表5 江山市公益林灌木层植主要物种生态位重叠Table 5 Niche overlap of main shrub species in Jiangshan
表6 江山市公益林主要草本物种生态位重叠Table 6 Niche overlap of main herb species in Jiangshan
表7 江山市公益林各层优势种生态位重叠情况统计表Table 7 Niche overlap of main species in different layers in Jiangshan
图1 乔木层13个优势种种间联结性半矩阵图Fig.1 Semi-matrices of interspecific association for 13 dominant species in tree layer *表示3.841< 2<6.635(P<0.05),**表示2>6.635
图2 灌木层18个优势种种间联结性半矩阵图Fig.2 Semi-matrices of interspecific association for 18 dominant species in shrub layer
图3 灌木层11个优势种种间联结性半矩阵图 Fig.3 Semi-matrices of interspecific association for 11 dominant species in Herbaceous layer
3.3 典范对应分析
利用CANOCO 5.0对研究区内42个研究对象和环境数据做典范对应分析。首先,对42×80维重要值矩阵进行趋势对应分析(DCA排序),通过DCA排序可得Lengths of gradient的第一轴值为3.963,约为4,即可进行CCA排序。结合6×80维环境矩阵进行CCA排序,如表8所示,蒙特卡洛检验结果表明,所得的典范轴都是极显著的(P<0.01)。
由表8可知,CCA排序中4个轴累积解释了物种-环境关系的89.44%,其中前两轴的累积解释度达67.01%,说明CCA前两轴已能较好地反映出研究区群落物种与环境之间的关系。6个环境因子中与轴1相关性最高的环境因子为海拔,其次是坡度、腐殖质厚度、坡向;与第2轴相关性最高的环境因子为坡向,其次为坡位、腐殖质厚度。如图4所示,海拔、坡度沿CCA1轴由左向右逐渐降低,而土壤厚度沿第1轴从左往右增加逐渐增加。坡位、坡向沿CCA2轴从下向上逐渐减小,即坡位沿CCA第2轴由下向上依次为上坡位、中坡位与下坡位,坡向沿CCA第2轴自下向上依次为阳坡、半阳坡、半阴坡、阴坡。
不同物种对环境的要求存在差异,因而在CCA排序图中具有不同的分布差异。排序图位于纵轴左侧的物种分布主要受到海拔和坡度的影响,其中甜槠(物种7,主要分布于海拔600—1200 m,坡度38°—55°地区)、木荷(物种4,主要分布于海拔550—1200 m,坡度38°—50°地区)与木荷幼苗(物种30)、短柄枹(物种10,主要分布于海拔650—1200 m,坡度38°—55°地区)、三花悬钩子(物种41,主要分布于海拔620—980 m,坡度40°—45°地区)、粗叶悬钩子(物种37,主要分布于海拔550—1050 m,坡度38°—45°地区)在海拔较高、坡度较陡的区域分布较多;而位于纵轴右侧的物种则在海拔较低、坡度较为平缓的区域分布较广,其中以湿地松(物种6,主要分布于海拔120—280 m,坡度20°—30°地区)、苦竹(物种25,主要分布于海拔130—480 m,坡度23°—35°地区)、野菊(物种42,主要分布于海拔120—530 m,坡度28°—33°地区)最为明显。排序图位于横轴下方的物种分布主要受到坡位和坡向的影响,其中菝葜(物种23)、马尾松(物种6)、黄檀(13)主要分布在上坡位的半阳面和阳面;而位于横轴上方的物种则主要分布于下坡位的阴面或半阴面,其中毛竹(物种3)、蛇莓(物种40)、野菊(物种42)、湿地松(物种6)、苦竹(物种25)最为明显。
表8 环境因子与CCA排序轴的相关系数及排序概要Table 8 Correlation coefficients between environmental factors and CCA ordination axes and summary
图4 物种和环境因子的CCA二维排序图Fig.4 CCA biplot of species and environmental factors 图中仅显示了重要值在1以上的物种,共计42个(物种序号参见表3);Asp:坡向;Ele:海拔;Hud:腐殖质厚度;Pos:坡位; Slo:坡度;Sod:土壤厚度
4 结论与讨论
本研究通过对江山市公益林优势种的生态位、种间联结性及CCA排序进行分析,发现优势种群中杉木、檵木、紫萁的重要值分别在乔木层、灌木层、草本层中占有优势地位;群落各层物种间均存在不同程度的生态位重叠现象;并且通过CCA排序表明不同物种对环境的要求存在差异,优势种分布主要受海拔、腐殖质厚度、坡向及坡位的影响较为明显。
以往的研究常常将种间关系割裂单独分析,如生态位理论,种间联结性或CCA协变量矩阵偏典范对应分析等。特别是利用CCA排序分析环境因子中,常常会出现未能得到相应解释的部分,说明一些未知的环境因子的空间过程在种群空间结构的形成过程中起了重要作用。空间因子和环境因子未能解释的部分主要反映了群落自身的相互作用。因此,本研究充分利用种间关系研究方法来探究环境对物种与种间关系的影响能力。
本研究表明,重要值大的物种其生态位宽度大,反之亦然,如本研究中的马尾松、杉木、檵木、杜鹃等物种,此类物种对环境资源利用能力较强,与其他物种的生态位重叠程度高,在CCA排序图中大致分布于物种集中区域,反之亦然。如,甜槠、黄檀、三花悬钩子、野菊等物种,生态位重叠程度低,且在CCA排序图中分布在外围;然而也有部分植物种虽然重要值大,但生态位宽度值并不大,如本研究中的毛竹、湿地松等物种,这类物种与其他物种的生态位重叠程度比同等重要值的物种低,在CCA排序图中分布偏离物种集中区,且与其他物种的种间联结性大致呈不相关或负相关,这表明此类物种对环境因子的要求较为独特,与其他物种间竞争较弱,从而在某一特定环境下占据优势,导致该类物种重要值高但生态位宽度小;除此之外,有部分物种重要值不高,但其生态位宽度大,如山合欢、乌饭、山苍子、淡竹叶等,这类物种虽然重要值不高,但与其他物种的生态位重叠程度较同等重要值的物种来说高,在CCA排序图中大致分布于物种集中区域,且与其他物种的种间联结性大致呈正相关,说明其分布较广且与CCA排序图中距离较近的物种间关于环境资源的竞争强,但由于其本身对环境资源利用能力较弱,因而在广泛的分布范围内物种数量少,导致其重要值低但生态位重叠值却高。
影响植物种在群落中分布的因素较为复杂,而上述分析基于优势种重要值和生态位宽度的分类,通过结合生态位重叠值、种间联接及CCA排序3方面的综合分析对物种分布的现状进行分析,得到以下规律:生态位宽度较小的物种由于分布不够广泛、对资源利用专性较强,与其它物种间的生态位重叠较小,在CCA排序图中偏离物种集中区,如本研究中的湿地松、毛竹;相反,生态位宽度较大的物种则与其它物种的生态位重叠值较大,分布于CCA排序图中物种集中区。对于同一物种来说,若与其它物种间没有显著的联结性,则物种间的生态位重叠值越高,物种在CCA排序图上的距离越近;若存在较为显著的正联结性,则正联结性越显著,物种在CCA排序图上的距离越近;若存在较为显著的负联结性,则负联结性越显著,物种在CCA排序图上的距离越远。
[1] 王乃江, 张文辉, 陆元昌, 范少辉, 王勇. 陕西子午岭森林植物群落种间联结性. 生态学报, 2010, 30(1): 67- 78.
[2] Phillips O L, Vargas P N, Monteagudo A L, Cruz A P, Zans M E C, Sánchez W G, Yli-Halla M, Rose S. Habitat association among Amazonian tree species: a landscape-scale approach. Journal of Ecology, 2003, 91(5): 757- 775.
[3] 程瑞梅, 王瑞丽, 刘泽彬, 封晓辉, 王晓荣, 肖文发. 三峡库区栲属群落主要乔木种群的种间联结性. 林业科学, 2013, 49(5): 36- 42.
[4] Motzkin G, Eberhardt R, Hall B. Vegetation variation across Cape Cod, Massachusetts: environmental and historical determinants. Journal of Biogeography, 2002, 29(10- 11): 1439- 1454.
[5] 史作民, 程瑞梅, 刘世荣. 宝天曼落叶阔叶林种群生态位特征. 应用生态学报, 1999, 10(3): 265- 269.
[6] 赵永华, 雷瑞德, 何兴元, 贾夏. 秦岭锐齿栎林种群生态位特征研究. 应用生态学报, 2004, 15(6): 913- 918.
[7] Zhang W, Li C H, Jia X P, Chen P M. Research on spatial Interpolation methods of Macrobenthic biomass. Marine Science Bulletin, 2010, 29(3): 351- 356.
[8] Hemandez-Stefanoni J L, Pineda J B, Valades-Valadez G. Comparing the use of indigenous knowledge with classification and ordination techniques for assessing the species composition and structure of vegetation in a Tropical Forest. Environmental Management, 2006, 37(5): 686- 702.
[9] 何惠琴, 李绍才, 孙海龙, 刘世昌, 熊文兰. 锦屏水电站植被数量分类与排序. 生态学报, 2008, 28(8): 3706- 3712.
[10] 许莎莎, 孙国钧, 刘慧明, 龚雪平, 郝媛媛, 张立勋. 黑河河岸植被与环境因子间的相互作用. 生态学报, 2011, 31(9): 2421- 2429.
[11] 胡贝娟, 张钦弟, 张玲, 毕润成. 山西太岳山连翘群落优势种种间关系. 生态学杂志, 2013, 32(4): 845- 851.
[12] 伊力塔, 严晓素, 余树全, 包春泉, 屠永海, 潘昌尧. 浙江省不同森林类型林分健康指标体系. 南京林业大学学报: 自然科学版, 2012, 36(1): 145- 148.
[13] 钱逸凡, 伊力塔, 张超, 余树全, 沈露, 彭冬琴, 郑超超. 浙江省中部地区公益林生物量与碳储量. 林业科学, 2013, 49(5): 17- 23.
[14] 余树全, 李翠环. 千岛湖水源涵养林优势树种生态位研究. 北京林业大学学报, 2003, 25(2): 18- 23.
[15] 巨天珍, 张彦文, 葛建团, 张宋智, 宋晓伟, 师贺雄, 米彩艳. 小陇山国家级自然保护区油松群落生态位研究. 干旱区资源与环境, 2013, 27(4): 174- 178.
[16] Hurbert H. A coefficient of interspecific association. Ecology, 1969, 50(1): 1- 9.
[17] 覃林. 统计生态学. 北京: 中国林业出版社, 2009: 84- 97.
[18] 栾青杉, 孙军, 宋书群, 沈志良, 俞志明. 长江口夏季浮游植物群落与环境因子的典范对应分析. 植物生态学报, 2007, 31(3): 445- 450.
[19] 孟睿, 何连生, 过龙根, 席北斗, 李中强, 舒俭民, 刁晓君, 李必才. 长江中下游草型湖泊浮游植物群落及其与环境因子的典范对应分析. 环境科学, 2013, 34(7): 2588- 2596.
[20] 钱逸凡, 伊力塔, 胡军飞, 张超, 余树全, 沈露, 彭东琴. 普陀山主要植物种生态位特征. 生态学杂志, 2012, 31(3): 561- 568.
Interspecific relationship and canonical correspondence analysis of the dominant species in ecological service forest of Jiangshan City in Zhejiang Province
ZHENG Chaochao1,YI Lita1,ZHANG Chao1,YU Shuquan1,*,KU Weipeng1,QIAN Yifan2,LING Hua1
1SchoolofForestryandBiotechnology;ZhejiangAgricultureandForestryUniversity,Lin′an311300,China2TheEastChinaInstituteofForestInventoryandPlanningoftheStateForestryAdministration,Hangzhou310019,China
Ecological public welfare forests have provided many more ecological benefits to human beings than commercial woodlands, thus, planting trees for ecological public welfare forests has been a major component of ecological restoration in Zhejiang Province in the 21st Century. In this study, the main objective was investigating plants′ interspecific and environmental relationships to further the assessment of plant species distribution changes in ecological welfare forests. We used inventory monitoring data from 80 permanent sample plots, based on a stratified sampling technique applied to 5.256 × 104hm2of ecological public welfare forests in Jiangshan city in Zhejiang province. We employed a niche theory conceptual model, interspecific relations, and Canonical Correspondence Analysis (CCA) to investigate the interspecific relationships among dominant species and the relationships between species and their environments. The results showed thatCunninghamialanceolata,Euryamuricata, andFunariahygrometricawere the dominant species of the tree layer, shrub layer, and herb layer, respectively. The largest niche overlap was observed betweenCyclobalanopsisglaucaandLithocarpusglabra, betweenEuryamuricataandLitseacubeba, and betweenPteridiumaquilinumandLygodiumjaponicumfor the tree layer, shrub layer, and herb layer, respectively. The relationships between species and their environmental factors indicated that elevation and slope were the most important environmental factors affecting plant species distribution, and the aspect and the thickness of humus also influenced species distribution in our study area.The uniqueness of this study is introducing the species-environment relations (CCA) into the analyzing framework to solve the complex inter-species, intra-species, and plant-environment relationships to enrich niche theory. This study also demonstrated that importance values were directly correlated with the breadth of ecological niches. In general, the higher the niche overlap between two species, the more similar the environmental conditions in which they were found. In addition, the analysis showed that the distribution frequency was an important factor affecting the niche breadth and species niche overlap. We observed positive relationships between the distribution frequency and the niche overlap probabilities, namely, the higher the distribution frequency the higher the probability of species niche overlap. Furthermore, the interspecific relationships reflected the interconnectedness of different species in the spatial distribution and represented mutual attraction or repulsion between species and their environment. In our study area, most of the interspecific relationships between the dominant species showed a positive correlation. There were many factors, including local climate, soil types, topography, and landforms, that influenced the distribution of plant species in a given community.In summary, this study found the following general patterns for interspecific relationships: if species have a narrow niche, they also have a narrower spatial distribution, and specialize on certain resources with less overlap with other species in the CCA sequencing diagram, characterized as a tendency of deviating from the high species distribution areas. However, if species have a wide niche, they also have a wider distribution range and greater overlaps with other species, and occupy a majority of the species distribution area on the CCA sequencing diagram. For a given species, if it does not have significant interactions with other species, the higher its niche overlap values are with another species, the closer the distances between the species on the CCA sequencing diagram. If there is a positive correlation, this correlation is significant and there are shorter distances among species on the CCA sequencing diagram; while if there is a negative correlation, this negative correlation is also significant and the distances are longer among species on the CCA sequencing diagram. Our study not only indicates the complex interspecific and species-environment relationships for constructing ecological public welfare forests in subtropical regions, especially in China, but also provides recommendations of how to use our research in practice, including providing feasible suggestions to protect species diversity and accelerate positive community succession.
niche width; niche overlap; interspecific association; canonical correspondence analysis; Jiangshan City in Zhejiang Province
浙江省重点科技创新团队项目(2011R50027)
2014- 03- 24;
日期:2015- 04- 20
10.5846/stxb201403240538
*通讯作者Corresponding author.E-mail: yushq@zafu.edu.cn
郑超超,伊力塔,张超,余树全,库伟鹏,钱逸凡,凌骅.浙江江山公益林物种种间关系及CCA排序.生态学报,2015,35(22):7511- 7521.
Zheng C C,Yi L T, Zhang C,Yu S Q, Ku W P,Qian Y F,Ling H.Interspecific relationship and canonical correspondence analysis of the dominant species in ecological service forest of Jiangshan City in Zhejiang Province.Acta Ecologica Sinica,2015,35(22):7511- 7521.