APP下载

内源性硫化氢在大鼠黑质氧化损伤中的变化及作用

2015-02-03许岩等

中国医药导报 2014年36期
关键词:合酶硫化氢帕金森病

许岩等

[摘要] 目的 观察大鼠黑质氧化损伤后内源性硫化氢(hydrogen sulfide,H2S)的变化及其作用。 方法 将SD雄性大鼠单侧黑质内微量注射6-羟基多巴胺(6-Hydroxydopamine,6-OHDA)作为黑质氧化损伤模型;H2S供体硫氢化钠(sodium hydrosulfide,NaHS)在6-OHDA损伤前连续腹腔注射3周作为预处理;实验分为对照组、6-OHDA损伤后7 d(D7组)、11 d(D11组)、17 d组(D17组)、NaHS预处理组(NaHS+6-OHDA处理),每组各8只;采用亚甲基蓝分光光度计法检测黑质胱硫醚-β-合酶(cystathionine-β-synthase,CBS)活性及H2S的含量;免疫组织化学法检测黑质酪氨酸羟化酶(tyrosine hydroxylase,TH)阳性细胞数;紫外分光光度法测定黑质谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)活性和丙二醛(malondialdehyde,MDA)水平。 结果 与对照组比较,6-OHDA损伤后7、11、17 d黑质CBS酶活性分别下降为[(96.21±8.40)%,P > 0.05],[(86.48±9.85)%,P < 0.05]和[(75.16±7.45)%,P < 0.01];内源性H2S含量分别减少为[(90.12±10.03)%,P < 0.05],[(82.58±9.52)%,P < 0.01]和[(78.16±11.55)%,P < 0.01]。TH阳性细胞与对照组比较,在6-OHDA损伤后7 d即下降为[(84.32±6.06)%,P < 0.05],同时伴随黑质GSH-Px活性降低及MDA含量升高,差异有统计学意义(P < 0.05)。但早期给予NaHS预处理补充H2S之后,与单纯6-OHDA损伤后7 d比较,TH阳性细胞则增加为[(96.15±5.03)%,P < 0.05],且黑质GSH-Px的活性升高,MDA的含量降低,差异有统计学意义(P < 0.05)。 结论 6-OHDA氧化损伤导致大鼠黑质CBS酶活性及H2S含量下降,外源性H2S预处理可早期发挥抗黑质氧化损伤的神经元保护作用,这可能与其增加GSH-Px活性及减少MDA含量有关。

[关键词] 硫化氢;胱硫醚-β-合酶;帕金森病;氧化应激;神经保护

[中图分类号] R742.5 [文献标识码] A [文章编号] 1673-7210(2014)12(c)-0016-05

Changes and roles of endogenous hydrogen sulfide in the substantial nigra oxidative damage of rats

XU Yan1 MA Na2 LIU Bo3 WANG Jingying1 LIAO Wenhui3 WANG Sheng2 WANG Jinquan2 MENG Jinlan2

1.The Third Department of Surgery, Southern Medical University TCM-Integrated Hospital, Guangdong Province, Guangzhou 510315, China; 2.Department of Physiology, Guangdong Pharmaceutical University, Guangdong Province, Guangzhou 510006, China; 3.Department of Pharmaceutical, Guangdong Pharmaceutical University, Guangdong Province, Guangzhou 510080, China

[Abstract] Objective To observe the changes and roles of endogenous hydrogen sulfide in the substantia nigra oxidative damage of rats. Methods 6-hydroxydop- amine (6-OHDA) was microinjected in the unilateral substantia nigra of SD rats as the substantia nigra oxidative damage model; H2S donor, sodium hydrosulfide (NaHS) was injected intraperitoneally for three consecutive weeks as a pretreatment before 6-OHDA injury. The experiment were divided into the control group , 7 days (D7) group, 11 days (D11) group, 17 days (D17) group after 6-OHDA injury and NaHS preconditioning group (deafed with NaHS + 6-OHDA); with 8 rats in each group. Cystathionine-β-synthase (CBS) activity and H2S production in substantia nigra were detected by methylene blue spectrophot-ometric method. Immunohistochemistry was used to detect tyrosine hydroxylase (tyrosine hydroxylase, TH) positive cells of the substantia nigra; Glutathione peroxidase (GSH-Px) activity and malondialdehyde (MDA) level of the substantia nigra were measured by UV spectrophotometry. Results Compared with the control group, percentage of CBS activity was decreased respectively to[(96.21±8.40)%, P > 0.05], [(86.48±9.85)%, P < 0.05 ] and [(75.16±7.45)%, P < 0.01] for 7, 11 and 17 d after 6-OHDA injury; Percentage of endogenous H2S content decreased respectively to [(90.12±10.03)%, P < 0.05],[(82.58±9.52)%, P < 0.01] and [(78.16±11.55)%, P < 0.01] also. Compared with control group, percentage of TH positive cells was reduced to [(84.32±6.06)%, P < 0.05] at 7 d after 6-OHDA damage, accompanied by GSH-Px activity reducing and MDA content increasing, the difference was statistically significant (P < 0.05). But compared with 7 d after 6-OHDA injury, early supplementary H2S through NaHS pretreatment, percentage of TH positive cells were increased to [(96.15±5.03)%, P < 0.05], and GSH-Px activity was increased ,the content of MDA was decreased, the difference was statistically significant (P <0.05). Conclusion Substantia nigra oxidative damage after 6-OHDA injure leads to CBS activity and endogenous H2S content decreased, pretreatment with exogenous H2S early exert neurons protective effect of anti- oxidative damage in substantia nigra, which may be related to GSH-Px activity increasing and MDA content decreasing.

[Key words] Hydrogen sulfide; Cystathionine-β-synthase; Parkinson's disease; Oxidative stress; Neuroprotection

硫化氢(hydrogen sulfide,H2S)目前被公认为是除NO和CO之外另一种新的气体信号分子。体内半胱氨酸等含硫氨基酸在5'-磷酸吡哆醛依赖酶胱硫醚-β-合酶(cystathi-onine-β-synthase,CBS)和胱硫醚-γ-裂解酶(cystathionine-γ-lyase,CSE)等的催化作用下生成内源性H2S。在中枢神经系统中CBS被认为是脑内源性H2S生成的主要酶,当H2S生成浓度过高或过低时与神经系统疾病如老年痴呆(Alzheimer's disease,AD)[1]、脑卒中[2]等的发生密切相关。Hu等[3]在6-羟基多巴胺(6-Hydroxydopamine,6-OHDA)制备的帕金森病(Parkinson's disease,PD)模型鼠中检测到黑质内源性H2S含量减少,酪氨酸羟化酶(tyrosine hydroxylase,TH)阳性细胞数量及其蛋白表达明显降低,提示内源性H2S参与了PD的病理过程。但是,在PD进展过程中内源性H2S生成的动态变化尚未明确。

PD是一种以黑质纹状体多巴胺神经元进行性损失为特征的神经退行性疾病[4],其发病机制目前仍未完全清楚,但是氧化应激在PD的发生中发挥了重要的作用[5]。研究已证明H2S可通过抗氧化应激[6]、抗炎[7]及抗凋亡[8]等发挥神经元保护作用,对神经退行性疾病有潜在的治疗价值。

6-OHDA主要通过诱导氧化应激发挥DA神经元特异性的毒性作用[9],是公认制备PD动物模型的神经毒性药物[10]。

本研究将应用6-OHDA诱导的黑质氧化损伤大鼠模型,研究在黑质损伤早期及进展过程中内源性H2S生成相关指标的动态变化;并早期给予外源性H2S预处理,观察其抗氧化应激的PD预防作用。

1 材料与方法

1.1 动物分组及给药

成年雄性Sprague-Dawley鼠40只,体重230~280 g,室温(20±2)℃,自由进食、饮水。动物于实验前适应实验室环境1周。随机分为以下5组,每组各8只:①6-OHDA损伤后7 d组(D7组):利用脑立体定位仪在右侧中脑黑质内微量注入4 μL终浓度为2 μg/μL(用0.2 mg/mL维生素C注射液稀释)的6-OHDA(黑质立体定位坐标:前囟后5.3 mm,矢状缝向右旁开2.0 mm,自脑膜下深度为7.6 mm),该组动物在6-OHDA注射后7 d处死取样;②6-OHDA损伤后11 d组(D11组):方法同①,该组动物在6-OHDA注射后11 d处死取样;③6-OHDA损伤后17天组(D17组):方法同①,该组动物在6-OHDA注射后17 d处死取样;④对照组:利用脑立体定位仪在右侧黑质内注入4 μL 0.2 mg/mL维生素C注射液;⑤NaHS预处理组:在6-OHDA损伤前3周连续每天腹腔注射NaHS[5.6 mg/(kg·d)],之后再注射6-OHDA,7 d后处死动物取样。

1.2 胱硫醚-β-合酶(CBS)活性的检测

将组织匀浆加入预先配制好的反应体系[100 mmol/L磷酸钾缓冲液(pH=7.4)、10 mmol/L左旋-半胱氨酸、2 mmol/L 5'-磷酸吡哆醛]中。使组织匀浆占反应体系的10%,移至反应瓶,吸取1%醋酸锌0.5 mL吸收液加入中央室。转移锥形瓶至37℃水浴摇床中摇荡反应90 min后,在反应体系中加入50%三氯醋酸0.5 mL终止反应后继续在37℃水浴反应60 min。将中央室的内容物转移后加入7.2 mol/L含盐酸对苯二胺的盐酸溶液0.5 mL,加入1.2 mol/L含三氯化铁的盐酸溶液0.4 mL,于20 min后测670 nm波长处的吸光度值(OD值)。实验组CBS酶活性以实验组OD值/对照组OD值×100%表示。

1.3 内源性H2S含量的检测

取组织匀浆310 μL,加入2%(W/V)醋酸锌30 μL;20%(W/V)三氯醋酸60 μL;然后再加入20 mmol/L二甲基对苯二胺硫酸盐(7.2 mol/L盐酸)40 μL和30 mmol/L(1.2 mol/L 盐酸)FeCl3 40 μL,迅速合上EP管振荡数下后,转移至37℃生化培养箱静置10 min;高速离心12 000 r/min,10 min;分光光度计检测670 nm处OD值。实验组H2S含量以实验组OD值/对照组OD值×100%表示。

1.4 TH阳性细胞免疫组织化学染色

酪氨酸羟化酶(TH)是DA神经元合成DA的限速酶,被广泛运用为DA神经元的标志物。切片脱蜡后,加入3%H2O2阻断内源性过氧化物酶的活性,高压修复,紫外线阻断非特异性背景染色,1∶1000 TH一抗4℃冰箱孵育过夜,正常山羊血清封闭10 min,加入相应二抗孵育10 min,DAB显色液显色。各步骤间均用0.01 mol/L PBS(pH=7.4)冲洗。之后流水冲洗,梯度酒精脱水,二甲苯置换酒精,封片。对每只动物5片切片左右侧黑质(substantia nigra,SN)的细胞数目进行计数。损伤侧细胞残存DA神经元数目以损伤侧TH阳性细胞数目/未损伤侧TH阳性细胞数目(右侧/左侧)×100表示。

1.5 黑质谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)活性和丙二醛(malondialdehyde,MDA)含量检测

将各组大鼠在用3%的戊巴比妥钠(30 mg/kg)腹腔注射麻醉下迅速断头处死,冰浴中快速剥离大脑,参照Paxinos等的[11]鼠脑立体定位图谱,准确切取中脑黑质脑组织。置于匀浆介质中,用相应的测试盒检测黑质GSH-Px活性及MDA含量。

1.6 统计学方法

采用统计软件SPSS 11.0对数据进行分析,正态分布计量资料以均数±标准差(x±s)表示,组间比较用One-way ANOVA 方法,以P < 0.05为差异有统计学意义。

2 结果

2.1 6-OHDA损伤对大鼠黑质CBS酶活性的影响

黑质CBS酶活性动态变化结果显示:6-OHDA损伤后随时间的推移,黑质CBS酶活性逐渐下降。与对照组比较,损伤后第7天黑质CBS酶有所下降[(96.21±8.40)%],但差异无统计学意义(P > 0.05);损伤后第11天黑质CBS酶活性[(86.48±9.85)%]较对照组下降明显,差异有统计学意义(P < 0.05);损伤后第17天CBS酶活性下[(75.16±7.45)%]降更加明显,差异有高度统计学意义(P < 0.01)。见图1。

与对照组比较,*P < 0.05,**P < 0.01

图1 6-羟基多巴胺损伤黑质内源性胱硫醚-β-合酶活性的变化

2.2 6-OHDA损伤对大鼠黑质内源性H2S生成的影响

采用亚甲基蓝分光光度计法检测在6-OHDA损伤时黑质内源性H2S生成的动态变化结果显示:与对照组相比,6-OHDA损伤后第7天黑质内源性H2S的含量[(90.12±10.03)%]即出现明显下降,差异有统计学意义(P < 0.05),在损伤后的第11天[(82.58±9.52)%]和第17天[(78.16±11.55)%]黑质内源性H2S的生成继续减少,差异均有高度统计学意义(P < 0.01)。见图2。

与对照组比较,*P < 0.05,**P < 0.01

图2 6-羟基多巴胺损伤黑质内源性硫化氢含量的变化

2.3 外源性H2S对大鼠黑质TH阳性细胞数量的影响

TH阳性细胞免疫组织化学染色结果显示:与对照组[(99.84±4.74)%]比较,6-OHDA单侧损伤黑质后7 d(D7组)TH阳性细胞数即有明显下降[(84.32±6.06)%],差异有统计学意义(P < 0.05);但当在6-OHDA损伤前给予NaHS预处理[NaHS预处理组,(96.15±5.03)%],与D7组比较,黑质TH阳性细胞数明显回升,差异有高度统计学意义(P < 0.05)。

2.4 外源性H2S对大鼠黑质GSH-Px活性及MDA含量的影响

通过检测黑质GSH-Px活性及MDA含量进一步观察了H2S抗6-OHDA诱导氧化应激损伤的黑质DA神经元保护作用。结果显示:与对照组相比6-OHDA损伤组黑质GSH-Px活性明显下降及MDA含量明显增加(P < 0.05);而给予NaHS预处理明显增加了GSH-Px的活性,减少了MDA的生成。见表1。

表1 外源性硫化氢对大鼠黑质GSH-Px活性

及MDA含量的影响(x±s)

注:与对照组比较,*P < 0.05;与D7组比较,#P < 0.05;GSH-Px:谷胱甘肽过氧化物酶;MDA:丙二醛;NaHS:硫氢化钠

3 讨论

研究已证实H2S代谢异常参与了AD[12]、Down's综合症[13]、中风[14]等中枢神经系统疾病的发生。Hu等[3]研究观察到,6-OHDA损伤第4周,大鼠出现明显PD症状时黑质内源性H2S含量较对照组减少约25%,差异有显著性。然而有证据表明,鼠、猴表现出PD症状时,黑质DA能神经元缺失已达60%~70%[15]。运动障碍症状怀疑或确定为PD时,人的黑质致密带DA缺失已达50%~60%[16]。那么,在6-OHDA损伤黑质DA能神经元早期内源性H2S生成的变化究竟如何,尚未明确。

为了观察内源性H2S在PD发生早期的变化,本实验首先观察了6-OHDA损伤过程中大鼠黑质内源性CBS酶活性的动态变化。结果显示,6-OHDA损伤后第7天CBS酶活性开始下降,但并不显著;而损伤后第11、17天CBS酶活性则明显下降。同时检测内源性H2S含量结果显示,6-OHDA损伤后早期(第7天)H2S含量即开始下降,约比对照组减少10%左右,差异有显著性;随损伤时间延长H2S含量在逐渐下降。6-OHDA损伤后早期(第7天),黑质TH阳性细胞数量也出现约16%的减少;与此同时黑质GSH-Px活性下降及MDA含量的增加,而 GSH-Px的活性降低,MDA水平增高可诱导细胞膜脂质类过氧化损害,抗氧化防御机制受损导致细胞损伤。该实验结果提示内源性H2S参与了黑质的氧化损伤过程。

为了进一步观察内源性H2S在PD中的作用,本实验在6-OHDA损伤前应用H2S供体NaHS[5.6mg/(kg·day)]腹腔注射连续3周作为预处理。结果显示,NaHS逆转了因6-OHDA损伤早期导致的黑质TH阳性细胞数量地减少,发挥了DA能神经元的保护作用。Hu等[3]也证实给予外源性NaHS补充H2S可以拮抗6-OHDA诱导地神经损伤,增加黑质TH阳性细胞数量及蛋白表达,支持本实验结果。但本实验与Hu等[3]实验最大的不同在于本实验观察6-OHDA损伤早期内源性H2S的变化及外源性H2S的预防作用;而Hu等[3]实验观察的则是6-OHDA损伤中晚期H2S的变化及外源性H2S的治疗作用。

氧化应激在PD的病理中发挥了重要的作用[4,17]。研究证实H2S是细胞重要的抗氧化剂[18-19]。为了进一步观察H2S预处理是否可以通过抑制6-OHDA诱导的氧化应激发挥早期DA能神经元的保护作用,本研究在6-OHDA损伤前应用NaHS预处理。结果显示,给予NaHS明显增加了GSH-Px的活性,降低了MDA的水平。提示,H2S可以通过抗氧化应激发挥黑质DA能神经元的保护作用。研究表明在神经系统中,H2S可以通过加强谷氨酸的摄取保护星形胶质细胞拮抗H2O2诱导的神经损伤[20];可以增加还原性GSH的生成发挥神经元保护作用[21];本实验室既往也证实H2S可以通过减少活性氧生成、提高线粒体膜电位发挥抗氧化应激的神经细胞保护作用[22],均支持本实验结果。

综上所述,6-OHDA诱导的黑质氧化应激损伤致使内源性H2S含量减少及其生成酶CBS活性下降,而外源性H2S可以通过增加GSH-Px活性,减少MDA含量早期发挥抗黑质氧化损伤的DA能神经元保护作用。本实验为进一步明确PD的发病机制及H2S的PD预防作用提供了重要的科学依据。

[参考文献]

[1] Morrison LD,Smith DD,Kish SJ. Brain S-adenosylmethionine levels are severely decreased in Alzheimer's disease [J]. J Neurochem,1996,67(3):1328-1331.

[2] Wong PT,Qu K,Chimon GN,et al. High plasma cyst(e)ine level may indicate poor clinical outcome in patients with acute stroke: possible involvement of hydrogen sulfide [J]. J Neuropathol Exp Neurol,2006,65(2):109-115.

[3] Hu LF,Lu M,Tiong CX,et al. Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models [J]. Aging Cell,2010,9(2):135-146.

[4] Moore DJ,West AB,Dawson VL ,et al. Molecular pathophysiology of Parkinson's disease [J]. Annu Rev Neurosci,2005,28:57-87.

[5] Yoo MS,Chun HS,Son JJ,et al. Oxidative stress regulated genes in nigral dopaminergic neuronal cells: correlation with the known pathology in Parkinson's disease[J]. Brain Res Mol Brain Res,2003,110(1):76-84.

[6] Kimura Y,Kimura H. Hydrogen sulfide protects neurons from oxidative stress [J]. Faseb J,2004,18(10):1165-1167.

[7] Kamat PK,Kalani A,Givvimani S,et al. Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice [J]. Neuroscience,2013,252: 302-319.

[8] Luo Y,Yang X,Zhao S,et al. Hydrogen sulfide prevents OGD/R-induced apoptosis via improving mitochondrial dysfunction and suppressing an ROS-mediated caspase-3 pathway in cortical neurons[J]. Neurochem Int,2013,63(8):826-831.

[9] Tolwani RJ,Jakowec MW,Petzinger GM,et al. Experimental models of Parkinson's disease: insights from many models [J]. Lab Anim Sci,1999,49(4):363-371.

[10] Bove J,Prou D,Perier C ,et al. Toxin-induced models of Parkinson's disease [J]. NeuroRx,2005,2(3):484-494.

[11] Paxinos G,Watson C. The rat brain in stereotaxic coordinate,compact[M]. The 3rd. San Diego:San Diego Academic Press,1996:356.

[12] Eto K,Asada T,Arima K,et al. Brain hydrogen sulfide is severely decreased in Alzheimer's disease[J]. Biochem Biophys Res Commun,2002,293(5):1485-1488.

[13] Kamoun P,Belardinelli MC,Chabli A,et al. Endogenous hydrogen sulfide overproduction in Down syndrome [J]. Am J Med Genet A,2003,116A(3):310-311.

[14] Qu K,Chen CP,Halliwell B,et al. Hydrogen sulfide is a mediator of cerebral ischemic damage [J]. Stroke,2006,37(3):889-893.

[15] Di Monte DA,McCormack A,Petzinger G,et al. Relationship among nigrostriatal denervation,parkinsonism,and dyskinesias in the MPTP primate model [J]. Mov Disord,2000,15(3):459-466.

[16] Diguet E,Gross CE,Bezard E,et al. Neuroprotective agents for clinical trials in Parkinson's disease: a systematic assessment [J]. Neurology,2004,62(1):158-159.

[17] Wang XL,Xing GH,Hong B,et al. Gastrodin prevents motor deficits and oxidative stress in he MPTP mouse model of Parkinson's disease: Involvement of ERK1/2-Nrf2 signaling pathway [J]. Life Sci,2014,114(2):77-85.

[18] Liu YY,Nagpure BV,Wong PT,et al. Hydrogen sulfide protects SH-SY5Y neuronal cells against d-galactose induced cell injury by suppression of advanced glycation end products formation and oxidative stress [J]. Neurochem Int,2013,62(5):603-609.

[19] Kimura Y, Mikami Y, Osumi K,et al. S Polysulfides are possible H2S-derived signaling molecules in rat brain. [J]. FASEB J,2013,27(6):2451-2457.

[20] Lu M,Hu LF,Hu G,et al. Hydrogen sulfide protects astrocytes against H2O2-induced neural injury via enhancing glutamate uptake [J]. Free Radic Biol Med,2008, 45(12):1705-1713.

[21] Kimura Y,Kimura H. Hydrogen sulfide protects neurons from oxidative stress [J]. FASEB J ,2004,18(10):1165-1167.

[22] Meng JL,Mei WY,Dong YF,et al. Heat shock protein 90 mediates cytoprotection of hydrogen sulfide against chemical hypoxia-induced injury in PC12 cells[J]. Clin Exp Pharmacol Physiol,2011,38(1):42-49.

(收稿日期:2014-09-16 本文编辑:苏 畅)

猜你喜欢

合酶硫化氢帕金森病
手抖一定是帕金森病吗
沥青中硫化氢脱除工艺研究
硫化氢下铈锰改性TiO2的煤气脱汞和再生研究
帕金森病科普十问
四种中药单体选择性抑制环氧合酶-2活性的评价
干法测定电石中硫化氢含量的探讨
硫化氢脱除镍钻溶液中锌杂质研究
帕金森病的治疗
中西医结合治疗帕金森病98例
寻常型银屑病皮损组织环氧合酶2(COX-2)的表达研究