电动力学中的理论物理思想及教学策略
2014-11-06赵新军李祯
赵新军++李祯
摘 要:该文讨论了电动力学中的理论物理思想及教学策略,理论物理思想包括理论的基本原理、数学方程的建立以及理论物理解决问题的方法,提出了相应的教学策略以及学习策略。
关键词:电动力学 理论物理思想 教学策略
中图分类号:G642 文献标识码:A 文章编号:1674-098X(2014)04(a)-0115-01
电动力学是研究电磁现象的经典的动力学理论,它主要研究电磁场的基本属性、运动规律以及电磁场和带电物质的相互作用,电动力学是在电磁学基础上更系统、更深入、更严密地进行阐述的理论体系,是高校物理专业及相关专业学生在普通物理基础上,继续深入学习的一门理论基础课。这门学科与电磁学、近代物理学、量子力学等相关学科联系紧密,因此在物理学课程中具有重要的地位和作用。
电动力学课程的内容包括麦克斯韦电磁理论和爱因斯坦狭义相对论,这是在物理学发展史上起里程碑作用的两个物理理论。普通物理的逻辑体系是:实验→定律→理论,是一种以归纳法为主线的知识结构。电动力学是它属于理论物理范畴,是以麦克斯韦方程组,分别讨论在静态、时变态、含源区、自由空间等不同条件下电磁场的空间分布和运动变化规律,其逻辑体系以演绎法为主。因此电动力学淋漓尽致地体现了的理论物理思想,在本课程的教学过程中如何将理论物理思想展现并传授与学生,如何通过本课程培养学生的能力仍然是一个值得讨论的问题。
1 电动力学中的理论物理思想
电动力学同理论力学、热力学统计物理、量子力学则属于理论物理范畴,它们的科学体系是建立在基本原理之上,例如理论力学中的虚功原理、最小作用量原理、量子力学中的态叠加原理、热力学统计物理中的等概率原理、电动力学中的麦克斯韦的两个假定。理论物理由这些基本原理得出数学推论形式,也就是建立数学方程方程,方程的建立描述着着物理规律。例如理论力学中有哈密顿正则方程、量子力学中有薛定谔方程。电动力学中有麦克斯韦方程组、热力学统计物理中有刘维尔方程等。因此,理论物理科学体系建立需要我们提出合理的假定,这些合理的假定正是物理学的创新之处,所以学习前人的提出假定的过程就是学习如何创新的过程!这一点在培养学生创新能力方面必须在教学中体想出来。尤其是在电动动力学当中,科学家在建立理论过程中充分体现着创新的过程。例如法拉第发现电磁感应规律后,人们很容易解释为什么会产生动生电动势,这可以用电荷受到洛伦磁力来解释,是洛伦磁力提供了非静电力。但是无法解释感生电动势,因为不明白是哪一种力提供着非静电力,为了解决这个问题,麦克斯韦提出了合理的假定,他认为电荷既然可以运动,肯定受到了电场或磁场力的作用,磁场力显然不可能,所以只有电场力,但是电场力必须是非静电力,因此麦克斯韦提出存在涡旋电场,这个涡旋电场来自于变化的磁场,显然体现着一种创新思想。还有狭义相对论的建立,正是人们无法解释麦克斯韦方程组与伽利略变化的矛盾的时候,还有对“以太”的是否存在犯愁的时候,爱因斯坦提出了狭义相对论的两个基本原理。
2 教学策略
认识到了电动力学课程的特征,体会到了电动力学中的理论物理思想,在教学中应该注重通过物理学中的创新,激发学生的学习兴趣,培养学生创新能力以及解决问题的能力。因此在教学中应当注意介绍现代生产技术实践对电动力学学科的新进展。电动力学课程教学应当密切联系最新科学技术和实际应用,对于电磁波辐射的危害,科学家们已经做出了大量的实验以及临床证明,证实电磁波辐射对人体健康有危害已经是不可否认的事实。
利用自己的科研经验和成果,启发学生走向科研轨道。坚持进行教学研究和学术研究,使教学与科研紧密结合,注意从教学实践中提出研究课题让学生作为毕业论文完成。注重带有普遍性的方法与近似方法相结合。比如电动力学种求解静电场的普遍方法有拉普拉斯方程法,但是也有近似方法比如电多极矩展开。近似方法的实质就是通过抓住主要矛盾、忽略次要因素来解决问题的方法,它大量运用于物理学的教学和科研之中。该方法可解决一些还不能严格求解的问题,可使一些能求解的问题得到简化,还往往能很好地适应生产实践的需要。
在教学中还应注意在一些具体的数学推导中也紧密结合物理分析,这样不仅能理解每一个数学结果的物理含义,而且有时还能简化数学运算。从物理上获得数学方程的解,如计算点电荷格林函数,就可以从物理上获得。实践结果表明,这样做不仅对问题本身的认识更加全面、深刻,而且学生更易于接受和理解。
3 结语
电动力学是电磁学的后继课程,它属于理论物理范畴,它由麦克斯韦方程组讨论不同条件下电磁场的空间分布和运动变化规律,其辑体系以演绎法为主。所以广大学习物理课程的大学生更应该充分重视电动力学、学好电动力学,这不对学生牢固掌握和灵活运用归纳法、演绎法、类比法、理想模型和数学语言来求解各种问题,更要树立严谨的学习态度和刻苦的学习作风、培养浓厚的学习兴趣起到良好的的促进作用,而且为以后解决各类问题培养能力。当学生一旦掌握了这门课程并学会了研究它的科学方法时,便会产生“昨夜西风凋碧树,独上高楼,望尽天涯路”的那种发自内心的喜悦。
电动力学课程的科学体系以及教学策略,不仅适应于电动力学课程的教学,还很容易推广到其他理论物理课程上,让学生在大学四年不仅获得知识,而且更重要的是让学生毕业后具有获取知识的能力、解决问题的能力、具有创造性的思维。
参考文献
[1] 郭硕鸿.电动力学[M].3版.高等教育出版社,2008.
[2] 俞允强.电动力学简明教程[M].北京大学出版社,1999.
[3] 汪映海,赵鸿.优化电动力学课程内容体系和结构的一些探讨[J].高等理科教育,2001(4):29.
[4] 苑仲元,张强.电动力学在物理学课程中的地位和作用[J].创新科技导报,2012(14).
[5] 林海.电动力学教学中学生能力的培养 [J].雁北师院学报,1997(13).
[6] 熊万杰,陆建隆.对电动力学课程改革的探索[J].高等理科教育,2003(6).endprint