数学概括浅议
2014-12-15李志娟
李志娟
我国著名数学家、数学教育家华罗庚先生生前十分重视中学数学教育事业。他提出的读书公式:“薄厚”读书法在中学数学界乃至整个教育界广为流传和称颂。学生学习数学知识、技能和方法的过程是一个从不知到知,从知之不多到知之甚多的不断积聚的过程。这就是公式的第一步:“从薄到厚”。公式的第二步:“从厚到薄是数学知识、技能的总结概括,思想方法的提炼升华的过程。而培养学生的数学概括能力,对学生正确认识数学,发展数学学习能力,优化学习效果都有相当重要的作用。
数学作为一门学科,它的本质特征之一是高度的抽象性和高度的概括性,数学本身就是客观世界的数量关系和空间形式的最抽象、最概括的反映。就数学教育而言,培养学生概括能力无疑是提高学生数学思维水平的一项重要内容。
什么是数学概括?曹才翰教授在《中学数学教学概论》中指出了它的意义:“其一,指在思想上把具有相同本质特性的事物联系起来;其二,是把被研究对象的本质特性推广为范围更广的包含这个对象的同类事物的本质特性。”
本文拟从中学数学教育的角度浅议数学概括,着重讨论中学数学教材涉及的数学通则通法的概括和数学迁移概括。
一、数学通则通法的概括
1.概括和再概括数学通则通法是数学教学研究的重要素材,包括定理、性质、公式和法则在内的数学教学内容是前人研究和总结出来的数学成果,是真知。数学教学的一个任务就是要把这些数学成果用科学的教学方法传授给学生,使之能理解、掌握和应用。
2.建模和扩模不论是把实际问题转化为数学问题,还是单纯解数学题,都离不开把问题和解决问题的方法进行比较分类,抽象概括出一种数学结构形式,然后利用这种结构形式来熟练地解决同类型的实际问题和数学问题。这就是从狭义的角度来认识建构数学模型。从这个意义上讲,数学模型是数学抽象概括的结果。数学中每一个计算公式、每一类方程、每一种函数都可以看作一个数学模型。在建模用模的同时,不应把模型看成僵化的、一成不变的东西,而应考虑模型及其功能的变化发展。
二、数学迁移概括
在学习过程中,先行学习和后续学习总是互相影响、互相干扰的,我们把这两者之间的影响、干扰称为“迁移”。学习甲时获得的一般数学原理方法如能适用于学习乙时,若能从学习甲、乙过程中概括出它们的共同的数学原理和方法,我们称之为数学迁移概括。求解二次方程,无论是分解因式还是开平方,都是为了降为一次方程,引导学生把降次法迁移到解特殊的高次方程上来,这就是一种数学迁移概括。许多学生对“x>1 x≥1”这一推理的正确性持怀疑态度,认为结论中的“x=1”在前提中不存在,是无论如何推导不出的。可见把这一类问题提到集合思想观念的高度来认识处理,这实际上就是把子集概念的数学结构迁移概括到一些特殊数学事实的认识和处理上了。对中学数学教材结构体系,学生一般了解不深,但能粗浅地认识到数学教材总是从建立公理、定义概念开始,一步步演绎出一系列的数学知识和方法,有的同学还能注意到教材中定理、公式出现的逻辑顺序,并从自己的学习经验中意识到用前一个定理的结果去推证后一定理(或推论),比用定义、概念出发去推证更为简易。所有这些实质上是对数学公理化思想的点滴意会。
三、数学概括能力的培养
1.必须重视数学知识发展过程的教学数学具有逻辑严谨的特点,新概念(新知识)往往是在原有概念(旧知识)的基础上引进和建立的。合理组织教学活动,加强新旧知识的联系是把新知识纳入学生原有认知结构实现知识迁移的重要途经。重视新知识(包括概念、定理、公式、法则等)的发生、发展、巩固和系统化(小结)的教学,从教材中发掘培养学生概括能力的因素,并利用它来提高学生数学知识的概括水平,这是让学生学习数学的一个关键。
当前数学教学中不同程度的存在“概念知识一带而过,练习课代替复习课”的倾向,无论对学生数学知识技能的掌握还是数学能力的培养都是有百弊而无一利的。
2.必须摒弃“题海战”的教学模式当前考试指挥教学的功能仍有增无已。为应付考试,教师企图穷尽考试要求范围内的所有题型(及各种变形),将其全部塞给学生训练。这种题型加题量的训练模式(俗称“题海战”)是一种就题论题式的、缺乏概括的模式。花时多,收效少,学生负担重。这种只知改变题目的外在形式,不顾学生内在的思维活动的教学方式,是不能达到知识、能力广泛迁移的目的的。因为一方面训练题量的多少和培养能力的大小并非成正比例,题量题型过多并不能提高学生区分事物的现象和本质、联系事物共同的本质属性的思维水平;另一方面,过重的学习负担产生过重的心理负担,使学生不能以愉悦的、有兴趣的心情和积极、主动的态度对待数学学习,而产生学习态度的负迁移,这是最为令人担忧的教学后果。
3.必须重视解题思路的概括解题是学习数学的必要途经。对解法典型概括内容较多的数学题,教师帮助学生建立题型模式,使学生能识模、用模,熟练同类题目的解法思路。在这过程中教师要自己暴露(或让学生经历)从直觉思维到理性思维的过程,进行有层次的数学概括。同时教师不能满足于这种题型归类的浅层次概括,还应当从数学思想方法的高度对解题思路进行较高层次的概括。高考第一轮复习,在回顾各章节内容之前,先系统介绍数学思想方法,实践证明是有益的。非毕业年级的数学教学,以知识内容为载体,有条件地逐步渗透各种数学思想方法,对学生各种思维能力(包括数学概括能力)的提高也同样是有益的。endprint