APP下载

液态一元醇的太赫兹时域光谱研究

2015-01-22苏云云

光学仪器 2014年6期

苏云云

摘要: 太赫兹波可以与极性液体中的氢键网络产生强的相互作用,作用越强吸收越强。鉴于此性质,利用太赫兹时域光谱技术对甲醇、乙醇、正丙醇在0.1~1 THz波段内的太赫兹光谱进行了检测,发现其吸收光谱随分子极性的差异有显著的区别,并从中提取出了一元醇的吸收系数、折射率、介电常数等光学参数。在此基础上还利用对样品介电常数敏感的微孔金属片,通过产生的共振峰漂移进一步对不同一元醇进行了检测,结果表明太赫兹光谱技术结合微结构器件在液态化学及生物样品检测方面有潜在的应用价值。

关键词: 太赫兹光谱; 一元醇; 微孔金属片

中图分类号: TN 29文献标志码: Adoi: 10.3969/j.issn.10055630.2014.06.007

引言太赫兹波(Terahertz wave)是介于微波和红外辐射之间,振荡频率为0.1~10 THz(1 THz=1012 Hz)的一种电磁辐射。近几十年超快飞秒激光技术的迅速发展,为THz脉冲的产生提供了稳定、可靠的激光光源,使得太赫兹技术作为一种新的光谱手段在实际应用方面取得了很大的进展。许多分子之间弱的相互作用如氢键、范德华力、生物大分子的偶极旋转和振动跃迁都处于THz频带范围,这使得太赫兹技术在生物、医药检测、化学材料分析等方面有着广泛的应用[15]。醇类物质是常见的一类重要有机物质,在食品、化工、生物制药等领域有广泛的应用,同时由于醇分子的自身特点也常被用来作为研究氢键网络的理想模型。1996年Kindt等[6]研究了极性液体包括水和一些醇以及氨水等在远红外波段(2~50 cm-1)的介电常数等介电性质,并通过德拜模型进一步提取其内部的微观弛豫过程,提示太赫兹时域光谱技术可用于研究液态物质微观结构和动力学。2005年Woods等[7]利用远红外光谱检测甲醇液体,反映了其太赫兹频段的低频振动与液体内部氢键结构以及分子间相互作用有关。2007年,Jepsen等[8]采用反射式太赫兹时域光谱技术检测了一些含醇液体样品在0.1~1 THz的介电信息,提示该技术可在一系列商业饮品中鉴别出其所含醇、糖的浓度。2010年Yomogida等[9]报道了一系列不同结构一元醇在太赫兹波段的介电响应及温度效应,发现其介电弛豫包括三个部分:介电弛豫过程的高频阶段、1.2~1.5 THz处的振动模式、低频分子间的振动模式。其中宽的振动模式峰不随温度变化,其介电性质与一元醇的分子结构有着密切的关系。随着太赫兹技术应用研究的不断发展,结合传感器件对液体样品检测的需求十分突出。最近,基于表面等离子体效应的超材料结构已作为传感器应用于液体样品检测方面。2009年,Tian等[10]采用微孔金属片器件通过表面共振增强效应成功区分出甲醇中氢的同位素。2012年,Hasebe等[11]研究表明特定结构的带孔金属网栅可有效区分微量的单、双链DNA分子。2009年,Mendis等[12]在可激发出TE(transverse electric wave)模式的平行板波导中镶嵌矩形槽形成高灵敏度的光学共振器,并通过监测折射率变化有效区分出微量的辛烷等一系列烷类物质。本文以甲醇、乙醇、正丙醇一元醇体系为研究模型,利用太赫兹时域光谱技术并结合特定结构的微孔金属器件,对样品进行检测,提取一系列如吸收系数、折射率、介电常数等光学参数,并对经微孔阵列金属器件产生的共振吸收进行分析和讨论。

1实验实验所用的甲醇(纯度>99.5%)、乙醇(纯度>99.7%)、正丙醇(纯度>99.5%)均购于国药科技有限公司。实验采用透射式时域太赫兹光谱装置(Terahertz time domain spectroscopy,THzTDS)[1315],该系统采用光电导天线发射和接收THz波,Toptic飞秒激光器用于产生和检测太赫兹波。激光器的中心波长为780 nm,输出功率为150 mW,脉冲宽度为90 fs,重复频率为80 MHz。系统的发射器、接收器均为低温生长的砷化镓光电导天线,系统在0.4 THz处的信噪比超过105∶1,太赫兹的光斑半径约为5 mm。实验中,通入干燥空气,使湿度降至3%以下,以减小环境中水蒸气对太赫兹信号的吸收,同时环境温度维持在23.0~25.0 ℃。实验中利用液体样品厚度差的方式处理数据,通过选用不同厚度(400 μm、600 μm)的石英样品池可以减小样品容器对实验造成的误差[16]。2实验结果与分析利用太赫兹时域光谱装置,可以获得样品的时域光谱信息,再经傅里叶变换后进行样品光学参数的提取,其参数表达式为α(ω)=2[lnI(d1,ω)-lnI(d2,ω)]d2-鉴于表面等离子体效应的超材料结构在液体检测方面的敏感性,本文利用特定结构的微孔金属器件,对不同结构的一元醇液体样品进行检测,所采用的微孔金属片结构如图2所示。该微孔金属片为铝制材料,长宽为100 mm×100 mm、厚度250 μm,分布有超过5 000个亚波长小孔,其中小孔直径为700 μm,六角晶格周期是1 130 μm[1921]。其工作原理为:当入射波照射到金属孔表面时,在金属介质界面可以激发出表面等离子体激元(SPPs)效应,透射谱中将会出现共振峰。该现象可以采用Drude模型对SPPs效应做进一步分析,SPPs的波矢和频率之间存在以下关系[22]kSPPs=ωcεdεmεd+εm=ωcεm-ε2mεd+εm(5)式中,εm、εd分别为金属与样品的介电常数,ω为电磁波的角频率,c为自由空间的光速。当周围样品的介电常数发生改变,则对应的金属样品界面的SPPs波数发生改变,共振峰发生漂移。本实验中不同的醇产生不同的共振峰,并且随着介电常数的增加,共振频点发生蓝移。实验中,通过装有液体的石英样品池后的太赫兹信号作为参考信号Ein(ω),通过装有液体及金属片的石英比色皿后的信号作为样品信号Eout(ω),透过率t(ω)=Eout(ω)/Ein(ω)。图3为微孔金属片存在情况下所获得的甲醇、乙醇及正丙醇的透过谱,其中产生的共振峰频点分别为0.133 THz、0.138 THz、0.143 THz。由此可见,采用微孔金属片区分样品优点主要是可以产生共振峰,通过样品介电常数的不同可以看出其对应共振频点发生蓝移。同时,和常规太赫兹时域透射光谱所探测到的无特征吸收光谱相比,共振峰的体现使检测更显直观,所使用的样品量也大大减少,此外,在数据处理方面也更简单方便。因此该类器件作为传感器在生物化学领域有着潜在的应用价值。

3结论本文利用太赫兹时域光谱技术结合特定结构的微孔金属器件,对一元醇液体样品进行了检测,从中提取出了吸收系数、折射率、介电常数等一系列重要的光学参数。研究表明,太赫兹时域光谱对液体样品的极性和结构特点非常敏感,结合微结构器件在液态化学和生物样品检测方面具有潜在的应用价值。

参考文献:

[1]FERGUSON B,ZHANG X C.Materials for terahertz science and technology[J].Nature Materials,2002,1(1):2633.

[2]WOODWARD R M,COLE B E,WALLACE V P,et al.Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue[J].Physics in Medicine and Biology,2002,47(21):3853.

[3]DU S Q,LI H,XIE L,et al.Vibrational frequencies of antidiabetic drug studied by terahertz timedomain spectroscopy[J].Applied Physics Letters,2012,100(14):143702.

[4]YAMAMOTO K,KABIR M H,TOMINAGA K.Terahertz timedomain spectroscopy of sulfurcontaining biomolecules[J].JOSA B,2005,22(11):24172426.

[5]朱亦鸣,高春梅,陈麟.基于平行板波导的双槽谐振腔的特性研究[J].光学仪器,2014,36(4):323327.

[6]KINDT J T,SCHMUTTENMAER C A.Farinfrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy[J].The Journal of Physical Chemistry,1996,100(24):1037310379.

[7]WOODS K N,WIEDEMANN H.The influence of chain dynamics on the farinfrared spectrum of liquid methanol[J].The Journal of Chemical Physics,2005,123(13):134506.

[8]JEPSEN P U,MOLLER U,MERBOLD H.Investigation of aqueous alcohol and sugar solutions with reflection terahertz timedomain spectroscopy[J].Optics Express,2007,15(22):1471714737.

[9]YOMOGIDA Y,SATO Y,NOZAKI R,et al.Comparative dielectric study of monohydric alcohols with terahertz timedomain spectroscopy[J].Journal of Molecular Structure,2010,981(1):173178.

[10]TIAN Z,HAN J G,LU X C,et al.Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes[J].Chemical Physics Letters,2009,475(1/3):132134.

[11]HASEBE T,KAWABE S,MATSUI H,et al.Metallic meshbased terahertz biosensing of singleand doublestranded DNA[J].Journal of Applied Physics,2012,112(9):09470210947027.

[12]MENDIS R,ASTLEY V,LIU J B,et al.Terahertz microfluidic sensor based on a parallelplate waveguide resonant cavity[J].Applied Physics Letters,2009,95(17):171113.

[13]ULLAH R,LI H,ZHU Y M.Terahertz and FTIR spectroscopy of ‘Bisphenol A[J].Journal of Molecular Structure,2014,1059:255259.

[14]CHEN L,GAO C M,XU J M,et al.Observation of electromagnetically induced transparencylike transmission in terahertz asymmetric waveguidecavities systems[J].Optics Letters,2013,38(9):13791381.

[15]CHEN L,XU J M,GAO C M,et al.Manipulating terahertz electromagnetic induced transparency through parallel plate waveguide cavities[J].Applied Physics Letters,2013,103(25):25110512511054.

[16]刘丹,吴胜伟,马明旺,等.水和二氧六环水溶液的THz波段介电性质[J].核技术,2010,33(9):688692.

[17]INDIRA T,PARTHIPAN G,ASWATHAMAN H,et al.Dipole moment studies of complexes of alcohols with ethyl bromide[J].Journal of Molecular Liquids,2009,150(1/3):2224.

[18]BERTERO N M,TRASARTI A F,APESTEGUA C R,et al.Solvent effect in the liquidphase hydrogenation of acetophenone over Ni/SiO2:A comprehensive study of the phenomenon[J].Applied Catalysis A:General,2011,394(1/2):228238.

[19]XU J M,CHEN L,XIE L,et al.Effect of boundary condition and periodical extension on transmission characteristics of terahertz filters with periodical hole array structure fabricated on aluminum slab[J].Plasmonics,2013,8(3):12931297.

[20]CHEN L,ZHU Y M,ZANG X F,et al.Mode splitting transmission effect of surface wave excitation through a metal hole array[J].Light:Science & Applications,2013,2(3):e60.

[21]陈麟,高春梅,徐嘉明,等.铝质亚波长圆孔阵列与牛眼结构的太赫兹波传输特性[J].光学仪器,2013,35(6):16.

3结论本文利用太赫兹时域光谱技术结合特定结构的微孔金属器件,对一元醇液体样品进行了检测,从中提取出了吸收系数、折射率、介电常数等一系列重要的光学参数。研究表明,太赫兹时域光谱对液体样品的极性和结构特点非常敏感,结合微结构器件在液态化学和生物样品检测方面具有潜在的应用价值。

参考文献:

[1]FERGUSON B,ZHANG X C.Materials for terahertz science and technology[J].Nature Materials,2002,1(1):2633.

[2]WOODWARD R M,COLE B E,WALLACE V P,et al.Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue[J].Physics in Medicine and Biology,2002,47(21):3853.

[3]DU S Q,LI H,XIE L,et al.Vibrational frequencies of antidiabetic drug studied by terahertz timedomain spectroscopy[J].Applied Physics Letters,2012,100(14):143702.

[4]YAMAMOTO K,KABIR M H,TOMINAGA K.Terahertz timedomain spectroscopy of sulfurcontaining biomolecules[J].JOSA B,2005,22(11):24172426.

[5]朱亦鸣,高春梅,陈麟.基于平行板波导的双槽谐振腔的特性研究[J].光学仪器,2014,36(4):323327.

[6]KINDT J T,SCHMUTTENMAER C A.Farinfrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy[J].The Journal of Physical Chemistry,1996,100(24):1037310379.

[7]WOODS K N,WIEDEMANN H.The influence of chain dynamics on the farinfrared spectrum of liquid methanol[J].The Journal of Chemical Physics,2005,123(13):134506.

[8]JEPSEN P U,MOLLER U,MERBOLD H.Investigation of aqueous alcohol and sugar solutions with reflection terahertz timedomain spectroscopy[J].Optics Express,2007,15(22):1471714737.

[9]YOMOGIDA Y,SATO Y,NOZAKI R,et al.Comparative dielectric study of monohydric alcohols with terahertz timedomain spectroscopy[J].Journal of Molecular Structure,2010,981(1):173178.

[10]TIAN Z,HAN J G,LU X C,et al.Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes[J].Chemical Physics Letters,2009,475(1/3):132134.

[11]HASEBE T,KAWABE S,MATSUI H,et al.Metallic meshbased terahertz biosensing of singleand doublestranded DNA[J].Journal of Applied Physics,2012,112(9):09470210947027.

[12]MENDIS R,ASTLEY V,LIU J B,et al.Terahertz microfluidic sensor based on a parallelplate waveguide resonant cavity[J].Applied Physics Letters,2009,95(17):171113.

[13]ULLAH R,LI H,ZHU Y M.Terahertz and FTIR spectroscopy of ‘Bisphenol A[J].Journal of Molecular Structure,2014,1059:255259.

[14]CHEN L,GAO C M,XU J M,et al.Observation of electromagnetically induced transparencylike transmission in terahertz asymmetric waveguidecavities systems[J].Optics Letters,2013,38(9):13791381.

[15]CHEN L,XU J M,GAO C M,et al.Manipulating terahertz electromagnetic induced transparency through parallel plate waveguide cavities[J].Applied Physics Letters,2013,103(25):25110512511054.

[16]刘丹,吴胜伟,马明旺,等.水和二氧六环水溶液的THz波段介电性质[J].核技术,2010,33(9):688692.

[17]INDIRA T,PARTHIPAN G,ASWATHAMAN H,et al.Dipole moment studies of complexes of alcohols with ethyl bromide[J].Journal of Molecular Liquids,2009,150(1/3):2224.

[18]BERTERO N M,TRASARTI A F,APESTEGUA C R,et al.Solvent effect in the liquidphase hydrogenation of acetophenone over Ni/SiO2:A comprehensive study of the phenomenon[J].Applied Catalysis A:General,2011,394(1/2):228238.

[19]XU J M,CHEN L,XIE L,et al.Effect of boundary condition and periodical extension on transmission characteristics of terahertz filters with periodical hole array structure fabricated on aluminum slab[J].Plasmonics,2013,8(3):12931297.

[20]CHEN L,ZHU Y M,ZANG X F,et al.Mode splitting transmission effect of surface wave excitation through a metal hole array[J].Light:Science & Applications,2013,2(3):e60.

[21]陈麟,高春梅,徐嘉明,等.铝质亚波长圆孔阵列与牛眼结构的太赫兹波传输特性[J].光学仪器,2013,35(6):16.

3结论本文利用太赫兹时域光谱技术结合特定结构的微孔金属器件,对一元醇液体样品进行了检测,从中提取出了吸收系数、折射率、介电常数等一系列重要的光学参数。研究表明,太赫兹时域光谱对液体样品的极性和结构特点非常敏感,结合微结构器件在液态化学和生物样品检测方面具有潜在的应用价值。

参考文献:

[1]FERGUSON B,ZHANG X C.Materials for terahertz science and technology[J].Nature Materials,2002,1(1):2633.

[2]WOODWARD R M,COLE B E,WALLACE V P,et al.Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue[J].Physics in Medicine and Biology,2002,47(21):3853.

[3]DU S Q,LI H,XIE L,et al.Vibrational frequencies of antidiabetic drug studied by terahertz timedomain spectroscopy[J].Applied Physics Letters,2012,100(14):143702.

[4]YAMAMOTO K,KABIR M H,TOMINAGA K.Terahertz timedomain spectroscopy of sulfurcontaining biomolecules[J].JOSA B,2005,22(11):24172426.

[5]朱亦鸣,高春梅,陈麟.基于平行板波导的双槽谐振腔的特性研究[J].光学仪器,2014,36(4):323327.

[6]KINDT J T,SCHMUTTENMAER C A.Farinfrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy[J].The Journal of Physical Chemistry,1996,100(24):1037310379.

[7]WOODS K N,WIEDEMANN H.The influence of chain dynamics on the farinfrared spectrum of liquid methanol[J].The Journal of Chemical Physics,2005,123(13):134506.

[8]JEPSEN P U,MOLLER U,MERBOLD H.Investigation of aqueous alcohol and sugar solutions with reflection terahertz timedomain spectroscopy[J].Optics Express,2007,15(22):1471714737.

[9]YOMOGIDA Y,SATO Y,NOZAKI R,et al.Comparative dielectric study of monohydric alcohols with terahertz timedomain spectroscopy[J].Journal of Molecular Structure,2010,981(1):173178.

[10]TIAN Z,HAN J G,LU X C,et al.Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes[J].Chemical Physics Letters,2009,475(1/3):132134.

[11]HASEBE T,KAWABE S,MATSUI H,et al.Metallic meshbased terahertz biosensing of singleand doublestranded DNA[J].Journal of Applied Physics,2012,112(9):09470210947027.

[12]MENDIS R,ASTLEY V,LIU J B,et al.Terahertz microfluidic sensor based on a parallelplate waveguide resonant cavity[J].Applied Physics Letters,2009,95(17):171113.

[13]ULLAH R,LI H,ZHU Y M.Terahertz and FTIR spectroscopy of ‘Bisphenol A[J].Journal of Molecular Structure,2014,1059:255259.

[14]CHEN L,GAO C M,XU J M,et al.Observation of electromagnetically induced transparencylike transmission in terahertz asymmetric waveguidecavities systems[J].Optics Letters,2013,38(9):13791381.

[15]CHEN L,XU J M,GAO C M,et al.Manipulating terahertz electromagnetic induced transparency through parallel plate waveguide cavities[J].Applied Physics Letters,2013,103(25):25110512511054.

[16]刘丹,吴胜伟,马明旺,等.水和二氧六环水溶液的THz波段介电性质[J].核技术,2010,33(9):688692.

[17]INDIRA T,PARTHIPAN G,ASWATHAMAN H,et al.Dipole moment studies of complexes of alcohols with ethyl bromide[J].Journal of Molecular Liquids,2009,150(1/3):2224.

[18]BERTERO N M,TRASARTI A F,APESTEGUA C R,et al.Solvent effect in the liquidphase hydrogenation of acetophenone over Ni/SiO2:A comprehensive study of the phenomenon[J].Applied Catalysis A:General,2011,394(1/2):228238.

[19]XU J M,CHEN L,XIE L,et al.Effect of boundary condition and periodical extension on transmission characteristics of terahertz filters with periodical hole array structure fabricated on aluminum slab[J].Plasmonics,2013,8(3):12931297.

[20]CHEN L,ZHU Y M,ZANG X F,et al.Mode splitting transmission effect of surface wave excitation through a metal hole array[J].Light:Science & Applications,2013,2(3):e60.

[21]陈麟,高春梅,徐嘉明,等.铝质亚波长圆孔阵列与牛眼结构的太赫兹波传输特性[J].光学仪器,2013,35(6):16.