生物质能源产业技术发展趋势
2014-12-25刘秀花
文/刘秀花
生物质能源产业技术发展趋势
文/刘秀花
随着石油、煤炭等化石能源的日益减少,世界各国正面临着不同程度的化石能源短缺和生态危机,开发和利用清洁可再生能源已成为各国关注的焦点,世界各国纷纷将生物质能源作为解决资源、环境、经济问题的有效途径和重要手段。有效、合理开发生物质能不仅可以缓解能源短缺,而且对于保护生态环境和减排温室气体具有重要现实意义。
生物质(Biomass)是指通过生物体的光合作用形成的有机物质或由其转化的物质,例如动物体及排泄物。可利用的生物质包括森林、农作物及农作物废弃物、农林加工废弃物和动物粪便。生物质的主要成分为纤维素、半纤维素、木质素、脂类、蛋白质、淀粉、灰分和芳香族物质。其中,纤维素、半纤维素和木质素是不易被人和动物利用的物质,脂肪和芳香族化合物是重要的动植物提取物。由于生物质是通过光合作用固定CO2形成的有机物,因此生物质燃烧后释放的CO2与光合作用时固定的CO2相当,是一种CO2零排放的能源物质,对保护生态环境减少温室气体排放具有重要意义。
生物燃料是可再生能源的重要组成部分,对交通运输业(陆运、空运和海运)的可持续发展有举足轻重的作用。例如液体的和气体的生物燃料:生物柴油、生物醇类(生物酒精、生物甲醇和异丙醇),生物二甲醚(bio-DME),生物油、生物气(沼气),生物氢气,以及填埋场气(主要是CH4)等等。不同于石油,生物燃料被视为是CO2中性的,因为再其产生过程中吸收了同样数量的CO2,燃烧释放量不可能增加。此外,许多生物燃料是含氧的(如生物醇),有助于降低燃烧过程中含氮化合物颗粒的排出量。
我国生物质能源的现状与发展趋势
我国非常重视生物质能的发展。“十二五”期间,国家下发多个文件指导生物质能源的发展。国务院发布的《国家“十二五”科学和技术发展规划》、《国家能源科技“十二五”规划(2011-2015)》、国家发改委2012年7月下发《可再生能源“十二五”规划》都明确了发展生物质能源的产业目标。国家能源局特别发布《生物质能发展“十二五”规划》,明确了生物质能的发展目标。到2015年我国生物质液体燃料将到达500万吨。低成本纤维乙醇、生物柴油等先进非粮生物液体燃料的技术进步,为生物燃料更大规模发展创造了条件,以替代石油为目标的生物质能梯级综合利用将是将来主要发展方向。
生物质能,是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为固体、液体和气体燃料,是取之不尽、用之不竭的一种可再生能源,因此生物质能是太阳能的一种表现形式。
我国现阶段生物质能源发展的原料主要是油料植物、秸秆及动物粪便等传统生物质资源。据估算,2012年我国废弃的农作物秸秆资源7.4亿吨,折合3.2亿吨标准煤;农产品加工废弃物1.4亿吨,折合标准煤0.17亿吨;禽畜粪便7.8亿吨,折合标准煤5.3亿吨;林木生物质资源10亿吨,折合标准煤5.8亿吨;生活垃圾3.1亿吨,折合0.45亿吨标准煤,但生物质资源的实际利用量在1亿吨标准煤左右,约占可利用总量的15%~20%,因此具有较大的发展潜力。我国生物质能源发展的一个基本原则是“不与人争粮,不与粮争地”,因此,生物质能源主要来自于农林废弃物。
到2015年,生物质能年利用量超过5000万吨标准煤。其中,生物质发电装机容量1300万千瓦、年发电量约780亿千瓦时,生物质年供气220亿立方米,生物质成型燃料1000万吨,生物液体燃料500万吨。建成一批生物质能综合利用新技术产业化示范项目。
全球生物能源技术发展趋势
理想的生物燃料应该是能够用非食品原料廉价生产,常年供应且能方便地使用现有供应设施,其能量密度与汽油或柴油相当。可以使用10%~25%(E10-E25)混合生物乙醇汽油的汽车数量正在增加。新型弹性燃料车辆能够燃烧任意混合比例的生物乙醇,包括百分之百的水合乙醇(E100)。类似的,生物柴油也可以任意比例混合,混合的比例已经从现在的2%~5%(B2-B5)设定到未来的10%~20%(B10-B20)。与生物乙醇比较,生物柴油含有更高的碳含量,能够产生类似于传统柴油相当的热值。生产成本尤其是原材料的价格是目前更高比例混合生物燃料的限制因素。
第一代生物燃料是目前商业化较成功的生物燃料,包括生物乙醇和生物柴油,其原料是甘蔗、玉米、小麦、谷物、菜籽油,蔬菜油和提取的动物脂肪。第一代生物醇(生物乙醇)是通过啤酒酵母发酵来源于作物的植物糖和淀粉产生的,这些作物包括甘蔗、甜菜和玉米。巴西生物乙醇生产以甘蔗为原料,而美国主要是以玉米为原料生产生物乙醇。第一代生物柴油的生产是对植物油的化学修饰完成的,如油菜、棕榈树和大豆等,植物油脂和提炼的动物脂肪通过脂肪酸甲酯化作用生产生物柴油。然而,第一代生物燃料的原材料直接与食品或饲料产品形成竞争,其发展是不可持续的,会导致食物商品价格的飙升,使其进一步推广受限制。因此生物燃料的发展与推广需要第二代、第三代甚至第四代生物燃料的发展。
第二代生物燃料已经有了初步发展,其原料包括木质纤维素,生物废弃物,固体废弃物。木质纤维素难以降解,从木质素纤维形成可发酵糖要经过多步骤处理,例如原材料前期处理、采用物理的、化学的或生物的进行预处理、可溶性半纤维素糖从固体纤维物中分离出来的固、液分离、酶水解纤维素产生可发酵的葡萄糖等木质纤维素利用中,相当大的精力集中到真菌纤维素降解酶酶解途径的研究。酶解过程涉及一个联合过程,是末端葡萄糖水解酶和纤维素外切酶共同作用,两种酶都隶属于典型的糖苷水解,是通过攻击寡糖-多聚糖底物的异构中心中的水分子来实现的。木质纤维素酶的酶活性低、酶解成本高是木质纤维素利用的一个瓶颈。
生物柴油是指由动植物油脂(脂肪酸甘油三酯)与醇(甲醇或乙醇)经酯交换反应得到的脂肪酸单烷基酯,最典型的是脂肪酸甲酯。与传统的石化能源相比,其硫及芳烃含量低、闪点高、十六烷值高、具有良好的润滑性,可部分添加到石化柴油中。但是使用动植物油脂生产生物柴油造成与人和动物争资源的现象。一种新型的油脂生产正在形成——微生物油脂,微生物油脂可以利用农作物秸秆通过发酵方式工厂化生产,不仅可以废物利用,而且节省土地,用其生产的生物柴油接近石化柴油的性能,有较好的发展潜力。
第三代生物燃料是基于藻类物质的新一代燃料,利用它们产生的碳水化合物、蛋白质、蔬菜油生产生物柴油和氢气。据估计,藻类产量可达61000升/公顷,相比之下,作物如大豆、菜子的产量分别是200升/公顷、45升/公顷。微藻类特别是小球藻细胞内脂类的积累能够达到其生物质50%。产生的生物油通常酸值较低,有利于生物柴油的合成。微藻类具有第一代、第二代生物燃料原材料不能比拟的优势。微藻类能够使用海水和污水养殖,不会与食品生产形成竞争。
第四代生物燃料主要利用代谢工程技术改造藻类的代谢途径,使其直接利用光合作用吸收CO2合成乙醇、柴油或其他高碳醇等,这是当前最新技术。虽然该技术尚处于实验室研究阶段,但在环保、成本等方面的优势已经可以预期。
生物能源产业展望
据统计2010年大约1200亿升生物燃料产量用于运输业,几乎是2005年的2倍。全球现有生物燃料市场生物乙醇占近80%,其余的主要是生物柴油。市场主要是第一代生物燃料,美国是最大的生物乙醇生产国,产量为490亿升,第二位是巴西,产量为280亿升,分别占全球输出的57%和33%。欧盟领导着生物柴油生产,占2010年世界生物柴油市场的53%。预期到2020年,全球生物燃料的总产量为2000亿升,其中生物乙醇1550亿升,生物柴油450亿升。
将来生物燃料将在能源技术的应变上占有重要的地位,白色生物技术在生产生物燃料和化学原料领域具有较大的潜力。第一代生物燃料技术已经成熟,但与食品生产原料竞争。未来生物燃料的发展与推广需要第二代(木质素纤维、生物废弃物、固体废物)和第三代(藻类和蓝细菌)技术应用到新兴生物燃料的生产。
新一代生物燃料短期内取得商业化成功具有较大的挑战性。新一代生物燃料的试点和规模化示范仍需继续进行,因为与取得商业化成功的第一代生物燃料相比其生产成本过高。无论是热化学的还是生物化学的技术手段,目前还没有清晰最佳技术途径。
新一代生物燃料产业要想独立生存,必须联合所有可利用的产品,就相当于原油的精炼,这就是生物精炼。生物基经济取决于生物精炼的概念将会提供更多的经济利益,其手段是形成生物基化合物和产品,如精细化工,润滑油和溶剂。
(作者单位:商丘师范学院生命科学学院)