碳纳米管/聚苯胺复合材料修饰电极制备及应用研究进展
2015-02-13方渊江奇温琦王铭飞赵勇
方渊,江奇,温琦,王铭飞,赵勇
(材料先进技术教育部重点实验室,西南交通大学 超导研究开发中心,四川 成都 610031)
碳纳米管(carbon nanotubes,CNTs)自首次被报道以来[1],在电化学传感器领域已经受到了极大的关注度[2-3]。其具有高的比表面积,强的吸附能力以及高的导电性,这些性质提高了电化学检测中的电流响应和分析灵敏度[4-5]。然而在应用过程中CNTs 难溶解、难分散等现象阻碍了CNTs 的进一步应用,为了解决这个问题研究人员通常在实际中采用CNTs 改性或与其他材料直接复合,利用材料间的协同效应达到更加优越的性能[6-7]。有机导电聚合物在生物大分子检测方面已经证明具有很大前途,其中有机导电高分子聚苯胺(polyaniline,PANI)相较于其他有机导电聚合物,PANI 由于具有高效的聚合能力、高导电性和氧化还原可逆性[8-9],所以CNTs/PANI 复合材料在电化学传感器领域一直是大家关注的热点[10-12]。近年来一些基于CNTs/PANI 复合材料的修饰电极已陆续被报道,并展示了优良的电化学性能,显示了CNTs 与PANI 良好的协同作用[13-15]。
综述了CNTs/PANI 复合材料修饰电极的制备方法及应用的国内外研究现状,并对各种制备方法的优缺点进行了分析比较,同时对该修饰电极的应用和发展前景进行了展望。
1 CNT/PANI 复合材料修饰电极的制备方法
1.1 层层组装法
层层组装法主要是将CNTs 或者PANI 一层一层的固定在电极表面。一种制备方法是:首先将功能化的CNTs 通过滴加或者浸滞法固定基底电极表面;然后,PANI 再通过化学氧化法、电聚合法或者滴加法再固定在CNTs 层表面[16-18]。该方法的优点是能有效的控制CNTs 与PANI 的量,缺点是CNTs 与PANI 不能均匀结合,并且由于交联剂的加入会改变CNTs 的原有形貌,增大体系电阻。Manisankar P等[19]以十二烷基硫酸钠为交联剂,首先把MWCNTs均匀溶解在十二烷基硫酸钠溶液中,以滴加的方式把MWCNTs 固定在基底电极表面,然后用电聚合法把PANI 沉淀在MWCNTs 层上,最后再把聚吡咯电沉积在PANI 层表面。该电极用于一些常见农药(如:异丙隆、三氯杀螨醇)的电化学检测,检测限分别达到0.1,0.05 μg/L。Luisa PILAN 等[20]先在石墨电极上电化学沉积一层普鲁士蓝膜作为基底电极,把羧酸化的SWCNTs 溶于无水乙腈中超声一段时间得到均匀的黑色溶液。然后通过滴加的方式把SWCNTs 沉淀在基底电极表面,最后PANI 再利用电聚合方式沉积在SWCNTs 表面。该电极用于H2O2的电化学检测,灵敏度为15.5 μA/[(mmol/L)·cm2],线性范围为10 μmol/L ~5 mmol/L。
第2 种方法是:首先,PANI 通过化学氧化法或电聚合法固定在基底电极表面;然后,功能化的CNTs 通过滴加或者浸渍法固定在PANI 层表面;最后再在CNTs 层上沉积其他修饰物质[21]。金属纳米粒子被广泛应用在电催化和电化学传感领域,因为其在提高导电性、提高电荷传递速率、促进催化、增大比表面积和控制电极微环境方面具有独特的优势。近来,将金属纳米粒子,如Au,Ag,Pt,Cu 复合用于传感器领域已引起了人们极大的关注。Jagriti Narang 等[22]通过这种方法先在金电极上通过电化学聚合法原位制备PANI,然后通过浸渍法把羧酸化的多壁碳纳米管(MWCNTs)固定在PANI 层上,最后再在CNT 上沉积Ag 纳米颗粒,制得AgNPs/cMWCNTs/PANI/Au 修饰电极,该电极用于对谷胱甘肽的电化学检测,线性范围为0.3 ~3 500 μmol/L,检测限为0.3 μmol/L。Nidhi Chauhan 等[23]先在金电极上通过电化学聚合法原位制备PANI,然后通过浸渍法把羧酸化的MWCNTs 固定在PANI 层上,最后再在CNT 上沉积Cu 纳米颗粒,制得CuNPs/cMWCNTs/PANI/Au 修饰电极。该电极用于抗坏血酸的电化学检测,检测限为1 μmol/L,线性范围为1 ~600 μmol/L,性能稳定,重现性好。
1.2 电共沉积法
该方法主要是将功能化的CNTs 通过超声分散在含有质子酸和苯胺单体的混合溶液中,然后通过电聚合法在基底电极表面直接电沉积CNTs/PANI复合物[24-25]。该方法优点是操作简便,CNTs 与PANI 能均匀结合在一起,复合材料性能稳定;缺点是不能控制复合材料中CNTs 与PANI 的混合比,大规模生产较困难。Kalayil Manian Manesh 等[26]先对MWCNTs 进行氨化处理,通过超声把氨化的MWCNTs 与苯胺单体制成均匀混合溶液,然后通过循环伏安法在0 ~0.9 V 电压范围内在ITO 电极上电沉积MWCNTs/PANI 复合材料。该电极用于塞来昔布的电化学检测,线性范围为1 ×10-5~1 μmol/L,检测限为1 ×10-5μmol/L,文中并指出结果氨化处理的碳纳米管比未经过氨化处理的碳纳米管所制得的MWCNTs/PANI 复合材料具有更加良好的电化学性能。Sandeep Yadav 等[27]通过超声把羧酸化的MWCNTs 与苯胺单体制成均匀溶液,然后通过循环伏安法在-0.1 ~0.9 V 电压范围在铂电极上电沉积MWCNTs/PANI 复合材料。最后以N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide(EDC)和N-hydroxy succinimide(NHS)为水溶性偶联剂把草酸氧化酶固定在MWCNTs/PANI 复合材料外层。该电极用于草酸的电化学检测,线性范围为8.4 ~272 μmol/L,检测限为3 μmol/L,灵敏度为0.011 3 μA/[(mmol/L)·cm2]。Zhang Xiaowen 等[28]以钨硅酸和硫酸作为混酸掺杂剂,通过超声把羧酸化的CNTs、苯胺单体、混酸制成均匀溶液,然后通过循环伏安法在-0.1 ~1.0 V 电压范围在石墨电极上电沉积CNTs/PANI 复合材料。该电极用于抗坏血酸的电化学检测,线性范围为1 ~10 μmol/L 和 0. 01 ~ 9 mmol/L,检 测 限为0.51 μmol/L。
1.3 直接法
该方法主要是首先将功能化的CNTs 与苯胺单体混合均匀,通过化学氧化法在CNTs 表面原位制备PANI 获得CNTs/PANI 复合材料,然后通过滴加或者浸渍的方式将复合材料固定在基底电极表面[29-32]。该方法优点是CNTs 与PANI 均匀结合,结合牢固;缺点是复合材料与基地电极结合不牢。Liang Ding 等[33]以过硫酸铵为氧化剂,通过化学氧化法在羧酸化的CNTs 表面原位制备PANI,然后以滴加的方式将复合材料涂在玻碳电极表面。该电极用于溴酸盐的电化学检测,线性范围为5 ~50 mmol/L,溴酸盐还原反应的能量达到10.98 kJ/mol。Xu Lihuan 等[34]利用该方法首先制得CNTs/PANI 复合材料,以K2PtCl4与NaBH4为原料制得Pt 纳米颗粒,然后把Pt 纳米颗粒均匀沉积在CNTs/PANI 复合材料表面获得Pt/CNTs/PANI 复合材料,以滴加的方式把该材料涂在铂电极表面制得Pt/CNTs/PANI 修饰电极,把该电极浸滞在含葡萄糖氧化酶的PBS 溶液中一段时间,最终获得酶电极。该电极用于对葡萄糖电化学检测,线性范围为1 μmol/L ~12 mmol/L,检测限为0.5 μmol/L。
2 CNT/PANI 复合材料修饰电极的应用
2.1 抗坏血酸检测
Ida Tiwari 等[17]通过层层组装法用Nafion 作为交联剂,先把羧酸化的MWCNTs 固定在Pt 电极表面,然后以聚丙烯酸为掺杂剂利用循环伏安法把PANI 电沉积在MWCNTs 层外部。该电极抗坏血酸具有良好的电流响应和选择性,线性范围为1 ×10-3~1 mmol/L,检测限为0. 25 μmol/L。Xi Lingling等[18]先利用循环伏安法把PANI 电沉积在玻碳电极表面,把胺功能化的CNTs 置于碘甲烷、碳酸钾、18-冠-6-醚溶液中常温搅拌,然后将所得物用KOH 30% MeOH/水通过搅拌进行离子交换去除碘化盐,最终得到季铵化的CNTs。把处理过后的CNTs 通过滴加的方式沉淀在PANI 层表面。由于PANI 膜与CNTs 膜之间产生紧密的静电作用该电极对抗坏血酸具有非常快速的电流响应以及检测稳定性,检测 限 达 到 0. 25 nmol/L,线 性 范 围 为 0. 02~4 μmol/L。
2.2 葡萄糖检测
Kwang-Pill Lee 等[35]以diphenyl amine 4-sulfonic acid(DPASA)、4-vinyl aniline(VA)和2-acrylamido-2-methyl-1-propane sulfonic acid(APASA)为掺杂剂利用化学氧化法在胺功能化的MWCNTs 表面原位生长PANI,把制得CNTs/PANI 复合材料滴加在Pt 电极表面固定,最后把该电极浸滞在葡萄糖氧化酶溶液中一段时间最终获得工作电极。该电极对葡萄糖具有很高灵敏度以及选择性,并且具有很高的重现性,灵敏度达到4.34 μA/[(mmol/L)·cm2],检测限为0.11 μmol/L。Amit L Sharma 等[36]先利用EDC-NHS 试剂对羧酸化的MWCNTs 进行活化处理,然后放入含葡萄糖氧化酶(GOx)的溶液中搅拌均匀,获得GOx/MWCNTs 复合材料,然后将复合物添加在含苯胺单体的混合溶液中搅拌均匀,最后利用电共沉积法在ITO 基底电极表面原位制备GOx/MWCNTs/PANI 复合材料。该电极对葡萄糖具有良好的检测性能,线性范围为0.5 ~22 mmol/L,响应时间为5 s。
2.3 酚类、多酚类化合物检测
Rachna Rawal 等[37]通过电共沉积法在金电极表面沉积CNTs/PANI 复合材料,然后把该电极置于含有K3Fe(CN)6/K4Fe(CN)6(1∶1)与MnO2纳米颗粒的混合溶液中,在-0.2 ~0.6 V 范围内通过循环伏安法把MnO2纳米颗粒沉积在CNTs/PANI 复合材料表面,该电极用EDC-NHS 化学试剂进行活化处理,最后通过浸滞的方式把漆酶固定在MnO2/CNTs/PANI 表面。该电极对邻甲氧基苯酚具有明显的电流响应,检测性能良好。线性范围为0.1 ~10 μmol/L 和10 ~500 μmol/L,响应时间是4 s,检测限为0.04 μmol/L。Rachna Rawal 等[38]利用相同的方法将Fe3O4纳米颗粒固定在CNTs/PANI 表面,然后再把漆酶固定在Fe3O4/CNTs/PANI 复合材料外层。该电极同样用于对邻甲氧基苯酚进行电化学检测,线性范围为0.1 ~10 μmol/L 和10 ~500 μmol/L,检测限为0.03 μmol/L。
2.4 氨基甲酸酯类农药检测
Ivana Cesarino 等[39]通过电共沉积法在-0.2 ~0.8 V 电压范围内在玻碳电极表面原位制备MWCNTs/PANI 复合材料,然后把乙酰胆碱酯酶滴加在复合材料表面,最终制得酶电极。通过SEM 看出,MWCNTs/PANI 呈现出奇异的核壳结构,该电极用于蔬菜和水果中氨基甲酸酯类农药(胺甲萘、灭多虫)的电化学检测,灵敏度高、稳定性和重现性好,检测限分别为1.4 μmol/L 和0.95 μmol/L,把该电极用于实际的甘蓝、花椰菜和苹果样品检测,检测结果与理论值吻合良好。
3 结束语
基于CNTs/PANI 复合材料的修饰电极提高了电化学检测的灵敏度与选择性,拓宽了检测范围,降低了检测限。这主要是因为碳纳米管与聚苯胺组分的存在提高了电极的电荷传递速率及电催化活性,增强了电极与检测物间的相互作用,降低了电极的内部电阻。但是,CNTs/PANI 复合材料在电化学检测的实际应用中至少还存在以下几个问题:
(1)CNTs/PANI 材料的微观结构对其电化学检测性能具有重要影响。比如:CNTs/PANI 材料形成三维网状结构将提高修饰电极的比表面积、提供更多的导电通道,大大增强被检测分子与电极的接触界面,增加吸附分子的本体浓度,从而降低分析物的检测限。因此,只有系统性的研究CNTs/PANI 修饰电极微结构的形成过程和调控方法才能进一步深入了解与解释CNTs/PANI 材料在电化学检测的作用。
(2)复合材料与被检测物之间的相互作用机理及其对电化学检测的影响还很不清楚,需要结合实验研究和理论知识才能解决这一问题,从而能有效地提高传感器的重现性。
(3)需要进一步弄清CNTs/PANI 复合材料中各组分间的界面与协同作用,优化复合材料的组成和堆积结构,提高其电化学检测性能。
(4)CNTs/PANI 复合材料在溶液中难溶问题一直困扰其在检测方面的应用,而CNTs/PANI 功能化能有效改善这个问题,所以需要再这个方面做出新的探索。
(5)CNTs 或者CNTs/PANI 复合材料在向基底电极表面转移的过程当中考虑到材料与基底电极表面的结合牢固性问题会使用交联剂,但同时由于交联剂的加入会改变CNTs 原有的形貌同时增加体系电阻,所以需要寻找更高效的交联剂。尽管如此,CNTs/PANI 复合材料在电化学检测方面的出色表现表明这一研究领域具有光明的未来。
[1] Iijima S. Helical microtubules of graphitic carbon [J].Nature,1991,354(1):56-58.
[2] Mustafa Musameh,Joseph Wang,Arben Merkoci,et al.Low-potential stable NADH detection at carbon-nanotubemodified glassy carbon electrodes [J]. Electrochemistry Communications,2002,4(10):743-746.
[3] Randhir P Deo,Joseph Wang.Electrochemical detection of carbohydrates at carbon-nanotube modified glassy-carbon electrodes[J]. Electrochemistry Communications,2004,6(3):284-287.
[4] Dong Shuqing,Zhang Shan,Chi Langzhu,et al. Electrochemical behaviors of amino acids at multiwall carbon nanotubes and Cu2O modified carbon paste electrode[J].Analytical Biochemistry,2008,381(2):199-204.
[5] Guzel Ziyatdinova,Endzhe Ziganshina,Herman Budnikov.Electrooxidation of morin on glassy carbon electrode modified by carboxylated single-walled carbon nanotubes and surfactants [J]. Electrochimica Acta,2014,145(1):209-216.
[6] Gao Yunqiao,Wang Meiling,Yang Xiongbo,et al. Rapid detection of quinoline yellow in soft drinks using polypyrrole/single-walled carbon nanotubes composites modified glass carbon electrode [J]. Journal of Electroanalytical Chemistry,2014,735(1):84-89.
[7] Shaker Ebrahim,Radwa El-Raey,Ahmed Hefnawy,et al.Electrochemical sensor based on polyaniline nanofibers/single wall carbon nanotubes composite for detection of malathion[J].Synthetic Metals,2014,190(1):13-19.
[8] Debajyoti Mahanta,Munichandraiah N,Radhakrishnan S,et al.Polyaniline modified electrodes for detection of dyes[J].Synthetic Metals,2011,161(9):659-664.
[9] Zhang Susu,He Ping,Lei Wen,et al. Novel attapulgite/polyaniline/phosphomolybdic acid-based modified electrode for the electrochemical determination of iodate[J].Journal of Electroanalytical Chemistry,2014,724(4):29-35.
[10] Suman Lata,Bhawna Batra,Neelam Karwasra,et al. An amperometric H2O2biosensor based on cytochromec immobilized onto nickel oxide nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode [J]. Process Biochemistry,2012,47 (6):992-998.
[11]Sandeep Yadav,Ashok Kumar,Pundir C S.Amperometric creatinine biosensor based on covalently coimmobilized enzymes onto carboxylated multiwalled carbon nanotubes/polyaniline composite film[J].Analytical Biochemistry,2011,19(2):277-283.
[12]Wang Zhaomeng,Liu Erjia,Gu Donghao,et al.Glassy carbon electrode coated with polyaniline-functionalized carbon nanotubes for detection of trace lead in acetate solution[J].Thin Solid Films,2011,519(15):5280-5284.
[13]Li Ying,Yogeswaran Umasankar,Chen Shenming .Polyaniline and poly (flavin adenine dinucleotide)doped multi-walled carbon nanotubes for p-acetamidophenol sensor[J].Talanta,2009,79(2):486-492.
[14] Zou Yongjin,Sun Lixian,Xu Fen. Biosensor based on polyaniline-Prussian Blue/multi-walled carbon nanotubes hybrid composites [J]. Biosensors and Bioelectronics,2007,22(11):2669-2674.
[15]Yang Tao,Zhou Na,Zhang Yongchun,et al.Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites [J]. Biosensors and Bioelectronics,2009,24(7):2165-2170.
[16] Qu Fengli,Yang Minghui,Jiang Jianhui,et al. Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film [J]. Analytical Biochemistry,2005,244(1):108-114.
[17] Ida Tiwari,Karan Pratap Singh,Manorama Singh,et al.Polyaniline/polyacrylic acid/multi-walled carbon nanotube modified electrodes for sensing ascorbic acid[J].Anal Methods,2012,24(1):118.
[18]Xi Lingling,Zhu Zuoyi,Wang Fengli.Electrocatalytic oxidation of ascorbic acid on quaternized carbon nanotubes/ionic liquid-polyaniline composite film modified glassy carbon electrode[J].Journal of the Electrochemical Society,2013,160(6):327-334.
[19]Manisankar P,Abirama Sundari P L,Sasikumar R,et al.Electroanalysis of some common pesticides using conducting polymer/multiwalled carbon nanotubes modified glassy carbon electrode[J].Talanta,2008,76(5):1022-1028.
[20] Luisa Pilan,Matei Raicopol. Highly selective and stable glucose biosensors based on polyaniline/carbon nanotubes composites[J].U P B Sci Bull,Series B,2014,76(1):1454-2331.
[21]Bhawna Batra,Suman Lata,Madhu Sharma,et al. An acrylamide biosensor based on immobilization of hemoglobin onto multiwalled carbon nanotube/copper nanoparticles/polyaniline hybrid film [J]. Analytical Biochemistry,2013,433(2):210-217.
[22] Jagriti Narang,Nidhi Chauhan,Preeti Jain,et al. Silver nanoparticles/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor[J]. International Journal of Biological Macromolecules,2012,50(3):672-678.
[23] Nidhi Chauhan,Jagriti Narang,Rachna Rawal,et al. A highly sensitive non-enzymatic ascorbate sensor based on copper nanoparticles bound to multi walled carbon nanotubes and polyaniline composite [J]. Synthetic Metals,2011,161(21):2427-2433.
[24]Rachna Rawal,Sheetal Chawla,Pundir C S.Polyphenol biosensor based on laccase immobilized onto silver nanoparticles/multiwalled carbon nanotube/polyaniline gold electrode[J].Analytical Biochemistry,2011,419(2):196-204.
[25]Yeong-Tarng Shieh,Jeng-Ji Jung,Rong-Hsien Lin,et al.Electrocatalytic behavior of carbon nanotubes in electropolymerizations of self-doped polyaniline used as a sensing material[J].Journal of the Electrochemical Society,2012,159(12):921-927.
[36]Kalayil Manian Manesh,Padmanabhan Santhosh,Shanmugasundaram Komathi,et al. Electrochemical detection of celecoxib at a polyaniline grafted multiwall carbon nanotubes modified electrode[J]. Analytica Chimica Acta,2008,626(1):1-9.
[27] Sandeep Yadav,Rooma Devi,Santosh Kumari,et al. An amperometric oxalate biosensor based on sorghum oxalate oxidase bound carboxylated multiwalled carbon nanotubes-polyaniline composite film[J].Journal of Biotechnology,2011,151(2):212-217.
[28] Zhang Xiaowen,Lai Guosong,Yu Aimin,et al. A glassy carbon electrode modified with a polyaniline doped with silicotungstic acid and carbon nanotubes for the sensitive amperometric determination of ascorbic acid[J].Microchim Acta,2013,180(5):437-443.
[29] Sheetal Chawla,Rachna Rawal,Swati Sharma,et al. An amperometric biosensor based on laccase immobilized onto nickel nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode for determination of phenolic content in fruit juices[J].Biochemical Engineering Journal,2012,68(15):76-84.
[30]Feng Xiaomiao,Li Ruimei,Ma Yanwen,et al.The synthesis of highly electroactive N-doped carbon nanotube/polyaniline/Au nanocomposites and their application to the biosensor [J]. Synthetic Metals,2011,161 (17):1940-1945.
[31]Hu Fangxin,Chen Shihong,Wang Chengyan,et al. Multiwall carbon nanotube-polyaniline biosensor based on lectin-carbohydrate affinity for ultrasensitive detection of Con A [J]. Biosensors and Bioelectronics,2012,34(1):202-207.
[32]Zhong Huaan,Yuan Ruo,Chai Yaqin,et al.In situ chemosynthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites:Characterization and application for a glucose amperometric biosensor[J].Talanta,2011,85(1):104-111.
[33] Ding Liang,Li Qin,Zhou Dandan,et al. Modification of glassy carbon electrode with polyaniline/multi-walled carbon nanotubes composite:Application to electro-reduction of bromate [J]. Journal of Electroanalytical Chemistry,2012,668(1):44-50.
[34]Xu Lihuan,Zhu Yihua,Yang Xiaoling,et al. Amperometric biosensor based on carbon nanotubes coated with polyaniline/ dendrimer-encapsulated Pt nanoparticles for glucose detection [J]. Materials Science and Engineering C,2009,29(4):1306-1310.
[35] Kwang-Pill Lee,Shanmugasundaram Komathi,Neon Jeon Nam,et al. Sulfonated polyaniline network grafted multiwall carbon nanotubes for enzyme immobilization,direct electrochemistry and biosensing of glucose [J]. Microchemical Journal,2010,95(1):74-79.
[36]Amit L Sharma,Parveen Kumar,Akash Deep.Highly sensitive glucose sensing with multi-walled carbon nanotubes-polyaniline composite[J]. Polymer-Plastics Technology and Engineering,2012,51(13):1382-1387.
[37]Rachna Rawal,Sheetal Chawla,Poonam Malik,et al. An amperometric biosensor based on laccase immobilized onto MnO2NPs/cMWCNT/PANI modified Au electrode[J].International Journal of Biological Macromolecules,2012,51(1):175-181.
[38] Rachna Rawal,Sheetal Chawla,Devender C S Pundir. An amperometric biosensor based on laccase immobilized onto Fe3O4NPs/cMWCNT/PANI/Au electrode for determination of phenolic content in tea leaves extract[J]. Enzyme and Microbial Technology,2012,51(4):179-185.
[39]Ivana Cesarino,Fernando C Moraes,Marcos R V Lanza,et al. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes [J]. Food Chemistry,2012,135(3):873-879.