheric N deposition in the context of climate change may change population structure and dynamics of both species, but may not affect the interspecific competition of these plants.

atmospheric N deposition;clonal plant;interspecific competition;invasive plant;pulse;native plant;relative yield

中央高校基本科研业务费专项资金资助(TD-JC-2013-1);高等学校博士学科点专项科研基金新教师类资助课题(20120014120001);国家自然科学基金项目(31200313, 31200314)

2014-05-28; < class="emphasis_bold">网络出版日期:

日期:2015-05-21

10.5846/stxb201405281098

*通讯作者Corresponding author.E-mail: ecoluofangli@163.com

周建,李红丽,罗芳丽,黄文军,张明祥,于飞海.施氮对空心莲子草(Alternantheraphiloxeroides)和莲子草(Alternantherasessilis)种间关系的影响.生态学报,2015,35(24):8258-8267.

Zhou J, Li H L, Luo F L, Huang W J, Zhang M X, Yu F H.Effects of nitrogen addition on interspecific competition betweenAlternantheraphiloxeroidesandAlternantherasessilis.ActaEcologicaSinica,2015,35(24):8258-8267.

猜你喜欢

种间施氮莲子
不同施氮水平对春玉米光合参数及产量的影响
莲子去心还是不去心?
三峡库区支流花溪河浮游植物种间关联及影响因子分析
印度南瓜与中国南瓜种间杂交试验
陈年莲子,过早加糖难煮烂!
莲子飞上天
莲子超市
施氮水平对冬小麦冠层氨挥发的影响
江苏省宜兴市茶园秋季杂草种间生态关系及群落分类
均匀施氮利于玉米根系生长及产量形成